Biomimetic Adaptive Building Façade Modeling for Sustainable Urban Freshwater Ecosystems: Integration of Nature’s Water-Harvesting Strategy into Sun-Breakers
Abstract
:1. Introduction
2. Materials and Methods
3. Literature Review and Theoretical Background
3.1. Water-Harvesting Strategy in Nature
3.2. Biomimicry Approach and Studies in Architecture
3.3. Sun-Breakers
4. Integration of Water-Harvesting Strategy to Sun-Breakers and Model Proposal
4.1. Water Collection Stage
4.2. Water Transmission Stage
4.3. Water Absorption Stage
5. Model Proposal and Working Strategy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission 2010. 2009 Environment Policy Review; Office for Official Publications of the European Communities: Luxembourg, 2009; Available online: https://wayback.archive-it.org/12090/20221009012538/https://ec.europa.eu/environment/archives/pdf/policy/EPR_2009.pdf (accessed on 13 May 2024).
- United Nations Environment Programme 2023. State of Finance for Nature: The Big Nature Turnaround Repurposing $7 Trillion to Combat Nature Loss—Technical Annex. Available online: https://wedocs.unep.org/20.500.11822/44706 (accessed on 13 May 2024).
- Alcock, P.O.; Verster, E. Investigation into unconventional sources of water for a period of time in an urban/rural district of KwaZulu. S. Afr. J. Sci. 1987, 83, 348. [Google Scholar]
- Falkenmark, M.; Lundquist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Perrings, C.; Folke, C.; Mäler, K.G. The ecology and economics of biodiversity loss: The research agenda. Ambio 1992, 21, 201–211. [Google Scholar]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Hoornweg, D.; Hosseini, M.; Kennedy, C.; Behdadi, A. An urban approach to planetary boundaries. Ambio 2016, 45, 567–580. [Google Scholar] [CrossRef]
- Li, W.; Hai, X.; Han, L.; Mao, J.; Tian, M. Does urbanization intensify regional water scarcity? Evidence and implications from a megaregion of China. J. Clean. Prod. 2020, 244, 118592. [Google Scholar] [CrossRef]
- Sun, S.; Zheng, X.; Liu, X.; Wang, Z.; Liang, L. Global pattern and drivers of water scarcity research: A combined bibliometric and geographic detector study. Environ. Monit. Assess. 2022, 194, 523. [Google Scholar] [CrossRef] [PubMed]
- United Nations 2007. World Urbanization Prospects: The 2007 Revision Highlights, New York: Department of Economic and Social Affairs, United Nations. Available online: https://lternet.edu/wp-content/uploads/2016/07/2007WUP_Highlights_web.pdf (accessed on 17 May 2024).
- United Nations 2011. World Urbanization Prospects: The 2011 Revision Highlights, New York: Department of Economic and Social Affairs, United Nations. Available online: https://www.un.org/en/development/desa/population/publications/pdf/urbanization/WUP2011_Report.pdf (accessed on 18 May 2024).
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Kreyling, J.; Arfin Khan, M.A.; Sultana, F.; Babel, W.; Beierkuhnlein, C.; Foken, T.; Jentsch, A. Drought effects in climate change manipulation experiments: Quantifying the influence of ambient weather conditions and rain-out shelter artifacts. Ecosystems 2017, 20, 301–315. [Google Scholar] [CrossRef]
- Kummu, M.; Ward, P.J.; De Moel, H.; Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res. Lett. 2010, 5, 034006. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, J.; Savenije, H.H. A simple approach to assess water scarcity integrating water quantity and quality. Ecol. Indic. 2013, 34, 441–449. [Google Scholar] [CrossRef]
- Boers, T.M.; Ben-Asher, J. A review of rainwater harvesting. Agric. Water Manag. 1982, 5, 145–158. [Google Scholar] [CrossRef]
- Li, F.; Cook, S.; Geballe, G.T.; Burch Jr, W.R. Rainwater harvesting agriculture: An integrated system for water management on rainfed land in China’s semiarid areas. AMBIO A J. Hum. Environ. 2000, 29, 477–483. [Google Scholar] [CrossRef]
- ISO 18458:2015-05; Biomimetics—Terminology, Concepts and Methodology. International Organization for Standardization (ISO) Copyright Office: Geneva, Switzerland, 2015. Available online: https://cdn.standards.iteh.ai/samples/62500/c1f61c3fb5024e5e91a8e4e1e2ac4fa0/ISO-18458-2015.pdf (accessed on 20 May 2024).
- Pedersen Zari, M. Can biomimicry be a useful tool for design for climate change adaptation and mitigation? In Biotechnologies and Biomimetics for Civil Engineering; Pacheco Torgal, F., Labrincha, J., Diamanti, M., Yu, C.P., Lee, H., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 81–113. [Google Scholar] [CrossRef]
- Kahvecioğlu, B.; Arslan Selçuk, S. Adaptive Reuse in the Realm of Architecture: Global Research Trends and Gaps for the Future Studies. Sustainability 2023, 15, 9971. [Google Scholar] [CrossRef]
- Lindblad, P.; Lindberg, P.; Oliveira, P.; Stensjö, K.; Heidorn, T. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production. Ambio 2012, 41, 163–168. [Google Scholar] [CrossRef]
- Creutzig, F.; Goldschmidt, J.C.; Lehmann, P.; Schmid, E.; von Blücher, F.; Breyer, C.; Fernandez, B.; Jakob, M.; Knopf, B.; Lohrey, S. Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition. Renew. Sustain. Energy Rev. 2014, 38, 1015–1028. [Google Scholar] [CrossRef]
- Loonen, R.C.; Rico-Martinez, J.M.; Favoino, F.; Brzezicki, M.; Ménézo, C.; La Ferla, G.; Aelenei, L.L. Design for façade adaptability: Towards a unified and systematic characterization. In Proceedings of the 10th Conference on Advanced Building Skins, Bern, Switzerland, 3–4 November 2015; pp. 1284–1294. [Google Scholar]
- Shahin, H.S.M. Adaptive building envelopes of multistory buildings as an example of high performance building skins. Alex. Eng. J. 2019, 58, 345–352. [Google Scholar] [CrossRef]
- Badarnah, L. Water management lessons from nature for applications to buildings. Procedia Eng. 2016, 145, 1432–1439. [Google Scholar] [CrossRef]
- Aslan, D.; Selçuk, S.A.; Avinç, G.M. A Biomimetic Approach to Water Harvesting Strategies: An Architectural Point of View. Int. J. Built Environ. Sustain. 2022, 9, 47–60. [Google Scholar] [CrossRef]
- Arslan Selçuk, S.; Gülle, N.B.; Mutlu Avinç, G. Tree-Like Structures in Architecture: Revisiting Frei Otto’s Branching Columns Through Parametric Tools. Sage Open 2022, 12, 21582440221119479. [Google Scholar] [CrossRef]
- Di Bitonto, M.G.; Kutlu, A.; Zanelli, A. Fog Water Harvesting Through Smart Façade for a Climate Resilient Built Environment. In International Conference on Technological Imagination in the Green and Digital Transition; Springer International Publishing: Cham, Switzerland, 2023; pp. 725–734. [Google Scholar] [CrossRef]
- Badarnah, L.; Kadri, U. A methodology for the generation of biomimetic design concepts. Archit. Sci. Rev. 2015, 58, 120–133. [Google Scholar] [CrossRef]
- Garcia-Holguera, M.; Clark, O.G.; Sprecher, A.; Gaskin, S. Ecosystem biomimetics for resource use optimization in buildings. Build. Res. Inf. 2016, 44, 263–278. [Google Scholar] [CrossRef]
- Badarnah, L. Form follows environment: Biomimetic approaches to building envelope design for environmental adaptation. Buildings 2017, 7, 40. [Google Scholar] [CrossRef]
- Pawlyn, M. Biomimicry in Architecture, 2nd ed.; Riba Publishing: Newcastle, NSW, Australian, 2016; pp. 8–18,88–95. [Google Scholar]
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature, 1st ed.; Harper Collins Publishers: New York, NY, USA, 1997; pp. 1–21. [Google Scholar]
- Ilieva, L.; Ursano, I.; Traista, L.; Hoffmann, B.; Dahy, H. Biomimicry as a sustainable design methodology—Introducing the ‘Biomimicry for Sustainability framework. Biomimetics 2022, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.W.; Alford, P.W.; Jin, H.; Ripplinger, C.M.; Werdich, A.A.; Sheehy, S.P.; Grosberg, A.; Parker, K.K. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 2012, 33, 5732–5741. [Google Scholar] [CrossRef]
- Coban, M.; Coştu, B. Integration of biomimicry into science education: Biomimicry teaching approach. J. Biol. Educ. 2023, 57, 145–169. [Google Scholar] [CrossRef]
- López, M.; Rubio, R.; Martín, S.; Croxford, B. How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes. Renew. Sustain. Energy Rev. 2017, 67, 692–703. [Google Scholar] [CrossRef]
- Mutlu Avinç, G.; Arslan Selçuk, S. Bio-design as a Basis for the Creation of New Architectural Materials: Experience of the Faculty of Architecture of Gazi University. Civ. Eng. Archit. 2024, 12, 643–667. [Google Scholar] [CrossRef]
- Zari, M.P. Biomimetic approaches to architectural design for increased sustainability. In Proceedings of the SB07 NZ Sustainable Building Conference, Auckland, New Zealand, 14–16 November 2007; p. 033. [Google Scholar]
- Taylor, R. Reflecting the impossible. Nature 2009, 460, 462. [Google Scholar] [CrossRef]
- Gruber, P. Biomimetics in Architecture: Architecture of Life and Buildings, 1st ed.; Springer: Wien, Austria, 2011; pp. 16–18. [Google Scholar] [CrossRef]
- Elsamadisy, R.; Sarhan, A.E.; Farghaly, Y.; Mamdouh, A. Biomimicry as a design approach for adaptation. J. Al-Azhar Univ. Eng. Sect. 2019, 14, 1516–1533. [Google Scholar] [CrossRef]
- Smith, J. It’s only natural. Ecologist 2007, 37, 52–55. [Google Scholar]
- Guo, Z.; Liu, W.; Su, B.L. Superhydrophobic surfaces: From natural to biomimetic to functional. J. Colloid Interface Sci. 2011, 353, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T. Design by nature. Natl. Geogr. 2008, 213, 68–91. [Google Scholar]
- Chu, Y.J. A new biomimicry marine current turbine: Study of hydrodynamic performance and wake using software OpenFOAM. J. Hydrodyn. 2016, 28, 125–141. [Google Scholar] [CrossRef]
- Vartan, S. The ultimate flattery. E Environ. Mag. 2006, 17, 44. [Google Scholar] [CrossRef]
- Wanieck, K.; Fayemi, P.E.; Maranzana, N.; Zollfrank, C.; Jacobs, S. Biomimetics and its tools. Bioinspired Biomim. Nanobiomaterials 2017, 6, 53–66. [Google Scholar] [CrossRef]
- Heintz, M. Biomimicry to the rescue. Mater. Today 2009, 12, 6. [Google Scholar] [CrossRef]
- Rorabaugh, J. Apparent rain harvesting by a Colorado Desert sidewinder (Crotalus cerastes laterorepens). Son. Herpetol. 2007, 20, 128–129. [Google Scholar]
- Bhushan, B. Design of water harvesting towers and projections for water collection from fog and condensation. Philos. Trans. R. Soc. A 2020, 378, 20190440. [Google Scholar] [CrossRef]
- Auffenberg, W. A note on the drinking habits of some land tortoises. Anim. Behav. 1963, 11, 72–73. [Google Scholar] [CrossRef]
- Parker, A.R.; Lawrence, C.R. Water capture by a desert beetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, T.; Dacke, M. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Front. Zool. 2010, 7, 1–8. [Google Scholar] [CrossRef]
- Van Damme, P. Plant ecology of the Namib desert. Afr. Focus 1991, 7, 355–400. [Google Scholar] [CrossRef]
- HAMILTON III, W.J.; Seely, M.K. Fog basking by the Namib Desert beetle, Onymacris unguicularis. Nature 1976, 262, 284–285. [Google Scholar] [CrossRef]
- Seely, M.K. Irregular fog as a water source for desert dune beetles. Oecologia 1979, 42, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Tracy, C.R.; Laurence, N.; Christian, K.A. Condensation onto the skin as a means for water gain by tree frogs in tropical Australia. Am. Nat. 2011, 178, 553–558. [Google Scholar] [CrossRef]
- Comanns, P.; Effertz, C.; Hischen, F.; Staudt, K.; Böhme, W.; Baumgartner, W. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards. Beilstein J. Nanotechnol. 2011, 2, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Gans, C.; Merlin, R.; Blumer, W.F.C. The water-collecting mechanism of Moloch horridus re-examined. Amphib. Reptil. 1982, 3, 57–64. [Google Scholar] [CrossRef]
- Zheng, Y.; Bai, H.; Huang, Z.; Tian, X.; Nie, F.Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643. [Google Scholar] [CrossRef]
- Dawson, T.E. Fog in the California redwood forest: Ecosystem inputs and use by plants. Oecologia 1998, 117, 476–485. [Google Scholar] [CrossRef]
- Ingwersen, J.B. Fog drip, water yield, and timber harvesting in the Bull Run municipal watershed, Oregon 1. J. Am. Water Resour. Assoc. 1985, 21, 469–473. [Google Scholar] [CrossRef]
- Ebner, M.; Miranda, T.; Roth-Nebelsick, A. Efficient fog harvesting by Stipagrostis sabulicola (Namib dune bushman grass). J. Arid. Environ. 2011, 75, 524–531. [Google Scholar] [CrossRef]
- Roth-Nebelsick, A.; Ebner, M.; Miranda, T.; Gottschalk, V.; Voigt, D.; Gorb, S.; Stegmaier, T.; Sarsour, J.; Linke, M.; Konrad, W. Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J. R. Soc. Interface 2012, 9, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Bai, H.; Zheng, Y.; Zhao, T.; Fang, R.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247. [Google Scholar] [CrossRef]
- Nobel, P.S. Environmental Biology of Agaves and Cacti, 1st ed.; Cambridge University Press: New York, NY, USA, 2003; pp. 1–50. [Google Scholar]
- Schill, R.; Barthlott, W. Kakteendornen als wasserabsorbierende Organe. Naturwissenschaften 1973, 60, 202–203. [Google Scholar] [CrossRef]
- Faragalla, A.M.; Asadi, S. Biomimetic design for adaptive building façades: A paradigm shift towards environmentally conscious architecture. Energies 2022, 15, 5390. [Google Scholar] [CrossRef]
- Otto, F. Occupying and Connecting, 2nd ed.; Edition Axel Menges: Mitcham, UK, 2009; pp. 1–50. [Google Scholar]
- Park, J.J.; Dave, B. Bio-inspired parametric design for adaptive stadium façades. Australas. J. Constr. Econ. Build. Conf. Ser. 2014, 2, 27–35. [Google Scholar] [CrossRef]
- Varshabi, N.; Arslan Selçuk, S.; Mutlu Avinç, G. Biomimicry for Energy-Efficient Building Design: A Bibliometric Analysis. Biomimetics 2022, 7, 21. [Google Scholar] [CrossRef]
- Reichert, S.; Menges, A.; Correa, D. Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput. Aided Des. 2015, 60, 50–69. [Google Scholar] [CrossRef]
- Al-Masrani, S.M.; Al-Obaidi, K.M.; Zalin, N.A.; Isma, M.A. Design optimisation of solar shading systems for tropical office buildings: Challenges and future trends. Solar Energy 2018, 170, 849–872. [Google Scholar] [CrossRef]
- Aasarchitecture. Available online: https://aasarchitecture.com/2017/05/winners-innovation-inspired-nature-elevens-international-biomimicry-competition/ (accessed on 14 March 2024).
- Ajayi, T.O. Biomimicry: The nexus for achieving sustainability in the people-process-planet relationship. Heliyon 2023, 9, e16180. [Google Scholar] [CrossRef] [PubMed]
- Dictionary of the French Academy. Available online: https://academie.atilf.fr/8/ (accessed on 17 March 2024).
- Zhang, T.; Liu, J.P.; Zhang, Q.W. A New Navigate Pressure Deflector Louver Sun-Breaker Composed with Multi-Functions of Rainproof and Sun-Shading. Adv. Mater. Res. 2012, 368, 3737–3740. [Google Scholar] [CrossRef]
- Raheem, A.A.; Issa, R.R.; Olbina, S. Solar transmittance analysis of different types of sunshades in the Florida climate. Build. Simul. 2014, 7, 3–11. [Google Scholar] [CrossRef]
- Carl, T.; Schein, M.; Stepper, F. Sun Shades—About Designing Adaptable Solar Facades. In Proceedings of the 35th eCAADe Conference—Volume 2, Sapienza University of Rome, Rome, Italy, 20–22 September 2017; pp. 165–174. [Google Scholar] [CrossRef]
- Yu, W.; Jiang, C. Study on intelligent adjustment blinds and building energy saving. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Tokyo, Japan, 9–11 November 2018. [Google Scholar] [CrossRef]
- Alkhater, M.; Alsukkar, M.; Eltaweel, A.; Su, Y. Parametric control of multiple blinds to enhance daylighting performance in the dome building: Case study of a mosque building in Saudi Arabia. Solar Energy 2023, 266, 112180. [Google Scholar] [CrossRef]
- Mateus, D.; Henriques, G.C. Energy-Based Design: Improving Modern Brazilian Buildings Performance through Their Shading Systems, the Nova Cintra Case Study. Buildings 2023, 13, 2543. [Google Scholar] [CrossRef]
- The Urban Roamer. Available online: https://www.theurbanroamer.com/ermita-icon-the-philamlife-building/ (accessed on 17 March 2024).
- Livinspaces. Available online: https://livinspaces.net/ls-tv/discussing-the-design-an-indepth-look-at-the-design-of-the-al-bahar-towers-in-abu-dhabi-by-aedas-architects/ (accessed on 17 March 2024).
- Yazdani Studio. Available online: https://yazdanistudio.com/portfolio/cj-corporation-cj-blossom-park/ (accessed on 17 March 2024).
- Kmdarchitects. Available online: https://www.kmdarchitects.com/sfpuc (accessed on 13 March 2024).
- Htdesignresearch. Available online: https://htdesignresearch.wordpress.com/2010/03/02/rainwater-harvestingsolar-shadingairplane-construction/ (accessed on 13 March 2024).
- Designbuzz. Available online: https://designbuzz.com/solys-sun-shading-system-collects-rainwater-for-your-garden/ (accessed on 13 March 2024).
- Zani, A.; Speroni, A.; Mainini, A.G.; Zinzi, M.; Caldas, L.; Poli, T. Customized shading solutions for complex building façades: The potential of an innovative cement-textile composite material through a performance-based generative design. Constr. Innov. 2023, 24, 256–279. [Google Scholar] [CrossRef]
- Baldinelli, G. Double skin façades for warm climate regions: Analysis of a solution with an integrated movable shading system. Build. Environ. 2009, 44, 1107–1118. [Google Scholar] [CrossRef]
- Sakamoto, S.; Aoki, A. Numerical and experimental study on noise shielding effect of eaves/louvers attached on building façade. Build. Environ. 2015, 94, 773–784. [Google Scholar] [CrossRef]
- Zuccherini Martello, N.; Aletta, F.; Fausti, P.; Kang, J.; Secchi, S. A psychoacoustic investigation on the effect of external shading devices on building façades. Appl. Sci. 2016, 6, 429. [Google Scholar] [CrossRef]
- Nan, M.; Chen, Z.; Liu, L.; Baharlou, E. Hygrosensitive Kinetic Façade—A full-scale meteorosensitive shading system based on wood’s self-actuated hygroscopic behavior, Anthropologic: Architecture and Fabrication in the cognitive age. In Proceedings of the 38th eCAADe Conference, TU Berlin, Berlin, Germany, 16–18 September 2020; pp. 133–142. [Google Scholar]
- Vailati, C.; Bachtiar, E.; Hass, P.; Burgert, I.; Rüggeberg, M. An autonomous shading system based on coupled wood bilayer elements. Energy Build. 2018, 158, 1013–1022. [Google Scholar] [CrossRef]
- Lillywhite, H.B.; Licht, P. Movement of water over toad skin: Functional role of epidermal sculpturing. Copeia 1974, 1974, 165–171. [Google Scholar] [CrossRef]
- Withers, P.C.; Bradshaw, S.D. Water and energy balance of the thorny devil Moloch horridus: Is the devil a sloth? Amphib. Reptil. 1995, 16, 47–54. [Google Scholar] [CrossRef]
- Pianka, E.R.; Pianka, H.D. The ecology of Moloch horridus (Lacertilia: Agamidae) in western Australia. Copeia 1970, 1970, 90–103. [Google Scholar] [CrossRef]
- Comanns, P.; Esser, F.J.; Kappel, P.H.; Baumgartner, W.; Shaw, J.; Withers, P.C. Adsorption and movement of water by skin of the Australian thorny devil (Agamidae: Moloch horridus). R. Soc. Open Sci. 2017, 4, 170591. [Google Scholar] [CrossRef] [PubMed]
- Sherbrooke, W.C.; Scardino, A.J.; de Nys, R.; Schwarzkopf, L. Functional morphology of scale hinges used to transport water: Convergent drinking adaptations in desert lizards (Moloch horridus and Phrynosoma cornutum). Zoomorphology 2007, 126, 89–102. [Google Scholar] [CrossRef]
- Comanns, P.; Withers, P.C.; Esser, F.J.; Baumgartner, W. Cutaneous water collection by a moisture-harvesting lizard, the thorny devil (Moloch horridus). J. Exp. Biol. 2016, 219, 3473–3479. [Google Scholar] [CrossRef]
- Witten, G. “Agamidae” (On-line). Fauna of Australia Series, 1993. Available online: https://www.dcceew.gov.au/science-research/abrs/publications/fauna-of-australia/fauna-2a (accessed on 17 March 2024).
- Knight, K. How thorny devils tap damp sand to slake thirst. J. Exp. Biol. 2016, 219, 3366–3375. [Google Scholar] [CrossRef]
- Roth-Nebelsick, A.; Uhl, D.; Mosbrugger, V.; Kerp, H. Evolution and function of leaf venation architecture: A review. Ann. Bot. 2001, 87, 553–566. [Google Scholar] [CrossRef]
- He, J.; Mao, M.; Li, D.; Liu, Y.; Jin, Z. Characterization of leaf-inspired microfluidic chips for pumpless fluid transport. J. Bionic Eng. 2014, 11, 109–114. [Google Scholar] [CrossRef]
- Alston, M.E.; Barber, R. Leaf venation, as a resistor, to optimize a switchable IR absorber. Sci. Rep. 2016, 6, 31611. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; He, X.; Wang, M.; Shu, H.; Xue, K. Comparisons of bioinspired piezoelectric wind energy harvesters with different layout of stiffeners based on leaf venation prototypes. Sens. Actuators A Phys. 2019, 298, 111570. [Google Scholar] [CrossRef]
- Chen, G.; Chukwunenye, N.; Jones, G.F.; Li, C.H. Biomimetic structures by leaf vein growth mechanism for pool boiling heat transfer enhancements. Int. J. Heat Mass Transf. 2020, 155, 119699. [Google Scholar] [CrossRef]
- Patino-Ramirez, F.; Arson, C. Transportation networks inspired by leaf venation algorithms. Bioinspiration Biomim. 2020, 15, 036012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hansen, M.F.; Smith, M.; Smith, L.; Grieve, B. Photometric stereo for three-dimensional leaf venation extraction. Comput. Ind. 2018, 98, 56–67. [Google Scholar] [CrossRef]
- Schönherr, J.; Bukovac, M.J. Penetration of stomata by liquids: Dependence on surface tension, wettability, and stomatal morphology. Plant Physiol. 1972, 49, 813–819. [Google Scholar] [CrossRef]
- Spence, R.D.; Wu, H.; Sharpe, P.J.H.; Clark, K.G. Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells. Plant Cell Environ. 1986, 9, 197–202. [Google Scholar] [CrossRef]
- Willmer, C.; Fricker, M.; Willmer, C.; Fricker, M. The distribution of stomata. Stomata 1996, 2, 12–35. [Google Scholar] [CrossRef]
- Lim, C.W.; Baek, W.; Jung, J.; Kim, J.H.; Lee, S.C. Function of ABA in stomatal defense against biotic and drought stresses. Int. J. Mol. Sci. 2015, 16, 15251–15270. [Google Scholar] [CrossRef]
- Carter, R.; Woolfenden, H.; Baillie, A.; Amsbury, S.; Carroll, S.; Healicon, E.; Sovatzoglou, S.; Braybrook, S.; Gray, J.E.; Hobbs, J.; et al. Stomatal opening involves polar, not radial, stiffening of guard cells. Curr. Biol. 2017, 27, 2974–2983. [Google Scholar] [CrossRef]
- Bidhendi, A.J.; Geitmann, A. Finite element modeling of shape changes in plant cells. Plant Physiol. 2018, 176, 41–56. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Xu, Z.; Zhanb, K.; Ke, X.; Wang, L. A microfluidic pump/valve inspired by xylem embolism and transpiration in plants. PLoS ONE 2012, 7, e50320. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.J. Fabrication of triple-parted stomata-inspired membrane with stimulus-responsive functions. Sci. Rep. 2016, 6, 21258. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Cai, Z.; Ji, S.; Fan, S.; Wang, P.; Lao, Z.; Yang, L.; Ni, J.; Wang, C.; Li, J.; et al. Microtubes with complex cross section fabricated by C-shaped bessel laser beam for mimicking stomata that opens and closes rapidly. ACS Appl. Mater. Interfaces 2018, 10, 36369–36376. [Google Scholar] [CrossRef] [PubMed]
- Durai Prabhakaran, R.T.; Spear, M.J.; Curling, S.; Wootton-Beard, P.; Jones, P.; Donnison, I.; Ormondroyd, G.A. Plants and architecture: The role of biology and biomimetics in materials development for buildings. Intell. Build. Int. 2019, 11, 178–211. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mohammadi, M.; Schröder, T.; Guerra-Santin, O. Bio-inspired interactive kinetic façade: Using dynamic transitory-sensitive area to improve multiple occupants’ visual comfort. Front. Archit. Res. 2021, 10, 821–837. [Google Scholar] [CrossRef]
Latin Name | Image | Type/ Location | Studies | Bio Inspiration | Latin Name | Image | Type/ Location | Studies | Bio Inspiration |
---|---|---|---|---|---|---|---|---|---|
Crotalus cerastes laterorepens | Snake/ Yuma Desert | [50,51] | Rainwater harvesting strategy | Psammobates tentorius trimeni | Turtle/SouthAfrica | [52] | Rainwater harvesting strategy | ||
Physosterna Cribripes/stenocara gracilipes | Insect/ Namib Desert | [51,53,54] | The strategy of collecting water droplets | Onymacris unguicularis | Insect/ Namib Desert | [54,55,56,57] | Upside-down water collection strategy | ||
Litoria caerulea | Frog/ Australia | [58] | The skin cavity strategy | Moloch horridus | Lizard/ Australia | [51,59,60] | Water collection strategy | ||
Phrynosoma cornutum | Lizard/ North America | [59] | Water collection strategy | Uloborus walckenaerius | Spider | [51,61] | Spider web strategy |
Latin Name | Image | Type/ Location | Studies | Bio Inspiration | Latin Name | Image | Type/ Location | Studies | Bio Inspiration |
---|---|---|---|---|---|---|---|---|---|
Sekoya sempervirens | Tree/ California | [62] | Fog collection strategy | Pseudotsuga menziesii | Tree | [62,63] | Fog collection strategy | ||
Welwitschia mirabilis | Plant/ Namib Desert | [55] | Trianthema 8hereroensis (Aizooceae) | Plant/ Namib Desert | [55,57] | ||||
Stipagrostis sabulicola | Plant/ Namib Desert | [55,57,64,65] | Water collection strategy | Opuntia mikrodazisi | Cactus | [66] | |||
Copiapoa haseltoniana | Cactus | [67] | Fog condensation strategy on thorn | Discocactus horstii | Cactus | [68] | Fog condensation strategy on thorn |
Project name: Biomimicry Museum [32] Bio-info: Cactus and camel Purpose: canopy design with a bio-inspired strategy as a solution to the water needs of plants. Working Principle: the upper cover of the floor has a large area and is designed inspired by the spongy bone structure of camels in their noses and the spines of cacti that harvest water from the air to reduce evaporation. | |
Project name: RainBellows [75] Bio-Inspiration: Ice Plant (mesembryanthemum crystallinum) Purpose: to store rainwater by developing a façade system. Working Principle: it is inspired by the ice flower plant, which can store water. There are façade elements that can increase the storage capacity thanks to the mechanisms that come out of the façade during the rainwater intake of the façade. After the necessary water intake, it is filtered and transmitted to where it is needed in the building. | |
Project name: AquaWeb [76] Bio-Inspiration: honeycombs, spider webs, ice plant, and the mycelium plant. Purpose: a system that can be adapted to the façades of buildings, which harvests and stores atmospheric water with a flexible and modular design and transmits it if necessary. | |
Working Principle: Inspired by honeycombs, there is a web system that can harvest atmospheric water such as rain, fog, and humidity, and imitate the fibers of a spider web. The water that accumulates in the compartments that imitate the sacs of ice plants is stored and transmitted by pipes with the transport feature of mycelium plants. |
Biological Organism | Stage | Strategy |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahvecioğlu, B.; Mutlu Avinç, G.; Arslan Selçuk, S. Biomimetic Adaptive Building Façade Modeling for Sustainable Urban Freshwater Ecosystems: Integration of Nature’s Water-Harvesting Strategy into Sun-Breakers. Biomimetics 2024, 9, 569. https://doi.org/10.3390/biomimetics9090569
Kahvecioğlu B, Mutlu Avinç G, Arslan Selçuk S. Biomimetic Adaptive Building Façade Modeling for Sustainable Urban Freshwater Ecosystems: Integration of Nature’s Water-Harvesting Strategy into Sun-Breakers. Biomimetics. 2024; 9(9):569. https://doi.org/10.3390/biomimetics9090569
Chicago/Turabian StyleKahvecioğlu, Berkan, Güneş Mutlu Avinç, and Semra Arslan Selçuk. 2024. "Biomimetic Adaptive Building Façade Modeling for Sustainable Urban Freshwater Ecosystems: Integration of Nature’s Water-Harvesting Strategy into Sun-Breakers" Biomimetics 9, no. 9: 569. https://doi.org/10.3390/biomimetics9090569
APA StyleKahvecioğlu, B., Mutlu Avinç, G., & Arslan Selçuk, S. (2024). Biomimetic Adaptive Building Façade Modeling for Sustainable Urban Freshwater Ecosystems: Integration of Nature’s Water-Harvesting Strategy into Sun-Breakers. Biomimetics, 9(9), 569. https://doi.org/10.3390/biomimetics9090569