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Abstract: FSI simulations of flapping motions have been widely investigated to develop a flapping-
wing micro air vehicle. Because an intensive parametric study is important for the product design,
a computationally efficient model is required. The purpose of the present study was to develop a
reduced-order model of flapping motion. Among the various methods available to solve FSI problems,
we employed the Dirichlet–Neumann partitioned iterative method, in which three sub-systems (fluid
mesh update, fluid analysis, and structural analysis) are executed. In the proposed analysis system,
first, snapshot data of structural displacement, fluid velocity, fluid pressure, and displacement for
the fluid mesh update were collected from a high-fidelity FSI analysis. Then, the snapshot data were
used to create low-dimensional surrogate systems of the above three sub-systems based on the POD
under Galerkin projection (i.e., the POD-Galerkin method). In numerical examples, we considered a
two-dimensional FSI problem of simplified flapping motion. The problem was described via two
parameters: frequency and amplitude of flapping motion. We demonstrated the effectiveness of the
presented reduced-order model in significantly reducing computational time while preserving the
desired accuracy.

Keywords: reduced-order model; proper orthogonal decomposition; fluid–structure interaction;
partitioned iterative coupled analysis; flapping motion

1. Introduction

Birds and insects achieve amazing aerodynamic performance using flapping motions,
which are known to be efficient in the low Reynolds number regime. Inspired by flapping
flight observed in nature, FWMAVs have been actively investigated over the last two
decades. Although FWMAVs have not yet been made practical, some prototypes, such as
Delfly [1] and RoboBee [2], have been developed.

To accelerate the design of devices and mechanisms, numerical simulations are effec-
tive. Many researchers have worked on numerical studies related to FWMAVs [3,4]. In our
previous studies, we performed FEM-based FSI analysis to simulate 3D hovering flight
with flexible flapping wings [5,6]. Then, we investigated the feasibility of FWMAVs in the
Earth and Martian environments.

Simulations of FWMAVs usually need a lot of computational resources because flap-
ping motions are complex phenomena, where flapping wings and the surrounding fluid
interfere mutually. Although recent improvements in computer performance have enabled
us to perform detailed simulations using many DOFs within a practical computational time,
a computationally efficient FWMAV model is required because an intensive parametric
study for a wide range of combinations of various flapping motions, such as flapping,
pitching, and lead-lag, is essential for the realization of FWMAVs.

To reduce the computational burden, one promising approach is ROM. For problems
with extremely high-dimensional parametrized systems, lower-dimensional manifolds
with representative key features are sought. ROM comprises an offline phase and an online
phase. In the offline phase, pre-computable and computationally expensive procedures
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are performed. Sufficient training datasets (i.e., snapshot data) are collected from high-
fidelity analysis, and data compression techniques, such as POD [7], are applied to obtain
reduced-order bases. In the online phase, a computationally efficient reduced-order model
is constructed using reduced-order bases, and the model is used to accelerate predictive
simulations. The POD method has been widely applied in conjunction with Galerkin
projection to build reduced-order models for a wide range of engineering problems, such as
thermal–visco-plastic deformation behavior [8], unsteady turbulent incompressible flow [9],
contact problems [10], and crack propagation [11], among others.

The methods to solve FSI problems are classified into two types: interface captur-
ing [12,13] and interface tracking [14,15]. Interface-capturing methods have a great advan-
tage in handling topology change. In contrast, interface-tracking methods are accurate
due to the precise representation of fluid–structure interfaces. Interface-tracking methods
are implemented based on monolithic [16] or partitioned approaches [17]. Monolithic
approaches are generally known to be accurate, while partitioned approaches are easy to
implement because they allow existing solvers to be used. Iterations can be introduced
into partitioned approaches to achieve the fully implicit treatment of the coupling con-
ditions [18]. The accuracy of the partitioned iterative method is comparable to that of
the monolithic approaches. Based on the Dirichlet–Neumann approach [19], our research
group has been developing a partitioned iterative FSI analysis system [5,18,20].

Regarding existing studies on the applications of the POD-Galerkin method to FSI anal-
ysis, many of them have followed interface-capturing approaches, such as the immersed
boundary method and the fictitious domain method [21–25]. In contrast, few studies have
addressed ROM for interface-tracking FSI analysis [26,27]. Ballarin and Rozza proposed
ROM for monolithic FSI analysis based on the ALE method, which is one of the interface-
tracking approaches [26]. Nonino et al. proposed ROM for partitioned FSI analysis based
on the ALE method [27]. They employed a Chorin–Temam projection scheme for the
Navier–Stokes equations [28] and the semi-implicit treatment of the coupling conditions.

The purpose of the present study was to develop a reduced-order model of flapping-
motion FSI problems. Although some researchers have developed such models [23,24],
their studies were based on immersed boundary methods. Unlike these existing studies, we
employed the interface-tracking method. In the present study, the POD-Galerkin method
was applied to the ALE-method-based partitioned iterative FSI analysis.

An outline of this paper is as follows: The high-fidelity computational model con-
structed based on FEM is given in Section 2. The POD-Galerkin procedure is described in
Section 3. In Section 4, numerical examples are presented to demonstrate the effectiveness
of the proposed reduced-order model. Finally, the conclusions are given in Section 5.

2. High-Fidelity FSI Analysis for Flapping Motion
2.1. Problem Setting

In the present study, all quantities are in SI units.
Here, we specify an FSI problem of flapping motion. Figure 1 shows a schematic

view of the 2D FSI problem, which we analyze in the present study. Due to the difficulty
of visualizing the thin structure, Figure 1 does not show the target problem in true scale.
An elastic structure is placed at the center of a non-flowing fluid. The upper edge of the
structure (DA) is assumed to be clamped, and the forced displacement, U, is imposed on
edge DA so that the structure is swung left and right. U = [Ux(t) Uy(t)]T is defined as

Ux(t) = A sin(2π f t), Uy(t) = 0, (1)

where A, f , and t denote the amplitude, frequency, and time, respectively. The domains of
the structure and the fluid are denoted by ΩS and ΩF, respectively. The interface between
ΩS and ΩF is the fluid–structure interface, denoted by ΓFSI, which is composed of four
edges: AB, BC, CD, and DA. The boundary of the fluid domain is denoted by ΓF, which is
composed of four edges: EF, FG, GH, and HE. In the present study, a traction-free condition
is imposed on ΓFSI. Note that a 2D simplified flapping problem where a thin structure
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is vibrated in a non-flowing fluid has been widely used for fundamental research on the
aerodynamics of hovering [29,30].

Figure 1. Schematic view of the target problem.

2.2. Governing Equations
2.2.1. Equations for Fluid

Under the assumption of incompressible viscous flow, the fluid dynamics are governed
by the Navier–Stokes equation in an ALE frame of reference:

ρF

(
∂vF

∂t

∣∣∣∣
χ

+
(

vF − v̂F
)
· ∇xvF

)
−∇x · σF = ρFbF, (2)

with the following continuity equation:

∇x · vF = 0, (3)

where ρF is the fluid density, vF is the fluid velocity vector, v̂F is the mesh velocity vector,
σF is the fluid Cauchy stress tensor, and bF is the body force vector applied to the fluid.
In the present study, bF = 0. The nabla operator, ∇x, refers to the current configuration.
∂vF

∂t |χ represents the referential time derivative of the solution in the spatial configuration.
A Newtonian fluid is assumed, and σF is defined as follows:

σF = −pFI + µ(∇xvF + (∇xvF)T), (4)

where pF is the fluid pressure, I is the unit tensor, and µ is the fluid viscosity.
The stress field, σF, is subjected to the following traction-free condition:

σF · nF = 0 on ΓF, (5)

where nF is the outward normal vector.

2.2.2. Equations for Structure

The mechanical behavior is governed by the following Cauchy momentum equation:

ρS
0

D2uS

Dt2 −∇X ·
(

S · FT
)
= ρ0bS

0 , (6)

where ρS
0 is the structural density, uS is the displacement vector, bS

0 is the body force vector,
F is the deformation gradient, S is the second Piola–Kirchhoff stress, and D

Dt is the material
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derivative. In the present study, bS
0 = 0. The nabla operator, ∇X, refers to the initial

configuration. The governing equation is described with respect to the initial configuration
(denoted by subscript 0).

The constitutive equations are modeled by the following linear relations:

S = C : E, (7)

where E = 1
2 (∇XuS + (∇XuS)T + (∇XuS)T · ∇XuS) is the Green–Lagrange strain and C

is the fourth-order elastic tensor.
The forced displacement is prescribed on edge DA as a Dirichlet boundary condition:

uS = U on DA. (8)

2.2.3. Equations for Interaction Conditions on the FSI Interface

The equilibrium force and geometric compatibility at the FSI interface ΓFSI are ex-
pressed as follows:

σS · nS = −σF · nF = FFSI on ΓFSI, (9)

vF =
DuS

Dt
on ΓFSI, (10)

where σS is the Cauchy stress tensor for the structure, nS is the outward normal vector, and
FFSI is the fluid force.

2.2.4. Equations for Fluid Mesh Update

Because the ALE method is used, it is necessary to move the fluid mesh to match the
motion of the structure. For the mesh update, pseudo-elastic smoothing [31] is employed, as
in many other studies that have used FSI analysis [16]. We now explain how pseudo-elastic
smoothing updates the fluid mesh when the fluid coordinate at time t, denoted by xM

t ,
and the displacement on ΓFSI at time t + ∆t, denoted by uS

t+∆t, are given. In pseudo-elastic
smoothing, mesh deformation in the fluid domain is governed by the linear elastic equation:

∇X′ · σM = 0 in ΩF, (11)

where σM is the Cauchy stress tensor. Here, the initial configuration for this elasticity
problem is xM

t . To distinguish the Lagrangian description in the equations for structure
(Section 2.2.2), we introduce ∇X′ . For linear elasticity, σM is defined as

σM = CM : EM, (12)

where CM is a fourth-order elasticity tensor and EM = 1
2 (∇X′uM + (∇X′uM)T) is the

infinitesimal strain tensor. For the determination of CM in the fluid mesh update, Jacobian-
based stiffening is employed. For the details of the method, we refer readers to [5]. In the
pseudo-elastic smoothing scheme, there is no Neumann boundary condition. The following
Dirichlet boundary condition is prescribed:{

uM = uS
t+∆t − uS

t on ΓFSI,

uM = 0 on ΓF,
(13)

where uM is the displacement of fluid nodes from the configuration xM
t .

uM is calculated by solving Equation (11) with the boundary condition (Equation (13)).
xM

t+∆t is obtained as
xM

t+∆t = xM
t + uM. (14)



Biomimetics 2023, 8, 523 5 of 16

The fluid mesh velocity at time t + ∆t, denoted by v̂F
t+∆t, is obtained as

v̂F
t+∆t =

(
xM

t+∆t − xM
t
)

∆t
. (15)

Note that the mesh velocity corresponds to the velocity of the structure on ΓFSI.

2.3. Partitioned Iterative FSI Analysis

To solve Equations (2)–(15), we employ the partitioned iterative method, where sub-
analysis systems are executed while satisfying the interface conditions (Equations (9) and (10)).
In the present study, we used three systems, namely, an analysis system for the fluid
mesh update, one for fluids, and one for structures. In this subsection, we explain the
detailed procedures of the partitioned iterative method based on the Dirichlet–Neumann
approach [19].

For spatial discretization, we employed the FEM. uM, vF, pF, and uS are approxi-
mated as

uM ≈ uM
h = NFdM, vF ≈ vF

h = NFdV , pF ≈ pF
h = NPdP, uS ≈ uS

h = NSdS, (16)

where the subscript h denotes the numerical approximation and dM, dV , dP, and dS are the
discretized forms of the displacement of fluid nodes, the fluid velocity, the fluid pressure,
and the structural displacement, respectively. NF, NP, and NS are defined as

NF =

[
NF

1 0 · · · NF
I 0 · · · NF

nF 0
0 NF

1 · · · 0 NF
I · · · 0 NF

nF

]
,

NP =
[

NF
1 · · · NF

I · · · NF
nF

]
,

NS =

[
NS

1 0 · · · NS
I 0 · · · NS

nS 0
0 NS

1 · · · 0 NS
I · · · 0 NS

nS

]
,

where nF and nS are the numbers of fluid and structural nodes and NF(S)
I denotes the shape

function associated with the I-th fluid (structural) node. dM, dV , dP, and dS are defined as

dM =
[

dM
1x dM

1y · · · dM
Ix dM

Iy · · · dM
nF x dM

nFy

]T
,

dV =
[

dV
1x dV

1y · · · dV
Ix dV

Iy · · · dV
nF x dV

nFy

]T
,

dP =
[

dP
1 · · · dP

I · · · dP
nF

]T
,

dS =
[

dS
1x dS

1y · · · dS
Ix dS

Iy · · · dS
nSx dS

nSy

]T
,

where the subscript I means the value is associated with the I-th node and the subscript
x(y) indicates a x(y) component of the vector.

In the fluid mesh update, FEM is employed for spatial discretization. Then, the
following weak form with the Dirichlet boundary condition (Equation (13)) is solved: find
uM

h ∈ V
M + GM, such that ∀wM

h ∈ V
M:

∫
ΩF

(
1
2

(
∇X′w

M
h +∇X′w

M
h

T))
: CM :

(
1
2

(
∇X′u

M
h +∇X′u

M
h

T))
dΩ = 0, (17)

where wM denotes the weight function. The function space, VM, is defined as

VM =

{
wM

h | ∃eM =
[
eM

1x eM
1y · · · eM

Ix eM
Iy · · · eM

nF x eM
nFy

]T
∈ R2nF

, wM
h = NFeM, eM

Ix = eM
Iy = 0 for I ∈ ηM

}
, (18)
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where ηM is a set of fluid nodes placed on ΓF and ΓFSI. GM = NFgM is a lifting function,
which is needed to satisfy the Dirichlet boundary condition [27,32,33]. gM is defined as

gM =
[

gM
1x gM

1y · · · gM
Ix gM

Iy · · · gM
nF x gM

nFy

]T
,


[

gM
Ix gM

Iy

]T
= uS

h t+∆t(Ψ(xM
I ))− uS

h t(Ψ(xM
I )) I ∈ ηFSI,[

gM
Ix gM

Iy

]T
= 0 I /∈ ηFSI,

(19)

where xM
I is the I-th fluid node, ηFSI is a set of fluid nodes placed on ΓFSI, and Ψ is a

one-to-one mapping relating the Lagrangian frame for the fluid mesh update to the
Lagrangian frame for the structural analysis. Equation (17) is discretized as follows:

eMT
KMdM = 0 (∀eM ∈ R2nF

, eM
Ix = eM

Iy = 0 for I ∈ ηM), (20)

where KM ∈ R2nF×2nF
is the stiffness matrix. After calculating the displacement of fluid

nodes, the fluid mesh coordinate, xM, and the mesh velocity, v̂F, are calculated based on
Equations (14) and (15). The fluid mesh update procedure,M, is performed as follows:

(xM
h t+∆t, v̂F

h t + ∆t) =M
(

uS
h t+∆t

)
. (21)

In the flow analysis, the FEM is employed for spatial discretization. To avoid instabili-
ties, the Petrov–Galerkin method (SUPG and PSPG methods [34]) is employed. Because of
the non-slip condition (Equation (10)), the fluid velocity corresponds to the mesh velocity
on ΓFSI:

vF = v̂F on ΓFSI, (22)

which is imposed as a Dirichlet boundary condition in the flow analysis. In addition, the
traction-free boundary condition (Equation (5)) is prescribed on ΓF. Then, the following
weak form is solved: find vF

h ∈ V
V + GV and pF

h ∈ V
P, such that ∀wF

h ∈ V
V and ∀wC

h ∈ V
P:

∫
ΩF

wF
h ρF

 ∂vF
h

∂t

∣∣∣∣∣
χ

+
(

vF
h − v̂F

h

)
· ∇xvF

h

dΩ +
∫

ΩF

(
1
2

(
∇xwF

h +∇xwF
h

T))
: σF(vF

h , pF
h )dΩ

+
∫

ΩF

wC
h∇x · vF

h dΩ +
n f

el

∑
k=1

∫
Ωk

F

τSUPG

((
vF

h − v̂F
h

)
· ∇xvF

h

)
· rM(vF

h , pF
h )dΩ

+
n f

el

∑
k=1

∫
Ωk

F

τPSPG

(
∇xwC

h
ρF

)
· rM(vF

h , pF
h )dΩ = 0,

(23)

where wF and wC denote the weight functions, n f
el is the number of fluid elements, Ωk

F
denotes the k-th fluid element, and τSUPG and τPSPG are SUPG and PSPG parameters. For
details on choosing them, see [34]. rM is defined as

rM(vF
h , pF

h ) = ρF

 ∂vF
h

∂t

∣∣∣∣∣
χ

+
(

vF
h − v̂F

h

)
· ∇xvF

h

−∇x · σF(vF
h , pF

h ). (24)

The function space, VV , is defined as

VV =

{
wF

h | ∃eV =
[
eV

1x eV
1y · · · eV

Ix eV
Iy · · · eV

nF x eV
nFy

]T
∈ R2nF

, wM
h = NFeV , eV

Ix = eV
Iy = 0 for I ∈ ηFSI

}
. (25)

GV = NFgV is a lifting function. gV is defined as
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gV =
[

gV
1x gV

1y · · · gV
Ix gV

Iy · · · gV
nF x gV

nFy

]T
,


[

gV
Ix gV

Iy

]T
= v̂F

h (xM
I ) I ∈ ηFSI,[

gV
Ix gV

Iy

]T
= 0 I /∈ ηFSI.

(26)

The function space, VP, is defined as

VP =

{
wC

h | ∃eP =
[
eP

1 · · · eP
I · · · eP

nF

]T
∈ RnF

, wC
h = NPeP

}
. (27)

With the explicit treatment of the advection velocity and the backward Euler method,
Equation (23) is discretized as follows:

[eV eP]T
([

Kvv Kvp

Kpv Kpp

][
dV

t+∆t
dP

t+∆t

]
−
[

fV

fP

])
= 0 (∀eP ∈ RnF

, ∀eV ∈ R2nF
, eV

Ix = eV
Iy = 0 for I ∈ ηFSI) (28)

where Kvv ∈ R2nF×2nF
, Kvp ∈ R2nF×nF

, Kpv ∈ RnF×2nF
, Kpp ∈ RnF×nF

, fv ∈ R2nF
, and fp ∈

RnF
are the resulting matrices and vectors after the discretization. After the flow analysis,

the fluid force on the FSI interface, denoted by FFSI, is calculated using the equilibrium of
forces (Equation (9)). The flow analysis procedure, F , is performed as follows:

FFSI
h t+∆t = F (xM

h t+∆t, v̂F
h t + ∆t). (29)

In the structural analysis, the FEM is employed for spatial discretization. To consider
geometrical nonlinearity, the total Lagrange formulation is employed. The fluid force is
imposed as a Neumann boundary condition in the structural analysis. In addition, the
Dirichlet boundary condition (Equation (8)) is prescribed on edge DA. Then, the following
weak form is solved: find uS

h ∈ V
S + GS, such that ∀wS

h ∈ V
S:

∫
ΩS0

wS
h ρS

0
D2uS

h
Dt2 dΩ +

∫
ΩS0

δEh : C : EhdΩ =
∫

Γ′FSI0

wS
h FFSI

h dΩ, (30)

where δEh is δEh = 1
2 (∇XwS

h + (∇XwS
h)

T + (∇XwS
h)

T∇XuS
h + (∇XuS

h)
T∇XwS

h) and wS

denotes the weight function. Γ′FSI is composed of three edges AB, BC, and CD, as shown in
Figure 1. The function space, VS, is defined as

VS =

{
wS

h | ∃eS =
[
eS

1x eS
1y · · · eS

Ix eS
Iy · · · eS

nSx eS
nSy

]T
∈ R2nS

, wS
h = NSeS, eS

Ix = eS
Iy = 0 for I ∈ ηS

}
, (31)

where ηS is a set of structural nodes that are placed on edge DA. GS = NSgS is a lifting
function. gS is defined as

gS =
[

gS
1x gS

1y · · · gS
Ix gS

Iy · · · gS
nSx gS

nSy

]T
,
[

gS
Ix gS

Iy

]T
= U for all I. (32)

By introducing the finite element discretization and the Newmark-β method and
applying the Newton–Raphson method, we obtain the following incremental discrete
equation:

eST
(

KS(i)∆dS(i+1) − fS(i)
)
= 0 (∀eS ∈ R2nS

, eS
Ix = eS

Iy = 0 for I ∈ ηS),

dS
t+∆t

(i+1)
= ∆dS(i+1)

+ dS
t+∆t

(i)
,

(33)

where the superscript i represents the iteration count. KS ∈ R2nS×2nS
and fS ∈ R2nS

are the
resulting matrix and vector after the discretization. In the present study, the initial value
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of dS
t+∆t is dS

t+∆t
(0) = dS

t − gS
t + gS

t+∆t. The structural analysis procedure, S , is performed
as follows:

uS
h t+∆t = S

(
FFSI

h t+∆t

)
. (34)

From Equations (21), (29), and (34), it can be observed that the target coupled problem
is equivalent to the following nonlinear equation:

uS
h t+∆t = S

(
F
(
M
(

uS
h t+∆t

)))
. (35)

To solve Equation (35), the Broyden method, a quasi-Newton method, is employed.

3. POD-Galerkin Framework

In the POD-Galerkin method, low-dimensional subspaces of VM, VV , VP, and VS are
constructed. Then, VM, VV , VP, and VS in the weak forms (Equations (17), (23), and (30))
are replaced with these subspaces. In Section 3.1, we explain how to construct the subspace.
To avoid redundancy, here, we focus on the construction of the subspace of VS. Section 3.2
presents a flowchart of the proposed POD-Galerkin FSI analysis.

Variables appearing in the dimensional reduction of VM, VV , VP, and VS have the
superscripts M, V, P, and S, respectively.

3.1. Snapshot POD

In this subsection, we explain how to construct a subspace of VS from the snapshots,
denoted by eS

(1), eS
(2), · · · , eS

(NS
snap)

, where eS is defined as eS = dS − gS and the subscript

(i) represents the i-th snapshot that is collected from the high-fidelity analysis during the
offline phase. Nsnap denotes the number of snapshots.

First, eS(t, θ) are collected at parameter set θ and various times t that satisfy θ ∈ D
and t ∈ T . D and T = [0, T] represent the input parameter space and the time interval of
interest, respectively. Second, a set of orthonormal bases, {φS

i }
kS

i=1, is constructed such that
the errors between each snapshot datum and its projection onto the subspaces spanned by
{φS

i }
kS

i=1 are minimized:

{φS
i }

kS

i=1 = arg min
f i(i=1,2,··· ,kS)

NS
snap

∑
j=1
‖eS

(j) − FFTeS
(j)‖

2
2 with f T

i f j = δij, i, j = 1, · · · , kS, (36)

where ‖ · ‖2 denotes the L2 norm and F = [ f 1 f 2 · · · f kS ] ∈ R2nS×kS
and k is the number of

reduced bases. If the summation of the errors in Equation (36) is minimized sufficiently, all
snapshots can be well approximated by a linear combination of the POD bases, {φS

i }
kS

i=1.
Here, we make the assumption that, for any t ∈ T , θ ∈ D, eS(t, θ) can be approximated
via a linear combination. Under this assumption, the following subspace, ṼS, can be used
in Equation (30) instead of VS.

ṼS =

{
wS

h | ∃cS =
[
cS

1 cS
2 · · · cS

kS

]T
∈ RkS

, wS
h = NSΦScS

}
, (37)

where the POD basis matrix, ΦS, is defined as ΦS = [φS
1 φS

2 · · · φS
kS ] ∈ R2nS×kS

.
An effective procedure to solve the above minimization problem (Equation (36)) from

the snapshot matrix XS, which is defined as XS = [eS
(1) eS

(2) · · · eS
(NS

snap)
], is through SVD:

XS = VSΣSWST
, (38)
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where VS = [vS
1 vS

2 · · · vS
rS ] ∈ R2nS×rS

contains the left singular vectors, rS denotes the

rank of XS, and ΣS = diag(σS
1 , σS

2 , · · · , σS
rS) ∈ RrS×rS

is a diagonal matrix of singular values,

in which σS
1 ≥ σS

2 ≥ · · · ≥ σS
rS > 0. WS ∈ RNS

snap×rS
contains the right singular vectors. A

set of the first kS left singular vectors in VS associated with the kS largest singular values in
ΣS is known to be the solution to Equation (36) (i.e., ΦS

i = vS
i (i = 1, · · · , kS)).

In practice, the number of POD bases, kS, is chosen to ensure that the following
reconstruction error, εPOD, for the snapshot matrix, is smaller than a given threshold:

εPOD =
‖XS −ΦSΦST

XS‖2
F

‖XS‖2
F

, (39)

in which ‖ · ‖F denotes the Frobenius norm.
Similar to the construction of ṼS, the subspaces of VV , VP, and VM, denoted by ṼV , ṼP,

and ṼM, respectively, are constructed via the snapshot POD method. High-fidelity analysis
results dV − gV , dP, and dM − gM are collected as snapshots, and these are assembled into

snapshot matrices XV ∈ R2nF×NV
snap , XP ∈ RnF×NP

snap , and XM ∈ R2nF×NM
snap , respectively.

Then, SVD is used to determine the POD basis matrices ΦV ∈ R2nF×kV
, ΦP ∈ RnF×kP

, and
ΦM ∈ R2nF×kM

. ṼV , ṼP, and ṼM are defined as

ṼV =

{
wV

h | ∃cV =
[
cV

1 cV
2 · · · cV

kV

]T
∈ RkV

, wV
h = NFΦVcV

}
, (40)

ṼP =

{
wP

h | ∃cP =
[
cP

1 cP
2 · · · cP

kP

]T
∈ RkP

, wP
h = NPΦPcP

}
, (41)

ṼM =

{
wM

h | ∃cM =
[
cM

1 cM
2 · · · cM

kM

]T
∈ RkM

, wM
h = NFΦMcM

}
. (42)

3.2. POD-Galerkin FSI Analysis

In the POD-Galerkin FSI analysis, VM, VV , VP, and VS in the weak forms
(Equations (17), (23), and (30)) are replaced with ṼM, ṼV , ṼP, and ṼS, respectively. Hence,
dM, dV , dP, and dS are approximated in ROM as

dM ≈ ΦMaM + gM, dV ≈ ΦVaV + gV , dP ≈ ΦPaP, dS ≈ ΦSaS + gS, (43)

where aM ∈ RkM
, aV ∈ RkV

, aP ∈ RkP
, and aS ∈ RKS

are the coefficient vectors of the
reduced-order approximation.

Figure 2 shows a flowchart of the proposed POD-Galerkin FSI analysis system. For the
development of the proposed system, in the present study, we use our in-house code, which
was verified in our previous studies [18,20]. In the high-fidelity analysis, the FSI problem is
modeled as a nonlinear equation with the unknown variable of the structural displacement,
as shown in Equation (35). Meanwhile, in the ROM analysis, the unknown variable is
the reduced-order structural displacement, aS. As shown in Figure 2, the dimensional
reduction is applied during the fluid mesh update, fluid analysis, and structural analysis.
In the reduced-order mesh update, the following equation is solved:

cMT
ΦMT

KM(ΦMaM + gM) = 0 (∀cM ∈ RkM
). (44)

In the reduced-order fluid analysis, the following equation is solved:

[cV cP]T
[

ΦV O
O ΦP

]T([
Kvv Kvp

Kpv Kpp

][
ΦVaV

t+∆t + gV
t+∆t

ΦPaP
t+∆t

]
−
[

fV

fP

])
= 0 (∀cP ∈ RkP

, ∀cV ∈ RkV
). (45)
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Figure 2. Flowchart of the proposed POD-Galerkin FSI analysis system.

In the reduced-order structural analysis, the following equation is solved:

cST
ΦST

(
KS(i)ΦS∆aS(i+1) − fS(i)

)
= 0 (∀cS ∈ RkS

),

aS
t+∆t

(i+1)
= ∆aS(i+1)

+ aS
t+∆t

(i)
, dS

t+∆t
(i+1)

= ΦS∆aS(i+1)
+ dS

t+∆t
(i)

.

(46)

The initial value of aS
t+∆t is aS

t+∆t
(0)

= aS
t . The initial value of dS

t+∆t is the same as that
in the high-fidelity analysis: dS

t+∆t
(0) = dS

t − gS
t + gS

t+∆t.

4. Numerical Example

In this section, the 2D FSI problem of simplified flapping motion, which is described
in Section 2, is considered. In the example, we investigate the effectiveness of the proposed
ROM when the online prediction model parameters are not within the offline training
parametric sets, as is often the case in practical product design optimization.

4.1. Analysis Setting

The material properties of the plate and the surrounding fluid are as follows: Poisson’s
ratio is 0.3, Young’s modulus is 1.0× 109 GPa, the density of the plate is 7.0× 103 kg/m3,
the density of the fluid is 1.0 kg/m3, and the viscosity is 1.0× 10−3 kg/m · s. The timestep
is 1.0× 10−4 s. The Newmark-β parameters β and γ are 0.3025 and 0.6, respectively. For
the discretization of the fluid domain, 3-node triangular finite elements are used. The
numbers of nodes and elements in the fluid mesh are 24,865 and 48,520, respectively. For
the discretization of the structural domain, 4-node quadrilateral finite elements are used.
The numbers of nodes and elements in the structural mesh are 3006 and 2500, respectively.

In our target FSI problem, flapping motion is described via two parameters: the
amplitude, A, and the frequency, f . The parameter space is defined as A ∈ {x | 0.0015 ≤
x ≤ 0.0025} (unit: m) and f ∈ {x | 80 ≤ x ≤ 120} (unit: 1/s).

To obtain training data, we performed nine high-fidelity simulations, and for each
high-fidelity simulation, we adopted a flapping motion based on a different parameter set
inside the parametric domain, as depicted in Figure 3. To construct snapshot matrices XM,
XV , XP, and XS, the high-fidelity simulation results that converged at each timestep were
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collected as snapshots. Each high-fidelity simulation took 500 timesteps. Therefore, each
snapshot matrix had 4500 (9× 500) snapshots.

Figure 4 shows the relations between the number of POD bases and the reconstruction
error, εPOD, for the fluid velocity, the fluid pressure, the displacement of the fluid mesh,
and the structural displacement.

We chose the POD bases so that the error is less than 1.0× 10−9 for the structural
displacement and 1.0× 10−6 for the others. As a result, the numbers of POD bases are
159, 103, 62, and 11 for the fluid velocity, the fluid pressure, the displacement of the fluid
mesh, and the structural displacement, that is, kV = 159, kP = 103, kM = 62, and kS = 11,
respectively.

Figure 3. Parameter space: nine parameter sets are for offline training, and two parameter sets are for
online testing.

Figure 4. Relations between the number of POD bases and the reconstruction error.

4.2. Results and Discussion
4.2.1. Comparison of Accuracy

As shown in Figure 3, we consider two test cases, called “Test 1“ and “Test 2.” In
Test 1, the parameter set (A, f ) = (0.00175, 90) was used. In Test 2, the parameter set
(A, f ) = (0.00225, 110) was used. Here, the units m and 1/s are adopted for amplitude,
A, and frequency, f , respectively. Figures 5 and 6 visualize the distribution of the velocity
norm around the elastic plate at different times. These figures are the results of Test 1 and
Test 2 obtained from high-fidelity analysis and POD-Galerkin analysis.

Figure 7 shows the predicted time histories of the x-displacement at point B indicated
in Figure 1 for Test 1 and Test 2. Figure 8 shows the predicted time histories of the lift
force for Test 1 and Test 2. The lift force is calculated by integrating the y-component
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of the fluid force, FFSI, over the interface, ΓFSI. As shown in Figures 5–8, we can see
good agreement between the results from the POD-Galerkin analysis and those from the
high-fidelity analysis.

Figure 5. Comparison of the predicted distribution of the velocity norm at different times for Test 1.

Figure 6. Comparison of the predicted distribution of the velocity norm at different times for Test 2.

Figure 7. Time history of the x-displacement at point B in Figure 1 for (a) Test 1 and (b) Test 2.
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Figure 8. Time history of the lift force for (a) Test 1 and (b) Test 2.

The capability of the reduced-order model for the maximum lift force was investigated
under various parameter sets. In total, we performed 81 reduced-order simulations, for
which the following 81 parameter sets were considered:

(A, f ) = (x, y | x = 0.0015 + (i− 1)× 0.000125, y = 80 + (j− 1)× 5, i, j = 1, 2, · · · , 9),

where the units m and 1/s are adopted for amplitude, A, and frequency, f , respectively.
Figure 9a,b show the maximum lift force results from the high-fidelity analysis and ROM
analysis, and Figure 9c shows the error associated with the reduced-order models when
compared with the high-fidelity models. We can see from Figure 9c that the prediction
results obtained from the ROM analysis agree well with the prediction via the high-fidelity
analysis over all the considered parametric domains. In most cases, the maximum error is
less than 10%. When f = 115 and f = 120, some cases show a large error. However, the
amplitude is quite low in these cases. Therefore, the absolute error of these cases is small.

Figure 9. Maximum lift force prediction results for 81 different online simulation parameter sets
using (a) high-fidelity analysis and (b) ROM analysis on various parameter sets, and (c) the error of
the ROM analysis relative to the high-fidelity analysis.
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4.2.2. Computational Time

Table 1 shows a comparison of the computational time of the high-fidelity analysis
and POD-Galerkin analysis, where we have listed the total CPU time for 1000 timesteps,
CPU time per Broyden iteration step for the fluid mesh update and fluid analysis, and CPU
time per Newton–Raphson iteration step for the structural analysis. When calculating CPU
time, we ran our computer program on a PC with 32 GB of memory and an Intel Core
i9-10900K 3.70 GHz processor. In both the high-fidelity and the ROM analysis, constructing
and solving matrix equations are extremely time-consuming.

Because the dimensions of the system equations in POD-Galerkin analysis are kM,
kV + kP, and kS (= 62, 262, and 11) for the fluid mesh update, the fluid analysis, and the
structural analysis, respectively, it takes much less time to solve the algebraic equations
compared to solving the high-fidelity system equations with dimensions 2nF, 3nF, and 2nS

(= 49, 730, 74, 595, and 6012). However, in the POD-Galerkin method, the following three
matrix multiplication procedures are time-consuming:

ΦMT
KMΦM,

[
ΦV O
O ΦP

]T[
Kvv Kvp

Kpv Kpp

][
ΦV O
O ΦP

]
, ΦST

KS(i)ΦS.

Among these three, the first two matrix multiplication procedures need to be computed
at every Broyden iteration, and the other is computed at every Newton–Raphson iteration.
As a result, for the present example, the overall computational time of the POD-Galerkin
analysis is about 44% of that of the high-fidelity analysis.

Table 1. Comparison of CPU time (unit: s).

Procedure High-Fidelity POD-Galerkin

Fluid mesh update Constructing matrix equation 3.5× 10−3 1.7× 10−2

Solving matrix equation 9.9× 10−2 5.3× 10−5

Fluid analysis Constructing matrix equation 1.0× 10−2 1.1× 10−1

Solving matrix equation 1.8× 10−1 3.4× 10−4

Structural analysis Constructing matrix equation 8.5× 10−4 1.2× 10−3

Solving matrix equation 5.5× 10−3 2.1× 10−6

Total CPU time for 1000 timesteps 9.9× 102 4.4× 102

5. Conclusions

For the prediction of FSI phenomena in flapping motion, conventional high-fidelity
nonlinear numerical analysis is extremely time-consuming. To accelerate the simulation, in
this work, POD-Galerkin-method-based ROM was introduced into the Dirichlet–Neumann
partitioned iterative FSI analysis. In our proposed ROM method, the snapshot data of fluid
velocity, fluid pressure, structural displacement, and displacement for the fluid mesh update
were collected from the high-fidelity analysis. Then, the POD bases were constructed via
SVD, and the discrete equation was projected onto a much smaller dimension via the
Galerkin method. The matrix multiplication operations in the POD-Galerkin method were
time-consuming. However, the total CPU time of the ROM analysis was much less than that
of the high-fidelity analysis because ROM drastically sped up solving the matrix equations.

In the numerical example, we considered a simplified flapping motion FSI problem
parametrized via the amplitude and the frequency. The DOFs of the fluid mesh update,
the fluid analysis, and the structural analysis were reduced from 49,730, 74,595, and 6012
to 62, 262, and 11, respectively. We showed that with such a reduced-order model, the
FSI phenomenon of flapping motion is well captured, and the maximum lift force was
estimated with less than 20% error, while 44% of the high-fidelity CPU time was consumed.

In the present study, we handled the flapping motion in a non-flowing fluid, which is
a simplification of the hovering flight of FWMAVs. In future work, we plan to handle 3D
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free-flight simulations. In this case, the Reynolds number might become higher than that in
hovering flight. We need to investigate how much an increase in the advection influences
the accuracy and stability of the ROM analysis.

In addition, to enhance the acceleration of the simulation due to the POD-Galerkin
method, further reduction techniques must be introduced. We plan to incorporate hyper-
reduction methods [8] into the reduced-order FSI analysis proposed in the present study.

The contribution of the present study is only to show the possibilities of the ALE-
based reduced-order FSI analysis system. It does not include a discussion on whether
the interface-tracking method or the interface-capturing method is suitable for flapping
problems in the context of ROM. In future work, we will develop the reduced-order FSI
analysis system based on the interface-capturing method. Then, we will compare it with
the system developed in the present study.
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The following abbreviations are used in this manuscript:

FSI Fluid–structure interaction
POD Proper orthogonal decomposition
FWMAV Flapping-wing micro air vehicle
FEM Finite element method
DOFs Degrees of freedom
ROM Reduced-order modeling
2D Two-dimensional
3D Three-dimensional
POD Proper orthogonal decomposition
ALE Arbitrary Lagrangian–Eulerian
SUPG Streamline upwind/Petrov–Galerkin
PSPG Pressure-stabilizing/Petrov–Galerkin
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