Recent Advances in Biomimetics for the Development of Bio-Inspired Prosthetic Limbs
Abstract
:1. Introduction
2. Biomimetic Design Strategies
2.1. Understanding Biological Systems
2.2. Advanced Materials and Manufacturing Techniques
3. Integration with Biological Systems
3.1. Osseointegration
3.2. Neural Interfaces and Sensory Feedback
4. Customization and Personalization
4.1. Tailored Solutions
4.2. Enhanced Comfort and Functionality
4.3. Self-Repairing Materials in Biomimetic Prosthetic Limbs
5. Conclusions and Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ilieva, L.; Ursano, I.; Traista, L.; Hoffmann, B.; Dahy, H. Biomimicry as a sustainable design methodology—Introducing the ‘Biomimicry for Sustainability’ framework. Biomimetics 2022, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Ornaghi, H.L., Jr.; Monticeli, F.M.; Agnol, L.D. A Review on Polymers for Biomedical Applications on Hard and Soft Tissues and Prosthetic Limbs. Polymers 2023, 15, 4034. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S. Biomimicry: Innovation inspired by nature. Int. J. New Technol. Res. 2019, 5, 34–38. [Google Scholar] [CrossRef]
- Román-Casares, A.M.; García-Gómez, O.; Guerado, E. Prosthetic Limb Design and Function: Latest Innovations and Functional Results. Curr. Trauma Rep. 2018, 4, 256–262. [Google Scholar] [CrossRef]
- Farina, D.; Vujaklija, I.; Brånemark, R.; Bull, A.M.; Dietl, H.; Graimann, B.; Hargrove, L.J.; Hoffmann, K.P.; Huang, H.; Ingvarsson, T.; et al. Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed. Eng. 2023, 7, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Raspopovic, S.; Valle, G.; Petrini, F.M. Sensory feedback for limb prostheses in amputees. Nat. Mater. 2021, 20, 925–939. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Y.; Liu, Y.; Ji, K.; Li, K.; Wang, J.; Gu, Z. Biomimetic design strategies for biomedical applications. Matter 2024, 7, 826–854. [Google Scholar] [CrossRef]
- Nizamis, K.; Athanasiou, A.; Almpani, S.; Dimitrousis, C.; Astaras, A. Converging robotic technologies in targeted neural rehabilitation: A review of emerging solutions and challenges. Sensors 2021, 21, 2084. [Google Scholar] [CrossRef]
- Ho, D. The Piezoionic Effect: Biomimetic Transduction Mechanism for Sensing, Actuation, Interface, and Energy Harvesting. ChemElectroChem 2024, 11, e202300268. [Google Scholar] [CrossRef]
- Ciulla, M.G.; Massironi, A.; Sugni, M.; Ensign, M.A.; Marzorati, S.; Forouharshad, M. Recent Advances in the Development of Biomimetic Materials. Gels 2023, 9, 833. [Google Scholar] [CrossRef]
- Wang, Y.; Naleway, S.E.; Wang, B. Biological and bioinspired materials: Structure leading to functional and mechanical performance. Bioact. Mater. 2020, 5, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Paternò, L.; Lorenzon, L. Soft robotics in wearable and implantable medical applications: Translational challenges and future outlooks. Front. Robot. AI 2023, 10, 1075634. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E.J.; Cruz, T.H.; Emondi, A.A.; Langhals, N.B.; Naufel, S.; Peng, G.C.; Schulz, B.W.; Wolfson, M. Advanced technologies for intuitive control and sensation of prosthetics. Biomed. Eng. Lett. 2020, 10, 119–128. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.L.; Westcott-McCoy, S.; Weaver, M.R.; Haagsma, J.; Kartin, D. Global prevalence of traumatic non-fatal limb amputation. Prosthet. Orthot. Int. 2021, 45, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Azocar, A.F.; Mooney, L.M.; Duval, J.F.; Simon, A.M.; Hargrove, L.J.; Rouse, E.J. Design and clinical implementation of an open-source bionic leg. Nat. Biomed. Eng. 2020, 4, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Singer, L.; Fouda, A.; Bourauel, C. Biomimetic approaches and materials in restorative and regenerative dentistry. BMC Oral Health 2023, 23, 105. [Google Scholar] [CrossRef]
- Asif, M.; Tiwana, M.I.; Khan, U.S.; Qureshi, W.S.; Iqbal, J.; Rashid, N.; Naseer, N. Advancements, trends and future prospects of lower limb prosthesis. IEEE Access 2021, 9, 85956–85977. [Google Scholar] [CrossRef]
- Alluhydan, K.; Siddiqui, M.I.H.; Elkanani, H. Functionality and comfort design of lower-limb prosthetics: A review. J. Dis. Res. 2023, 2, 10–23. [Google Scholar] [CrossRef]
- Alam, F.; Ahmed, M.A.; Jalal, A.H.; Siddiquee, I.; Adury, R.Z.; Hossain, G.M.; Pala, N. Recent Progress and Challenges of Implantable Biodegradable Biosensors. Micromachines 2024, 15, 475. [Google Scholar] [CrossRef]
- Li, P.; Anwar Ali, H.P.; Cheng, W.; Yang, J.; Tee, B.C. Bioinspired prosthetic interfaces. Adv. Mater. Technol. 2020, 5, 1900856. [Google Scholar] [CrossRef]
- Marinelli, A.; Boccardo, N.; Tessari, F.; Di Domenico, D.; Caserta, G.; Canepa, M.; Gini, G.; Barresi, G.; Laffranchi, M.; De Michieli, L.; et al. Active upper limb prostheses: A review on current state and upcoming breakthroughs. Prog. Biomed. Eng. 2023, 5, 012001. [Google Scholar] [CrossRef]
- Oladele, I.O.; Onuh, L.N.; Agbeboh, N.I.; Alewi, D.D.; Lephuthing, S.S. The relationship and functional links between human age, growth, and biomedical implants: A review on the application of bulk and nanomaterials. Nano Select 2023, 4, 419–441. [Google Scholar] [CrossRef]
- Gentile, C.; Gruppioni, E. A Perspective on Prosthetic Hands Control: From the Brain to the Hand. Prosthesis 2023, 5, 1184–1205. [Google Scholar] [CrossRef]
- Zhou, H.; Alici, G. Non-invasive human-machine interface (HMI) systems with hybrid on-body sensors for controlling upper-limb prosthesis: A review. IEEE Sens. J. 2022, 22, 10292–10307. [Google Scholar] [CrossRef]
- Khoshmanesh, F.; Thurgood, P.; Pirogova, E.; Nahavandi, S.; Baratchi, S. Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosens. Bioelectron. 2021, 176, 112946. [Google Scholar] [CrossRef]
- Barontini, F.; Catalano, M.G.; Fani, S.; Grioli, G.; Bianchi, M.; Bicchi, A. The cuff, clenching upper-limb force feedback wearable device: Design, characterization and validation. IEEE Trans. Haptics 2024, in press. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T.; Petrescu, F.I.T. Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way. Biomimetics 2024, 9, 48. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Y.; Xiong, J.; Liu, Y.; Zheng, J.; Bai, L. Design and experiment of a variable stiffness prosthetic knee joint using parallel elastic actuation. Robot. Auton. Syst. 2024, 171, 104566. [Google Scholar] [CrossRef]
- Akin, R.; Chapple, A.G. Clinical advantages of immediate posterior implants with custom healing abutments: Up to 8-year follow-up of 115 cases. J. Maxillofac. Oral Surg. 2022, 80, 1952–1965. [Google Scholar] [CrossRef]
- Ju, F.; Wang, Y.; Xie, B.; Mi, Y.; Zhao, M.; Cao, J. The use of sports rehabilitation robotics to assist in the recovery of physical abilities in elderly patients with degenerative diseases: A literature review. Healthcare 2023, 11, 326. [Google Scholar] [CrossRef]
- Lan, N.; Hao, M.; Niu, C.M.; Cui, H.; Wang, Y.; Zhang, T.; Fang, P.; Chou, C.H. Next-generation prosthetic hand: From biomimetic to biorealistic. Research 2021, 2021, 4675326. [Google Scholar] [CrossRef]
- Zhang, X.; Chan, F.K.; Parthasarathy, T.; Gazzola, M. Modeling and simulation of complex dynamic musculoskeletal architectures. Nat. Commun. 2019, 10, 4825. [Google Scholar] [CrossRef]
- Papaleo, E.D.; D’Alonzo, M.; Fiori, F.; Piombino, V.; Falato, E.; Pilato, F.; De Liso, A.; Di Lazzaro, V.; Di Pino, G. Integration of proprioception in upper limb prostheses through non-invasive strategies: A review. J. Neuroeng. Rehabil. 2023, 20, 118. [Google Scholar] [CrossRef]
- Gerola, A.; Robaey, Z.; Blok, V. What does it mean to mimic nature? A typology for biomimetic design. Philo. Technol. 2023, 36, 65. [Google Scholar] [CrossRef]
- Fan, X.; Sayers, W.; Zhang, S.; Han, Z.; Ren, L.; Chizari, H. Review and classification of bio-inspired algorithms and their applications. J. Bionic Eng. 2020, 17, 611–631. [Google Scholar] [CrossRef]
- Sholl, N.; Mohseni, K. High-stretch, tendon-driven, fiber-reinforced membrane soft actuators with multiple active degrees of freedom. Nature 2024, 3, 25. [Google Scholar] [CrossRef]
- Chun, S.; Kim, J.S.; Yoo, Y.; Choi, Y.; Jung, S.J.; Jang, D.; Lee, G.; Song, K.I.; Nam, K.S.; Youn, I.; et al. An artificial neural tactile sensing system. Nat. Electron. 2021, 4, 429–438. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, H.; Zhang, Z. Advancements in Humanoid Robots: A Comprehensive Review and Future Prospects. IEEE/CAA J. Autom. Sin. 2024, 11, 301–328. [Google Scholar] [CrossRef]
- Ray, P.P. An Introduction to Necrobotics: Concept, Architecture, Use Cases, Challenges, Future Directions. Architecture, Use Cases, Challenges, Future Directions. SSRN Electron. J. 2023. Available online: https://ssrn.com/abstract=4595801 (accessed on 28 April 2024). [CrossRef]
- Mulla, D.M.; Keir, P.J. Neuromuscular control: From a biomechanist’s perspective. Front. Sports Act. Living 2023, 5, 1217009. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Ikebukuro, T.; Yata, H. Mechanical properties of muscles and tendon structures in middle-aged and young men. Sci. Rep. 2022, 12, 1702. [Google Scholar] [CrossRef] [PubMed]
- İyibilgin, O.; Türk, S.; Özsoy, M.İ.; Findik, F.; Özacar, M. Biomechanical analysis of artificial knee joint components. In Cartilage Tissue and Knee Joint Biomechanics; Academic Press: Cambridge, MA, USA, 2024; Volume 1, pp. 593–609. [Google Scholar]
- Kapoor, K. 3D visualization and printing: An “Anatomical Engineering” trend revealing underlying morphology via innovation and reconstruction towards future of veterinary anatomy. Anat. Sci. Int. 2024, 99, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Jabban, L.; Dupan, S.; Zhang, D.; Ainsworth, B.; Nazarpour, K.; Metcalfe, B.W. Sensory feedback for upper-limb prostheses: Opportunities and barriers. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Khuntia, P.K.; Manivannan, P.V. Review of Neural Interfaces: Means for Establishing Brain–Machine Communication. SN Comput. Sci. 2023, 4, 672. [Google Scholar] [CrossRef]
- Jayanth, N.; Roshan, M.V.; Balaji, S.S.; Karthik, P.D.; Barathwaj, A.; Rishiyadhav, G. Additive manufacturing of biomaterials: A review. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Neupetsch, C.; Hensel, E.; Heinke, A.; Stapf, T.; Stecher, N.; Malberg, H.; Heyde, C.E.; Drossel, W.G. Approach for Non-Intrusive Detection of the Fit of Orthopaedic Devices Based on Vibrational Data. Sensors 2023, 23, 6500. [Google Scholar] [CrossRef] [PubMed]
- Manero, A.; Smith, P.; Sparkman, J.; Dombrowski, M.; Courbin, D.; Kester, A.; Womack, I.; Chi, A. Implementation of 3D printing technology in the field of prosthetics: Past, present, and future. Int. J. Environ. Res. Public Health 2019, 16, 1641. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.G.; Paudel, N.; Magar, S.; Santilli, M.F.; Kashyap, S.; Baranwal, A.K.; Zamboni, P.; Vasavada, P.; Katiyar, A.; Singh, A.V. Overcoming challenges and innovations in orthopedic prosthesis design: An interdisciplinary perspective. Biomed. Mater. Devices 2024, 2, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Al-Mughanam, T.A.A.; Tirth, V.; Algahtani, A.; Alghtani, A.H.M. 3D Printing. At. Spectrosc. Part C 2024, 1–101. Available online: https://atomicspectroscoopyjournal.com/index.php/at-spectrosc/issue/view/41 (accessed on 28 April 2024).
- Pathak, K.; Saikia, R.; Das, A.; Das, D.; Islam, M.A.; Pramanik, P.; Parasar, A.; Borthakur, P.P.; Sarmah, P.; Saikia, M.; et al. 3D printing in biomedicine: Advancing personalized care through additive manufacturing. Explor. Med. 2023, 4, 1135–1167. [Google Scholar] [CrossRef]
- Toro-Ossaba, A.; Tejada, J.C.; Rúa, S.; López-González, A. A Proposal of Bioinspired Soft Active Hand Prosthesis. Biomimetics 2023, 8, 29. [Google Scholar] [CrossRef]
- Giordano, G.; Carlotti, M.; Mazzolai, B. A perspective on cephalopods mimicry and bioinspired technologies toward proprioceptive autonomous soft robots. Adv. Mater. Technol. 2021, 6, 2100437. [Google Scholar] [CrossRef]
- Laffranchi, M.; Boccardo, N.; Traverso, S.; Lombardi, L.; Canepa, M.; Lince, A.; Semprini, M.; Saglia, J.A.; Naceri, A.; Sacchetti, R.; et al. The Hannes hand prosthesis replicates the key biological properties of the human hand. Sci. Robot. 2020, 5, eabb0467. [Google Scholar] [CrossRef] [PubMed]
- Klodd, E.; Hansen, A.; Fatone, S.; Edwards, M. Effects of prosthetic foot forefoot flexibility on oxygen cost and subjective preference rankings of unilateral transtibial prosthesis users. J. Rehabil. Res. Dev. 2010, 47, 543. [Google Scholar] [CrossRef] [PubMed]
- Mattar, E. A survey of bio-inspired robotics hands implementation: New directions in dexterous manipulation. Robot. Auton. Syst. 2013, 61, 517–544. [Google Scholar] [CrossRef]
- Siddikali, P.; Sreekanth, P.R. Modeling of pneumatic controlled bio mimetic articulated passive prosthetic spring loaded knee mechanism for transfemoral amputees. Mater. Today Proc. 2020, 27, 829–834. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, M.; Li, M.; Che, L.; Tan, Z.; Guo, D.; Kang, Z.; Cao, S.; Zhang, S.; Sui, Y.; et al. A nanonewton-scale biomimetic mechanosensor. Microsyst. Nanoeng. 2023, 9, 87. [Google Scholar] [CrossRef]
- Kim, S.H.; Baek, G.W.; Yoon, J.; Seo, S.; Park, J.; Hahm, D.; Chang, J.H.; Seong, D.; Seo, H.; Oh, S.; et al. A bioinspired stretchable sensory-neuromorphic system. Adv. Mater. 2021, 33, 2104690. [Google Scholar] [CrossRef]
- Borrero-Lopez, O.; Guiberteau, F.; Zhang, Y.; Lawn, B.R. Wear of ceramic-based dental materials. J. Mech. Behav. Biomed. Mater. 2019, 92, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, X.; Ma, C.; Wang, Q.; Zhang, C.; Wang, L.; Xia, Y.; Han, Z. A biomimetic flexible sensor inspired by Albuca namaquensis for simultaneous high stretchability and strength. Sens. Actuators B Chem. 2024, 401, 134943. [Google Scholar] [CrossRef]
- Shu, T.; Herrera-Arcos, G.; Taylor, C.R.; Herr, H.M. Mechanoneural interfaces for bionic integration. Nat. Rev. Bioeng. 2024, 1–18. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, L.; Jiang, K.; Wei, Z.; Shen, G. Reviews of wearable healthcare systems: Materials, devices and system integration. Mater. Sci. Eng. R Rep. 2020, 140, 100523. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, A.; Kaya, S.; Marzouki, R.; Zhang, F.; Guo, L. Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants. Coatings 2022, 12, 1459. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving biocompatibility for next generation of metallic implants. Prog. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef] [PubMed]
- Hoellwarth, J.S.; Tetsworth, K.; Rozbruch, S.R.; Handal, M.B.; Coughlan, A.; Al Muderis, M. Osseointegration for amputees: Current implants, techniques, and future directions. JBJS Rev. 2020, 8, e0043. [Google Scholar] [CrossRef] [PubMed]
- Tropf, J.G.; Potter, B.K. Osseointegration for amputees: Current state of direct skeletal attachment of prostheses. Orthoplastic Surg. 2023, 12, 20–28. [Google Scholar] [CrossRef]
- Vandenberg, N.W.; Stoneback, J.W.; Davis-Wilson, H.; Christiansen, C.L.; Awad, M.E.; Melton, D.H.; Gaffney, B.M. Unilateral transfemoral osseointegrated prostheses improve joint loading during walking. J. Biomech. 2023, 155, 111658. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Vardalakis, N.; Wagner, F.B. Neuroprosthetics: From sensorimotor to cognitive disorders. Commun. Biol. 2023, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, S.; Wang, H.; Zhao, Y.; Zhang, X.D. Neuron devices: Emerging prospects in neural interfaces and recognition. Microsys. Nanoeng. 2022, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Ying, O.; Ng, A.; Ng, O.; Al, L. Towards handy neural prostheses. Nat. Biomed. Eng. 2023, 7, 335–336. [Google Scholar]
- Wang, Y.; Yang, X.; Zhang, X.; Wang, Y.; Pei, W. Implantable intracortical microelectrodes: Reviewing the present with a focus on the future. Microsyst. Nanoeng. 2023, 9, 7. [Google Scholar] [CrossRef]
- Dantas, H.; Warren, D.J.; Wendelken, S.M.; Davis, T.S.; Clark, G.A.; Mathews, V.J. Deep learning movement intent decoders trained with dataset aggregation for prosthetic limb control. IEEE-TBME 2019, 66, 3192–3203. [Google Scholar] [CrossRef] [PubMed]
- Romeo, R.A.; Lauretti, C.; Gentile, C.; Guglielmelli, E.; Zollo, L. Method for automatic slippage detection with tactile sensors embedded in prosthetic hands. IEEE Trans. Med. Robot. Bionics 2021, 3, 485–497. [Google Scholar] [CrossRef]
- Fisher, L.E.; Gaunt, R.A.; Huang, H. Sensory restoration for improved motor control of prostheses. Curr. Opin. Biomed. Eng. 2023, 28, 100498. [Google Scholar] [CrossRef] [PubMed]
- Clites, T.R. Anatomics: Co-engineering body and machine in pursuit of synergistic bionic performance. Curr. Opin. Biomed. Eng. 2023, 28, 100490. [Google Scholar] [CrossRef]
- Almufareh, M.F.; Kausar, S.; Humayun, M.; Tehsin, S. A Conceptual Model for Inclusive Technology: Advancing Disability Inclusion through Artificial Intelligence. J. Dis. Res. 2024, 3, 20230060. [Google Scholar] [CrossRef]
- Chavda, V.P.; Patel, M.; Patel, R.; Thakkar, K.; Patel, D.; Balar, P.C.; Patel, P.; Desai, U. Nanotechnology Advancements in HMI. In Human-Machine Interface Technology Advancements and Applications; CRC Press: Boca Raton, FL, USA, 2024; pp. 111–142. [Google Scholar]
- Ziegler, D.A.; Anguera, J.A.; Gallen, C.L.; Hsu, W.Y.; Wais, P.E.; Gazzaley, A. Leveraging technology to personalize cognitive enhancement methods in aging. Nat. Aging 2022, 2, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, J.; Kang, L.; Tian, J.; Zhang, X.; Hu, J.; Huang, Y.; Liu, F.; Wang, H.; Wu, Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023, 9, e17718. [Google Scholar] [CrossRef]
- Choi, S.; Cho, W.; Kim, K. Restoring natural upper limb movement through a wrist prosthetic module for partial hand amputees. J. Neuroeng. Rehabil. 2023, 20, 135. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Lal, B.; Bhagat, A.C.; Alagarsamy, R. Medical Imaging for Patient-Specific Implants. In Biomedical Implants; CRC Press: Boca Raton, FL, USA, 2024; pp. 39–60. [Google Scholar]
- Panda, S.K.; Rath, K.C.; Mishra, S.; Khang, A. Revolutionizing product development: The growing importance of 3D printing technology. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Mobarak, M.H.; Islam, M.A.; Hossain, N.; Al Mahmud, M.Z.; Rayhan, M.T.; Nishi, N.J.; Chowdhury, M.A. Recent advances of additive manufacturing in implant fabrication—A review. Appl. Surf. Sci. 2023, 18, 100462. [Google Scholar] [CrossRef]
- Baldock, M.; Pickard, N.; Prince, M.; Kirkwood, S.; Chadwell, A.; Howard, D.; Dickinson, A.; Kenney, L.; Gill, N.; Curtin, S. Adjustable prosthetic sockets: A systematic review of industrial and research design characteristics and their justifications. J. Neuroeng. Rehabil. 2023, 20, 147. [Google Scholar] [CrossRef]
- Dickinson, A.; Diment, L.; Morris, R.; Pearson, E.; Hannett, D.; Steer, J. Characterising residual limb morphology and prosthetic socket design based on expert clinician practice. Prosthesis 2021, 3, 280–299. [Google Scholar] [CrossRef]
- Thibaut, A.; Beaudart, C.; De Noordhout, B.M.; Geers, S.; Jean-François, K.A.U.X.; Pelzer, D. Impact of microprocessor prosthetic knee on mobility and quality of life in patients with lower limb amputation: A systematic review of the literature. Eur. J. Phys. Rehabil. Med. 2022, 58, 452. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Qin, S. An Interdisciplinary approach and advanced techniques for enhanced 3D-printed upper limb prosthetic socket design: A literature review. Actuators 2023, 12, 223. [Google Scholar] [CrossRef]
- Brunton, A.; Urban, P. Cuttlefish: Pushing the Limits of Graphical 3-D Printing. IEEE Comput. Graph. Appl. 2023, 43, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Sakib-Uz-Zaman, C.; Khondoker, M.A.H. Polymer-based additive manufacturing for orthotic and prosthetic devices: Industry outlook in Canada. Polymers 2023, 15, 1506. [Google Scholar] [CrossRef] [PubMed]
- Ben-Nissan, B.; Choi, G.; Choi, A.H.; Karacan, I.; Evans, L. Natural and Synthetic Intelligent Self-healing and Adaptive Materials for Medical and Engineering Applications. In Innovative Bioceramics in Translational Medicine I; Choi, A.H., Ben-Nissan, B., Eds.; Springer Series in Biomaterials Science and Engineering; Springer: Singapore, 2022; Volume 17, pp. 89–124. [Google Scholar]
- Ighodaro, A.; Osarobo, J.A.; Onuguh, I.C.; Ogbeide, O.K.; Ifijen, I.H. Challenges and Future Perspectives of Biomimetic Materials for Biomedical Applications: Bridging the Gap Between Nature and Medicine. In TMS Annual Meeting and Exhibition; Springer Nature: Cham, Switzerland, 2024; pp. 877–896. [Google Scholar]
- Speck, O.; Speck, T. An overview of bioinspired and biomimetic self-repairing materials. Biomimetics 2019, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.J.; Susanto, G.J.; Anwar Ali, H.P.; Tee, B.C. Progress and Roadmap for Intelligent Self-Healing Materials in Autonomous Robotics. Adv. Mater. 2021, 33, 2002800. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Khan, S.; Park, Y.; Ford, E.; Menegatti, S.; Genzer, J. Self-healing and repair of fabrics: A comprehensive review of the application toolkit. Mater. Today 2022, 54, 90–109. [Google Scholar] [CrossRef]
- Kumar, E.K.; Patel, S.S.; Kumar, V.; Panda, S.K.; Mahmoud, S.R.; Balubaid, M. State of art review on applications and mechanism of self-healing materials and structure. Arch. Comput. Meth. Eng. 2023, 30, 1041–1055. [Google Scholar] [CrossRef]
- Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Wan, Y.; Li, X.C.; Yuan, H.; Liu, D.; Lai, W.Y. Self-Healing Elastic Electronics: Materials Design, Mechanisms, and Applications. Adv. Funct. Mater. 2024, 2316550. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Q.; Tong, X.; Wang, Y.; Cai, K.; Ji, W. Rational Design of Bio-Inspired Peptide Electronic Materials toward Bionanotechnology: Strategies and Applications. Adv. Funct. Mater. 2024, 2401466. [Google Scholar] [CrossRef]
- Singh, K.; Khosla, A.; Gupta, S. Perspective—Five Sensor-Centric Grand Challenges in Soft Robotics. ECS Sens. Plus 2023, 2, 046601. [Google Scholar] [CrossRef]
- Pranczk, J.; Jacewicz, D.; Wyrzykowski, D.; Chmurzynski, L. Platinum (II) and palladium (II) complex compounds as anti-cancer drugs. Methods of cytotoxicity determination. Curr. Pharm. Anal. 2014, 10, 2–9. [Google Scholar] [CrossRef]
Type of Prosthesis | Description/Mechanism | Application | Reference |
---|---|---|---|
Soft robotics | Drawing inspiration from soft-bodied organisms to create prosthetics with enhanced flexibility, adaptability, and resilience. | Octopus-inspired soft robotic gripper. | [53] |
Prosthetic knee joint | Introducing a novel Variable Stiffness Parallel Elastic Actuation (VSPEA) mechanism for an active prosthetic knee joint. | Prosthetic knee joints are vital for lower limb rehabilitation, enhancing the lives of individuals with disabilities by providing essential functions like stance support and swing actuation. | [28] |
Hannes hand | Kinematic analysis was employed to investigate the extent to which the Hannes hand exhibits human-like synergistic kinematic behavior. Additionally, grip robustness, akin to human grasping, was assessed as another factor. | The Hannes hand mimics human-like kinematic behavior and robust grasping, making it suitable for prosthetic applications requiring natural movement and strong grip. | [54] |
Prosthetic foot | Investigating the impact of prosthetic foot forefoot flexibility on both the oxygen cost and subjective preference rankings of individuals with unilateral transtibial prostheses. | The application involves leveraging prosthetic foot forefoot flexibility to optimize design and selection, thereby enhancing user comfort, mobility, and energy efficiency for individuals with unilateral and bilateral transtibial prostheses. | [55] |
Robotics hands | Exploring the current advancements in dexterous robotics end-effectors, commonly referred to in the literature as “robotic hands” or “dexterous multi-fingered” robot hands. | Multi-fingered hands offer a distinct sensing capability. The collaboration of position, force, tactile, and proximity sensors presents an opportunity to gather information regarding the mechanical and physical characteristics of objects and tasks. | [56] |
Passive prosthetic spring-loaded knee | Modeling a pneumatic-controlled biomimetic articulated passive prosthetic spring-loaded knee mechanism for transfemoral amputees. | Facilitating prosthetic devices to improve quality of life and standards of living. | [57] |
Nanocrack-based electronic whisker-type mechanosensor | Achieves unparalleled sensitivity by leveraging nanocracks within its structure to detect mechanical stimuli, enabling precise perception of subtle forces and surface morphology with a resolution down to 30 nm. | Wearable health monitoring systems and human-machine interfaces. Its integration into wearable smart systems enables remote monitoring of elderly individuals’ posture and movements, enhancing safety. | [58] |
Bioinspired stretchable sensory-neuromorphic system | The system integrates a stretchable capacitive pressure sensor (artificial mechanoreceptor), resistive random-access memory (artificial synapse), and quantum dot light-emitting diode (epidermal photonic actuator) into a rigid-island structure with a sinter-free printable conductor. | Offers groundbreaking potential in intelligent wearable electronics, particularly in prosthetics with advanced sensory and actuating capabilities. | [59] |
Laboratory wear tester utilizing a ball-on-3-specimen configuration with a rotating zirconia sphere as the hard antagonist. | The wear rates of dental materials are determined by quantifying scar dimensions, demonstrating zirconia ceramics as having the lowest wear rates, followed by feldspathic ceramic and ceramic-polymer composite, with lithium disilicate displaying the highest wear rate. | Assisting in evaluating their potential longevity under conditions mimicking basic occlusal contact, essential for preventing severe material loss and premature failure of natural teeth or prosthetic restorations. | [60] |
Advanced flexible wearable electronic devices | This device enhances current flexible wearable electronic devices by integrating microscale materials and a biomimetic stretch optimization approach, resulting in a flexible sensory device with improved mechanical strength and elongation capacity, as well as notable enhancements in stretchability. | This innovation enables the synchronization and emulation of extensive tensile movements between mechanical prosthetics and human articulations. | [61] |
Aspect/Parameter | Osseointegration | Neural Interfaces and Sensory Feedback |
---|---|---|
Definition | Direct integration of prosthetic limb with user’s bone. | Bridging the gap between man-made devices and biological systems. |
Advantages | Enhanced stability, comfort, and functionality. | More intuitive control and natural movement of prosthetic limbs. |
Recent developments | Emergence of percutaneous osseointegrated prostheses (POP). | Integration of artificial skin with prosthetic devices for tactile feedback. |
Key features | Transcutaneous implant interfaces directly with underlying bone. | Intracortical electrodes enable direct neural recordings from motor cortex. |
Materials utilized | Titanium alloys, biocompatible coatings. | Flexible electronics, tactile sensors for mimicking human skin sensitivity. |
Improvement focus | Biomechanical interface between prosthetic implant and residual bone. | Bidirectional communication between prosthetic devices and user’s nervous system. |
Applications | Enhanced stability, comfort, and functionality in prosthetic limbs. | Perception of texture, shape, hardness of objects with tactile sensors in prosthetic hands. |
Disadvantages | Risk of infection, potential for implant rejection. | Complexity of surgical procedures, limited availability of advanced sensory feedback systems. |
Future prospects | Widespread adoption and improved quality of life for individuals with limb loss. | Restoring sensory-motor capabilities, seamless integration of prosthetic devices into daily life. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varaganti, P.; Seo, S. Recent Advances in Biomimetics for the Development of Bio-Inspired Prosthetic Limbs. Biomimetics 2024, 9, 273. https://doi.org/10.3390/biomimetics9050273
Varaganti P, Seo S. Recent Advances in Biomimetics for the Development of Bio-Inspired Prosthetic Limbs. Biomimetics. 2024; 9(5):273. https://doi.org/10.3390/biomimetics9050273
Chicago/Turabian StyleVaraganti, Pavitra, and Soonmin Seo. 2024. "Recent Advances in Biomimetics for the Development of Bio-Inspired Prosthetic Limbs" Biomimetics 9, no. 5: 273. https://doi.org/10.3390/biomimetics9050273
APA StyleVaraganti, P., & Seo, S. (2024). Recent Advances in Biomimetics for the Development of Bio-Inspired Prosthetic Limbs. Biomimetics, 9(5), 273. https://doi.org/10.3390/biomimetics9050273