POD-Galerkin FSI Analysis for Flapping Motion
Abstract
:1. Introduction
2. High-Fidelity FSI Analysis for Flapping Motion
2.1. Problem Setting
2.2. Governing Equations
2.2.1. Equations for Fluid
2.2.2. Equations for Structure
2.2.3. Equations for Interaction Conditions on the FSI Interface
2.2.4. Equations for Fluid Mesh Update
2.3. Partitioned Iterative FSI Analysis
3. POD-Galerkin Framework
3.1. Snapshot POD
3.2. POD-Galerkin FSI Analysis
4. Numerical Example
4.1. Analysis Setting
4.2. Results and Discussion
4.2.1. Comparison of Accuracy
4.2.2. Computational Time
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FSI | Fluid–structure interaction |
POD | Proper orthogonal decomposition |
FWMAV | Flapping-wing micro air vehicle |
FEM | Finite element method |
DOFs | Degrees of freedom |
ROM | Reduced-order modeling |
2D | Two-dimensional |
3D | Three-dimensional |
POD | Proper orthogonal decomposition |
ALE | Arbitrary Lagrangian–Eulerian |
SUPG | Streamline upwind/Petrov–Galerkin |
PSPG | Pressure-stabilizing/Petrov–Galerkin |
SVD | Singular value decomposition |
References
- Decroon, G.C.; Perçin, M.; Remes, B.D.; Ruijsink, R.; De Wagter, C. The DelFly Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot; Springer: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Ma, K.Y.; Chirarattananon, P.; Fuller, S.B.; Wood, R.J. Controlled Flight of a Biologically Inspired, Insect-scale Robot. Science 2013, 340, 603–607. [Google Scholar] [CrossRef]
- Yoon, S.H.; Cho, H.; Lee, J.; Kim, C.; Shin, S.J. Effects of Camber Angle on Aerodynamic Performance of Flapping-wing Micro Air Vehicle. J. Fluids Struct. 2020, 97, 103101. [Google Scholar] [CrossRef]
- Ishihara, D. Computational Approach for the Fluid-Structure Interaction Design of Insect-Inspired Micro Flapping Wings. Fluids 2022, 7, 26. [Google Scholar] [CrossRef]
- Hong, G.; Kaneko, S.; Mitsume, N.; Yamada, T.; Yoshimura, S. Robust Fluid-Structure Interaction Analysis for Parametric Study of Flapping Motion. Finite Elem. Anal. Design 2021, 183–184, 103494. [Google Scholar] [CrossRef]
- Kawakami, K.; Kaneko, S.; Hong, G.; Miyamoto, H.; Yoshimura, S. Fluid–Structure Interaction Analysis of Flexible Flapping Wing in the Martian Environment. J. Fluids Struct. 2022, 193, 138–151. [Google Scholar] [CrossRef]
- Quarteroni, A.; Manzoni, A.; Negri, F. Reduced Basis Methods for Partial Differential Equations; Springer: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Kaneko, S.; Wei, H.; He, Q.; Chen, J.S.; Yoshimura, S. A Hyper-Reduction Computational Method for Accelerated Modeling of Thermal Cycling-induced Plastic Deformations. J. Mech. Phys. Solids 2021, 151, 104385. [Google Scholar] [CrossRef]
- Akkari, N.; Casenave, F.; Moureau, V. Time stable reduced order modeling by an enhanced reduced order basis of the turbulent and incompressible 3D Navier–Stokes equations. Math. Comput. Appl. 2019, 24, 45. [Google Scholar] [CrossRef]
- Balajewicz, M.; Amsallem, D.; Farhat, C. Projection-based Model Reduction for Contact Problems. Int. J. Numer. Methods Eng. 2016, 106, 644–663. [Google Scholar] [CrossRef]
- Rocha, I.B.; van der Meer, F.P.; Mororo, L.A.; Sluys, L.J. Accelerating Crack Growth Simulations through Adaptive Model Order Reduction. Int. J. Numer. Methods Eng. 2020, 121, 2147–2173. [Google Scholar] [CrossRef]
- Peskin, C.S. The Immersed Boundary Method. Acta Numer. 2002, 11, 479–517. [Google Scholar] [CrossRef]
- Glowinski, T.; Pan, T.W.; Hesla, T.I.; Joseph, D.D.; Periaux, J. A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow. J. Comput. Phys. 2001, 169, 363–426. [Google Scholar] [CrossRef]
- Mittal, S.; Tezduyar, T.E. Parallel Finite Element Simulation of 3D Incompressible Flows: Fluid-Structure Interactions. Int. J. Numer. Methods Fluids 1995, 21, 933–953. [Google Scholar] [CrossRef]
- Tezduyar, T.E.; Behr, M.; Liou, J. A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces—The Deforming-spatial-domain/Space-time Procedure: I. The Concept and the Preliminary Numerical Tests. Comput. Methods Appl. Mech. Eng. 1992, 94, 339–351. [Google Scholar] [CrossRef]
- Sawada, T.; Hisada, T. Fluid–Structure Interaction Analysis of the Two-dimensional Flag-in-wind Problem by an Interface-tracking ALE Finite Element Method. Comput. Fluids 2007, 36, 136–146. [Google Scholar] [CrossRef]
- Felippa, C.A.; Park, K.C.; Farhat, C. Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 2001, 190, 3247–3270. [Google Scholar] [CrossRef]
- Minami, S.; Yoshimura, S. Performance Evaluation of Nonlinear Algorithms with Line-search for Partitioned Coupling Techniques for Fluid–Structure Interactions. Int. J. Numer. Methods Fluids 2010, 64, 1129–1147. [Google Scholar] [CrossRef]
- Causin, P.; Gerbeau, J.; Nobile, F. Added-mass Effect in the Design of Partitioned Algorithms for Fluid–Structure Problems. Comput. Methods Appl. Mech. Eng. 2005, 194, 4506–4527. [Google Scholar] [CrossRef]
- Kaneko, S.; Hong, G.; Mitsume, N.; Yamada, T.; Yoshimura, S. Numerical Study of Active Control by Piezoelectric Materials for Fluid–Structure Interaction Problems. J. Sound Vib. 2018, 24, 23–35. [Google Scholar] [CrossRef]
- Liberge, E.; Hamdouni, A. Reduced Order Modelling Method via Proper Orthogonal Decomposition (POD) for Flow Around an Oscillating Cylinder. J. Fluids Struct. 2010, 26, 292–311. [Google Scholar] [CrossRef]
- Gao, H.; Wei, M. Global Model Reduction for Flows with Moving Boundary; AIAA Paper 2014-0222; Aerospace Research Center: Columbus, OH, USA, 2014. [Google Scholar]
- Liang, Z.; Dong, H. POD-Galerkin Projection of Flapping Wings; AIAA Paper 2011-1051; Aerospace Research Center: Columbus, OH, USA, 2011. [Google Scholar]
- Li, C.; Wang, J.; Dong, H. Proper Orthogonal Decomposition Analysis of Flapping Hovering Wings; AIAA Paper 2017-0327; Aerospace Research Center: Columbus, OH, USA, 2017. [Google Scholar]
- Xiao, D.; Yang, P.; Fang, F.; Xiang, J.; Pain, C.C.; Navon, I.M. Non-intrusive Reduced Order Modelling of Fluid–Structure Interactions. Comput. Methods Appl. Mech. Eng. 2016, 303, 35–54. [Google Scholar] [CrossRef]
- Ballarin, F.; Rozza, G. POD-Galerkin Monolithic Reduced Order MOdels for Parametrized Fluid-Structure Interaction Problems. Int. J. Numer. Methods Fluids 2016, 82, 1010–1034. [Google Scholar] [CrossRef]
- Nonino, M.; Ballarin, F.; Rozza, G. A Monolithic and a Partitioned, Reduced Basis Method for Fluid–Structure Interaction Problems. Fluids 2021, 6, 229. [Google Scholar] [CrossRef]
- Guermond, J.L.; Quartapelle, L. On the Approximation of the Unsteady Navier–Stokes Equations by Finite Element Projection Methods. Numer. Math. 1998, 80, 207–238. [Google Scholar] [CrossRef]
- Wang, Z.J.; Birch, J.M.; Dickinson, M.H. Unsteady Forces and Flows in low Reynolds Number Hovering Flight: Two-dimensional Computations vs. Robotic Wing Experiments. J. Exp. Biol. 2004, 207, 449–460. [Google Scholar] [CrossRef]
- Yamazaki, T.; Abe, Y.; Okabe, T. Long-term Two-dimensional Analysis of the Flow Field around a Hovering Flapping Flat-plate Wing. J. Fluid Sci. Technol. 2023, 18, JFST0026. [Google Scholar] [CrossRef]
- Stein, K.; Tazduyar, T.E.; Benney, R. Mesh Moving Techniques for Fluid–Structure Interactions with Large Displacements. J. Appl. Mech. 2003, 70, 58–63. [Google Scholar] [CrossRef]
- Hesthaven, J.S.; Rozza, G.; Stamm, B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Ballarin, F.; Manzoni, A.; Quarteroni, A.; Rozza, G. Supremizer Stabilization of POD–Galerkin Approximation of Parametrized Steady Incompressible Navier–Stokes Equations. Int. J. Numer. Methods Eng. 2015, 102, 1136–1161. [Google Scholar] [CrossRef]
- Bazilevs, Y.; Takizawa, K.; Tezduyar, T.E. Computational Fluid-Structure Interaction: Methods and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
Procedure | High-Fidelity | POD-Galerkin | |
---|---|---|---|
Fluid mesh update | Constructing matrix equation | ||
Solving matrix equation | |||
Fluid analysis | Constructing matrix equation | ||
Solving matrix equation | |||
Structural analysis | Constructing matrix equation | ||
Solving matrix equation | |||
Total CPU time for 1000 timesteps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaneko, S.; Yoshimura, S. POD-Galerkin FSI Analysis for Flapping Motion. Biomimetics 2023, 8, 523. https://doi.org/10.3390/biomimetics8070523
Kaneko S, Yoshimura S. POD-Galerkin FSI Analysis for Flapping Motion. Biomimetics. 2023; 8(7):523. https://doi.org/10.3390/biomimetics8070523
Chicago/Turabian StyleKaneko, Shigeki, and Shinobu Yoshimura. 2023. "POD-Galerkin FSI Analysis for Flapping Motion" Biomimetics 8, no. 7: 523. https://doi.org/10.3390/biomimetics8070523
APA StyleKaneko, S., & Yoshimura, S. (2023). POD-Galerkin FSI Analysis for Flapping Motion. Biomimetics, 8(7), 523. https://doi.org/10.3390/biomimetics8070523