Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
Abstract
:1. Introduction
- GAO is designed based on mimicking the behavior of green anacondas in the wild.
- The fundamental inspiration for GAO is the green anaconda’s tracking mechanism during the mating season and the hunting strategy they have when attacking prey.
- The mathematical model of GAO is presented in two phases with the aim of forming exploration and exploitation in the search process.
- GAO’s performance on optimization tasks is tested on twenty-nine benchmark functions from the CEC 2017 test suite and CEC 2019 test suite.
- GAO’s ability to handle real-world applications is evaluated on twenty-one optimization problems from the CEC 2011 test suite.
- The results obtained from GAO are compared with the performance of twelve well-known metaheuristic algorithms.
2. Literature Review
3. Green Anaconda Optimization
3.1. Inspiration of GAO
3.2. Algorithm Initialization
3.3. Mathematical Modelling of GAO
3.3.1. Phase 1: Mating Season (Exploration)
3.3.2. Phase 2: Hunting Strategy (Exploitation)
3.4. Repetition Process, Pseudocode, and Flowchart of GAO
Algorithm 1. Pseudocode of GAO | |
Start GAO. | |
1. | Input problem information: variables, objective function, and constraints. |
2. | Set GAO population size (N) and iterations (T). |
3. | Generate the initial population matrix at random using Equation (2). |
4. | Evaluate the objective function. |
5. | For to T |
6. | For to |
7. | Phase 1: mating season (exploration) |
8. | Identify the candidate females using Equation (4). |
9. | Calculate the concentration function of candidate females using Equation (5). |
10. | Calculatethe cumulative probability function candidate females using Equation (6). |
11. | Determine the selected female using Equation (7). |
12. | Calculate the new position of ith GAO member using Equation (8). |
13. | Update ith GAO member using Equation (9). |
14. | Phase 2: hunting strategy (exploitation) |
15. | Calculate the new position of ith GAO member using Equation (10). |
16. | Update the th GAO member using Equation (11). |
17. | End |
18. | Save the best candidate solution so far. |
19. | End |
20. | Output the best quasi-optimal solution obtained with the GAO. |
End GAO. |
3.5. Computational Complexity of GAO
4. Simulation Studies and Results
4.1. Evaluation the CEC 2017 Test Suite
4.2. Evaluation the CEC 2019 Test Suite
4.3. Statistical Analysis
5. GAO for Real-World Applications
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar] [CrossRef]
- Jahani, E.; Chizari, M. Tackling global optimization problems with a novel algorithm–Mouth Brooding Fish algorithm. Appl. Soft Comput. 2018, 62, 987–1002. [Google Scholar] [CrossRef]
- Sergeyev, Y.D.; Kvasov, D.; Mukhametzhanov, M. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 2018, 8, 453. [Google Scholar] [CrossRef] [Green Version]
- Liberti, L.; Kucherenko, S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 2005, 12, 263–285. [Google Scholar] [CrossRef]
- Koc, I.; Atay, Y.; Babaoglu, I. Discrete tree seed algorithm for urban land readjustment. Eng. Appl. Artif. Intell. 2022, 112, 104783. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovská, E.; Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep. 2022, 12, 9924. [Google Scholar] [CrossRef]
- Zeidabadi, F.-A.; Dehghani, M.; Trojovský, P.; Hubálovský, Š.; Leiva, V.; Dhiman, G. Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems. Comput. Mater. Contin. 2022, 72, 399–416. [Google Scholar] [CrossRef]
- de Armas, J.; Lalla-Ruiz, E.; Tilahun, S.L.; Voß, S. Similarity in metaheuristics: A gentle step towards a comparison methodology. Nat. Comput. 2022, 21, 265–287. [Google Scholar] [CrossRef]
- Trojovská, E.; Dehghani, M.; Trojovský, P. Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm. IEEE Access 2022, 10, 49445–49473. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Dehghani, A.; Malik, O.P.; Morales-Menendez, R.; Dhiman, G.; Nouri, N.; Ehsanifar, A.; Guerrero, J.M.; Ramirez-Mendoza, R.A. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021, 11, 1286. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaboga, D.; Basturk, B. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. In International Fuzzy Systems Association World Congress; Springer: Berlin/Heidelberg, Germany, 2007; pp. 789–798. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Perth, WA, Australia, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Wu, Q.; Zhu, S.; Zhang, L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022, 188, 116026. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl. Based Syst. 2022, 234, 108457. [Google Scholar] [CrossRef]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Chopra, N.; Ansari, M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Dhiman, G.; Malik, O.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Dehghani, A.; Guerrero, J.M.; Parra-Arroyo, L. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020, 10, 6173. [Google Scholar] [CrossRef]
- Dehghani, M.; Samet, H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020, 2, 1720. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl. Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Pereira, J.L.J.; Francisco, M.B.; Diniz, C.A.; Oliver, G.A.; Cunha Jr, S.S.; Gomes, G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021, 170, 114522. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, C.; Wang, X.; Han, T.; Li, Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access 2019, 7, 66084–66109. [Google Scholar] [CrossRef]
- Cuevas, E.; Oliva, D.; Zaldivar, D.; Pérez-Cisneros, M.; Sossa, H. Circle detection using electro-magnetism optimization. Inf. Sci. 2012, 182, 40–55. [Google Scholar] [CrossRef] [Green Version]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.P.; Ramirez-Mendoza, R.A.; Matas, J.; Vasquez, J.C.; Parra-Arroyo, L. A new “Doctor and Patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020, 10, 5791. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Malik, O. FOA:‘Following’Optimization Algorithm for solving Power engineering optimization problems. J. Oper. Autom. Power Eng. 2020, 8, 57–64. [Google Scholar]
- Ayyarao, T.L.; RamaKrishna, N.; Elavarasam, R.M.; Polumahanthi, N.; Rambabu, M.; Saini, G.; Khan, B.; Alatas, B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access 2022, 10, 25073–25105. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors 2021, 21, 4567. [Google Scholar] [CrossRef]
- Braik, M.; Ryalat, M.H.; Al-Zoubi, H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022, 34, 409–455. [Google Scholar] [CrossRef]
- Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020, 11, 1501–1529. [Google Scholar] [CrossRef]
- Al-Betar, M.A.; Alyasseri, Z.A.A.; Awadallah, M.A.; Abu Doush, I. Coronavirus herd immunity optimizer (CHIO). Neural Comput. Appl. 2021, 33, 5011–5042. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Montazeri, Z.; Saremi, S.; Dehghani, A.; Malik, O.P.; Al-Haddad, K.; Guerrero, J.M. HOGO: Hide objects game optimization. Int. J. Intell. Eng. Syst. 2020, 13, 4. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Malik, O.P.; Ehsanifar, A.; Dehghani, A. OSA: Orientation search algorithm. Int. J. Ind. Electron. Control. Optim. 2019, 2, 99–112. [Google Scholar]
- Moghdani, R.; Salimifard, K. Volleyball premier league algorithm. Appl. Soft Comput. 2018, 64, 161–185. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.; Kumar, V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020, 13, 514–523. [Google Scholar] [CrossRef]
- DEHGHANI, M.; MONTAZERI, Z.; MALIK, O.P. DGO: Dice game optimizer. Gazi Univ. J. Sci. 2019, 32, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Doumari, S.A.; Givi, H.; Dehghani, M.; Malik, O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021, 14, 545–554. [Google Scholar] [CrossRef]
- Zeidabadi, F.A.; Dehghani, M. POA: Puzzle Optimization Algorithm. Int. J. Intell. Eng. Syst. 2022, 15, 273–281. [Google Scholar]
- Hsiou, A.S.; Winck, G.R.; Schubert, B.W.; Avilla, L. On the presence of Eunectes murinus (Squamata, Serpentes) from the late Pleistocene of northern Brazil. Rev. Bras. De Paleontol. 2013, 16, 77–82. [Google Scholar] [CrossRef]
- Rivas, J.A. The Life History of the Green Anaconda (Eunectes murinus), with Emphasis on Its Reproductive Biology. Ph.D. Thesis, The University of Tennessee, Knoxville, TN, USA, 1999. [Google Scholar]
- Rivas, J.A.; Burghardt, G.M. Understanding sexual size dimorphism in snakes: Wearing the snake’s shoes. Anim. Behav. 2001, 62, F1–F6. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.H. The Giant Snakes: The Natural History of the Boa Constrictor, the Anaconda, and the Largest Pythons, Including Comparative Facts about Other Snakes and Basic Information on Reptiles in General; Knopf: New York, NY, USA, 1961. [Google Scholar]
- Harvey, D. Smithsonian Super Nature Encyclopedia; Dorling Kindersley Publishing: London, UK, 2012. [Google Scholar]
- Thomas, O.; Allain, S. Review of prey taken by anacondas (Squamata, Boidae: Eunectes). Reptiles Amphib. 2021, 28, 329–334. [Google Scholar] [CrossRef]
- Strimple, P. The Green Anaconda Eunectes murinus (Linnaeus). Liyyeratura Serpentium 1993, 13, 46–50. [Google Scholar]
- Burton, M.; Burton, R. International Wildlife Encyclopedia; Marshall Cavendish: New York, NY, USA, 2002; Volume 1. [Google Scholar]
- Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P.; Definitions, P. Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization; Technology Report; Nanyang Technological University: Singapore, 2016. [Google Scholar]
- Price, K.V.; Awad, N.H.; Ali, M.Z.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization; Nanyang Technological University: Singapore, 2018. [Google Scholar]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 196–202. [Google Scholar]
- Das, S.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems; Jadavpur University: Kolkata, India; Nanyang Technological University: Singapore, 2010; pp. 341–359. [Google Scholar]
Algorithm | Parameter | Value |
---|---|---|
GA | ||
Type | Real coded | |
Selection | Roulette wheel (proportionate) | |
Crossover | Whole arithmetic (probability = 0.8, ) | |
Mutation | Gaussian (probability = 0.05) | |
PSO | ||
Topology | Fully connected | |
Cognitive and social constant | (C1, C2) | |
Inertia weight | Linear reduction from 0.9 to 0.1 | |
Velocity limit | 10% of dimension range | |
GSA | ||
Alpha, G0, Rnorm, Rpower | 20, 100, 2, 1 | |
TLBO | ||
TF: Teaching factor | TF = round | |
random number | rand is a random number between | |
GWO | ||
Convergence parameter (a) | a: Linear reduction from 2 to 0. | |
MVO | ||
Wormhole existence probability (WEP) | Min(WEP) = 0.2 and Max(WEP) = 1. | |
Exploitation accuracy over the iterations (p) | . | |
WOA | ||
Convergence parameter (a) | a: Linear reduction from 2 to 0. | |
r is a random vector in | ||
l is a random number in | ||
TSA | ||
Pmin and Pmax | 1, 4 | |
c1, c2, c3 | random numbers lie in the range of | |
MPA | ||
Constant number | ||
Random vector | R is a vector of uniform random numbers in | |
Fish aggregating devices (FADs) | ||
Binary vector | or 1 | |
RSA | ||
Sensitive parameter | ||
Sensitive parameter | ||
Evolutionary sense (ES) | ES: randomly decreasing values between 2 and −2 | |
AVOA | ||
L1, L2 | 0.8, 0.2 | |
W | 2.5 | |
P1, P2, P3 | 0.6, 0.4, 0.6 | |
WSO | ||
Fmin and Fmax | 0.07, 0.75 | |
τ, ao, a1, a2 | 4.125, 6.25, 100, 0.0005 |
GAO | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 100 | 6977.111 | 1822.634 | 9.72 × 109 | 104.6622 | 1.33 × 109 | 7,296,302 | 11,776.52 | 18,952.96 | 1.57 × 108 | 328.9346 | 3347.233 | 20,023,383 |
best | 100 | 345.9705 | 754.1327 | 7.3 × 109 | 102.4063 | 11,665,981 | 3,349,288 | 6355.289 | 11,697.02 | 69,930,767 | 109.1846 | 362.021 | 6,675,925 | |
worst | 100 | 12,471.59 | 3882.122 | 1.27 × 1010 | 106.0517 | 3.8 × 109 | 10,244,428 | 15,855.06 | 28,173.75 | 3.79 × 108 | 747.2462 | 9924.345 | 36,691,453 | |
std | 1.76 × 10−5 | 6313.97 | 1440.855 | 2.69 × 109 | 1.615877 | 1.69 × 109 | 3,442,725 | 4085.323 | 7694.896 | 1.49 × 108 | 290.3269 | 4427.81 | 12,404,106 | |
median | 100 | 7545.442 | 1327.14 | 9.47 × 109 | 105.0955 | 7.46 × 108 | 7,795,746 | 12,447.86 | 17,970.54 | 89,666,699 | 229.6539 | 1551.284 | 18,363,078 | |
rank | 1 | 6 | 4 | 13 | 2 | 12 | 9 | 7 | 8 | 11 | 3 | 5 | 10 | |
C17-F3 | mean | 300 | 349.9638 | 333.4122 | 11,479.03 | 300 | 11,447.37 | 1003.998 | 300.0247 | 3182.624 | 754.5378 | 11,414.77 | 314.1376 | 15,733.23 |
best | 300 | 302.6537 | 300.001 | 7421.598 | 300 | 7260.632 | 501.6584 | 300.0095 | 612.137 | 482.5901 | 9317.412 | 311.5075 | 4618.157 | |
worst | 300 | 394.8162 | 375.47 | 15,834.53 | 300 | 15,343.09 | 1755.01 | 300.0433 | 7521.755 | 932.1847 | 12,906.36 | 317.3719 | 24,879.84 | |
std | 4.64 × 10−14 | 50.70352 | 31.21843 | 4674.285 | 5.43 × 10−11 | 3304.026 | 552.1851 | 0.014095 | 3284.596 | 197.091 | 1554.807 | 2.491209 | 10,584.32 | |
median | 300 | 351.1926 | 329.0889 | 11,329.99 | 300 | 11,592.88 | 879.6611 | 300.023 | 2298.302 | 801.6882 | 11,717.65 | 313.8355 | 16,717.47 | |
rank | 1 | 6 | 5 | 12 | 2 | 11 | 8 | 3 | 9 | 7 | 10 | 4 | 13 | |
C17-F4 | mean | 400.002 | 407.7045 | 418.5456 | 881.8049 | 417.7576 | 582.4649 | 430.8554 | 404.3984 | 423.2437 | 409.7871 | 406.2592 | 421.6779 | 415.7083 |
best | 400 | 400.0125 | 401.1698 | 586.4966 | 414.2066 | 406.9075 | 406.8525 | 403.2745 | 407.2344 | 408.9495 | 405.0984 | 400.1128 | 412.4635 | |
worst | 400.008 | 424.6187 | 468.8402 | 1517.016 | 423.186 | 947.3914 | 456.5312 | 405.4712 | 470.4305 | 410.3159 | 406.799 | 475.105 | 419.6784 | |
std | 0.004024 | 11.63975 | 33.53654 | 427.6431 | 4.118432 | 246.3324 | 27.24021 | 0.898639 | 31.45858 | 0.585883 | 0.781423 | 35.98526 | 3.157633 | |
median | 400 | 403.0934 | 402.0862 | 711.8537 | 416.8188 | 487.7803 | 430.019 | 404.4239 | 407.655 | 409.9415 | 406.5697 | 405.7469 | 415.3457 | |
rank | 1 | 4 | 8 | 13 | 7 | 12 | 11 | 2 | 10 | 5 | 3 | 9 | 6 | |
C17-F5 | mean | 520.5609 | 519.1534 | 542.2855 | 580.0791 | 521.6225 | 571.2951 | 538.0164 | 524.0977 | 517.8573 | 536.616 | 553.2224 | 529.9867 | 530.1072 |
best | 507.9597 | 509.9497 | 520.8941 | 561.3768 | 509.9496 | 534.1875 | 514.506 | 514.9287 | 510.3157 | 530.7196 | 539.7681 | 511.9395 | 525.052 | |
worst | 534.983 | 528.8541 | 563.6767 | 591.9163 | 544.5154 | 593.0703 | 562.2668 | 542.6545 | 528.6164 | 540.4401 | 566.6616 | 555.7175 | 536.3365 | |
std | 14.10965 | 8.72578 | 17.58362 | 13.27221 | 15.63282 | 25.97608 | 19.84514 | 12.60888 | 8.11889 | 4.272868 | 12.55651 | 20.21898 | 5.109001 | |
median | 519.6504 | 518.905 | 542.2856 | 583.5117 | 516.0124 | 578.9613 | 537.6464 | 519.4038 | 516.2485 | 537.6521 | 553.2301 | 526.145 | 529.5201 | |
rank | 3 | 2 | 10 | 13 | 4 | 12 | 9 | 5 | 1 | 8 | 11 | 6 | 7 | |
C17-F6 | mean | 603.01 | 600.5606 | 614.929 | 644.2993 | 600.0003 | 627.6556 | 640.0763 | 600.5326 | 601.6492 | 607.426 | 618.4222 | 608.0398 | 611.1025 |
best | 601.6233 | 600.0005 | 605.396 | 641.2874 | 600.0001 | 612.1762 | 634.9033 | 600.2196 | 601.1107 | 605.1494 | 609.0575 | 601.4659 | 607.472 | |
worst | 604.6321 | 602.0417 | 635.5747 | 647.7859 | 600.0004 | 644.1825 | 650.7377 | 601.0412 | 603.1359 | 610.9759 | 629.7345 | 620.8405 | 615.6957 | |
std | 1.3499 | 0.991847 | 13.93839 | 2.8917 | 0.000133 | 13.3633 | 7.437235 | 0.385881 | 0.991826 | 2.656369 | 8.639876 | 8.788191 | 3.64533 | |
median | 602.8922 | 600.1001 | 609.3725 | 644.0619 | 600.0004 | 627.1318 | 637.332 | 600.4348 | 601.1752 | 606.7894 | 617.4483 | 604.9264 | 610.6212 | |
rank | 5 | 3 | 9 | 13 | 1 | 11 | 12 | 2 | 4 | 6 | 10 | 7 | 8 | |
C17-F7 | mean | 714.9746 | 727.3328 | 753.8474 | 799.9577 | 720.073 | 824.0926 | 772.6133 | 721.9245 | 730.1478 | 755.4194 | 716.7679 | 734.5213 | 738.9913 |
best | 714.4159 | 716.9793 | 727.955 | 790.3283 | 715.4835 | 794.2034 | 751.0108 | 711.5214 | 721.8083 | 750.5447 | 711.4275 | 726.7135 | 727.7346 | |
worst | 715.7112 | 737.1411 | 801.0858 | 810.4362 | 724.3538 | 863.1991 | 802.0857 | 728.4637 | 749.7124 | 764.2491 | 725.9128 | 747.0726 | 743.9886 | |
std | 0.628096 | 8.631729 | 32.39556 | 8.435769 | 3.767197 | 28.68428 | 25.18788 | 7.555293 | 13.11915 | 6.146001 | 6.368765 | 9.270855 | 7.625192 | |
median | 714.8856 | 727.6054 | 743.1745 | 799.5332 | 720.2273 | 819.4839 | 768.6783 | 723.8564 | 724.5352 | 753.4418 | 714.8658 | 732.1495 | 742.121 | |
rank | 1 | 5 | 9 | 12 | 3 | 13 | 11 | 4 | 6 | 10 | 2 | 7 | 8 | |
C17-F8 | mean | 818.8348 | 817.5792 | 830.8799 | 854.2832 | 833.2392 | 834.1207 | 839.1509 | 827.6156 | 815.564 | 840.7119 | 823.3815 | 824.5363 | 818.0629 |
best | 804.9748 | 807.9599 | 822.034 | 840.3486 | 809.9496 | 812.4518 | 825.8119 | 808.9582 | 810.3711 | 833.2718 | 815.9193 | 816.9143 | 813.7883 | |
worst | 851.46 | 841.4628 | 837.8083 | 860.4043 | 863.7533 | 856.0983 | 854.1837 | 855.7292 | 822.351 | 849.4086 | 831.8386 | 831.483 | 826.546 | |
std | 21.88629 | 16.01194 | 8.152015 | 9.478211 | 26.18452 | 18.60264 | 11.62491 | 19.87598 | 5.278038 | 8.256642 | 7.685449 | 7.212869 | 5.753112 | |
median | 809.4521 | 810.4471 | 831.8386 | 858.19 | 829.6269 | 833.9664 | 838.3041 | 822.8875 | 814.767 | 840.0837 | 822.884 | 824.8739 | 815.9586 | |
rank | 4 | 2 | 8 | 13 | 9 | 10 | 11 | 7 | 1 | 12 | 5 | 6 | 3 | |
C17-F9 | mean | 900 | 958.0246 | 1183.273 | 1521.471 | 900 | 1272.429 | 1145.44 | 900.1154 | 900.5917 | 912.8054 | 926.2937 | 904.5932 | 905.5344 |
best | 900 | 906.8134 | 1031.947 | 1377.821 | 900 | 931.1214 | 1005.691 | 900.0008 | 900.0569 | 907.8307 | 920.4252 | 900.9737 | 903.0297 | |
worst | 900 | 1056.588 | 1387.365 | 1784.32 | 900 | 1701.296 | 1460.087 | 900.4561 | 900.9171 | 921.6602 | 931.8898 | 913.3387 | 909.8295 | |
std | 0 | 70.4426 | 148.8524 | 184.2871 | 6.63 × 10−8 | 336.066 | 211.231 | 0.227138 | 0.376198 | 6.077825 | 5.95763 | 5.904611 | 3.075444 | |
median | 900 | 934.3484 | 1156.889 | 1461.871 | 900 | 1228.649 | 1057.991 | 900.0023 | 900.6964 | 910.8653 | 926.4299 | 902.0301 | 904.6392 | |
rank | 1 | 9 | 11 | 13 | 2 | 12 | 10 | 3 | 4 | 7 | 8 | 5 | 6 | |
C17-F10 | mean | 1301.559 | 1482.241 | 1963.686 | 2463.959 | 1343.128 | 2384.889 | 2464.88 | 1794.25 | 1535.89 | 2256.198 | 2564.708 | 2013.59 | 1766.646 |
best | 1148.146 | 1240.525 | 1532.027 | 2279.151 | 1189.366 | 2194.314 | 2123.467 | 1606.638 | 1410.302 | 1836.742 | 2149.315 | 1599.934 | 1443.475 | |
worst | 1457.885 | 1761.604 | 2178.649 | 2817.449 | 1472.816 | 2769.978 | 2906.585 | 2041.969 | 1721.165 | 2565.7 | 2887.991 | 2449.501 | 2191.037 | |
std | 133.5989 | 219.3419 | 292.3638 | 240.3721 | 116.9823 | 260.9104 | 329.2918 | 213.5238 | 132.1632 | 309.9574 | 332.2394 | 348.9919 | 320.4534 | |
median | 1300.103 | 1463.417 | 2072.033 | 2379.618 | 1355.166 | 2287.633 | 2414.733 | 1764.196 | 1506.047 | 2311.176 | 2610.763 | 2002.462 | 1716.037 | |
rank | 1 | 3 | 7 | 11 | 2 | 10 | 12 | 6 | 4 | 9 | 13 | 8 | 5 | |
C17-F11 | mean | 1110.291 | 1129.294 | 1216.327 | 2847.161 | 1101.951 | 3448.614 | 1271.237 | 1117.426 | 1129.288 | 1154.533 | 1132.152 | 1146.624 | 2474.015 |
best | 1109.37 | 1112.659 | 1137.215 | 2190.264 | 1100.106 | 1227.421 | 1131.339 | 1103.416 | 1113.949 | 1140.523 | 1123.071 | 1134.545 | 1116.115 | |
worst | 1110.713 | 1155.055 | 1382.588 | 3615.403 | 1103.709 | 5693.758 | 1472.267 | 1139.468 | 1144.24 | 1177.45 | 1138.753 | 1169.648 | 6326.297 | |
std | 0.631109 | 20.42284 | 112.1149 | 598.7897 | 1.471866 | 2486.253 | 151.1479 | 15.44328 | 13.40317 | 15.94047 | 6.927099 | 15.80819 | 2568.811 | |
median | 1110.54 | 1124.73 | 1172.752 | 2791.489 | 1101.994 | 3436.639 | 1240.671 | 1113.41 | 1129.481 | 1150.079 | 1133.392 | 1141.152 | 1226.824 | |
rank | 2 | 5 | 9 | 12 | 1 | 13 | 10 | 3 | 4 | 8 | 6 | 7 | 11 | |
C17-F12 | mean | 1236.271 | 5504.867 | 2,486,523 | 2.2 × 108 | 1290.268 | 271,235.9 | 8,310,292 | 182,122.5 | 1,523,242 | 5,426,363 | 526,882.7 | 8588.212 | 649,676 |
best | 1200.472 | 2544.855 | 1,327,937 | 71,378,713 | 1258.491 | 90,040.82 | 1,024,361 | 52,968.26 | 348,583.1 | 1,452,091 | 86,253.94 | 2606.745 | 188,110.4 | |
worst | 1320.393 | 8397.613 | 4,285,351 | 3.92 × 108 | 1351.6 | 366,131.1 | 18,484,802 | 401,267.3 | 2,123,298 | 9,606,371 | 1,163,364 | 14,841.02 | 1,146,930 | |
std | 56.3488 | 2509.074 | 1,363,601 | 1.52 × 108 | 42.41378 | 126,890.6 | 7,346,263 | 152,346.3 | 821,342.4 | 4,319,261 | 485,164.3 | 5574.514 | 393,704.8 | |
median | 1212.11 | 5538.5 | 2,166,401 | 2.08 × 108 | 1275.49 | 314,385.8 | 6,866,002 | 137,127.3 | 1,810,543 | 5,323,495 | 428,956.2 | 8452.54 | 631,832 | |
rank | 1 | 3 | 10 | 13 | 2 | 6 | 12 | 5 | 9 | 11 | 7 | 4 | 8 | |
C17-F13 | mean | 1304.993 | 1331.056 | 8036.958 | 14,569,791 | 1381.022 | 7034.525 | 20,801.23 | 23,724.72 | 13,550.53 | 17,865.5 | 11,709.24 | 7013.944 | 58,378.41 |
best | 1300.267 | 1313.111 | 3973.009 | 557,392.2 | 1369.765 | 3401.616 | 8156.543 | 1416.265 | 1737.605 | 16,864.65 | 9814.234 | 2458.308 | 9078.56 | |
worst | 1307.311 | 1374.61 | 12,181.24 | 38,425,092 | 1393.283 | 9616.915 | 33,543.16 | 32,645.07 | 29,200.54 | 20,310.85 | 13,162.4 | 17,853.43 | 193,258.2 | |
std | 3.216697 | 29.23646 | 3392.984 | 17,876,504 | 9.930585 | 3048.989 | 11,159.08 | 14,913.04 | 12,554.77 | 1645.737 | 1390.591 | 7306.492 | 89,972.56 | |
median | 1306.198 | 1318.252 | 7996.789 | 9,648,339 | 1380.521 | 7559.784 | 20,752.61 | 30,418.78 | 11,631.99 | 17,143.25 | 11,930.17 | 3872.02 | 15,588.43 | |
rank | 1 | 2 | 6 | 13 | 3 | 5 | 10 | 11 | 8 | 9 | 7 | 4 | 12 | |
C17-F14 | mean | 1402.488 | 1429.937 | 2267.222 | 4189.987 | 1458.09 | 2493.258 | 2004.287 | 1444.479 | 2191.108 | 1605.133 | 6961.758 | 3115.468 | 13,829.69 |
best | 1400.997 | 1422.745 | 1465.467 | 1759.231 | 1451.345 | 1483.963 | 1540.274 | 1436.906 | 1505.748 | 1524.797 | 4027.829 | 1434.97 | 3901.489 | |
worst | 1404.975 | 1447.049 | 4113.275 | 5019.092 | 1467.112 | 5421.258 | 2633.201 | 1452.614 | 4188.18 | 1637.676 | 9408.754 | 7252.678 | 27,663.3 | |
std | 1.722924 | 11.45666 | 1238.764 | 1620.565 | 7.945331 | 1952.273 | 456.8535 | 8.481639 | 1331.488 | 53.81531 | 2846.787 | 2780.418 | 10,065.91 | |
median | 1401.99 | 1424.977 | 1745.074 | 4990.812 | 1456.951 | 1533.905 | 1921.836 | 1444.197 | 1535.253 | 1629.029 | 7205.224 | 1887.112 | 11,876.98 | |
rank | 1 | 2 | 8 | 11 | 4 | 9 | 6 | 3 | 7 | 5 | 12 | 10 | 13 | |
C17-F15 | mean | 1511.413 | 1528.001 | 6200.738 | 11,809.76 | 1500.735 | 8083.926 | 10,091.39 | 3322.012 | 8029.693 | 1724.884 | 22,527.21 | 9559.728 | 4778.883 |
best | 1508.477 | 1501.587 | 2569.987 | 7105.858 | 1500.42 | 1606.064 | 2309.799 | 1533.502 | 1610.261 | 1590.433 | 9704.224 | 2974.495 | 1919.88 | |
worst | 1514.151 | 1561.085 | 10,787.13 | 18,686.75 | 1501.47 | 23,704.43 | 18,933.6 | 6377.536 | 13,679.32 | 1821.273 | 31,769.43 | 15,791.91 | 8502.898 | |
std | 2.335106 | 28.10815 | 3584.793 | 5429.859 | 0.492915 | 10,485.67 | 6814.4 | 2309.765 | 5227.34 | 113.2876 | 10,706.11 | 5356.91 | 3272.896 | |
median | 1511.512 | 1524.667 | 5722.919 | 10,723.22 | 1500.525 | 3512.605 | 9561.076 | 2688.506 | 8414.598 | 1743.915 | 24,317.6 | 9736.253 | 4346.377 | |
rank | 2 | 3 | 7 | 12 | 1 | 9 | 11 | 5 | 8 | 4 | 13 | 10 | 6 | |
C17-F16 | mean | 1601.491 | 1633.587 | 1803.613 | 2096.509 | 1659.379 | 1883.829 | 1801.984 | 1935.052 | 1740.482 | 1682.598 | 2148.203 | 1947.807 | 1817.44 |
best | 1600.891 | 1602.605 | 1729.091 | 1912.598 | 1646.361 | 1687.047 | 1645.957 | 1843.116 | 1659.908 | 1654.683 | 1982.965 | 1839.08 | 1727.547 | |
worst | 1602.221 | 1723.653 | 1908.663 | 2254.739 | 1673.281 | 2182.963 | 1909.181 | 2069.264 | 1867.991 | 1740.941 | 2270.276 | 2119.513 | 1850.824 | |
std | 0.559227 | 60.05047 | 88.07985 | 173.5591 | 14.04957 | 223.369 | 126.0866 | 110.7665 | 95.72114 | 40.19961 | 120.5145 | 129.9046 | 59.98088 | |
median | 1601.426 | 1604.046 | 1788.349 | 2109.349 | 1658.936 | 1832.652 | 1826.399 | 1913.913 | 1717.016 | 1667.383 | 2169.786 | 1916.318 | 1845.695 | |
rank | 1 | 2 | 7 | 12 | 3 | 9 | 6 | 10 | 5 | 4 | 13 | 11 | 8 | |
C17-F17 | mean | 1736.831 | 1747.593 | 1805.19 | 1874.792 | 1723.586 | 1869.789 | 1847.103 | 1780.828 | 1743.952 | 1762.775 | 1827.495 | 1756.302 | 1760.194 |
best | 1730.528 | 1725.836 | 1771.453 | 1802.824 | 1720.806 | 1768.912 | 1768.602 | 1731.348 | 1730.034 | 1751.879 | 1749.789 | 1749.136 | 1756.835 | |
worst | 1740.08 | 1759.723 | 1868.404 | 1931.055 | 1726.376 | 2008.081 | 1910.392 | 1803.882 | 1754.053 | 1773.479 | 2038.379 | 1763.5 | 1762.82 | |
std | 4.42058 | 14.96716 | 45.71854 | 61.71314 | 2.675517 | 108.6038 | 70.05953 | 33.45616 | 10.06638 | 10.69879 | 140.7927 | 6.142389 | 2.707453 | |
median | 1738.357 | 1752.406 | 1790.452 | 1882.645 | 1723.581 | 1851.081 | 1854.708 | 1794.041 | 1745.86 | 1762.871 | 1760.905 | 1756.286 | 1760.561 | |
rank | 2 | 4 | 9 | 13 | 1 | 12 | 11 | 8 | 3 | 7 | 10 | 5 | 6 | |
C17-F18 | mean | 1800.837 | 1841.26 | 13,800.96 | 58,981,931 | 1877.88 | 22,558.16 | 11,714.7 | 16,999.55 | 28,058.53 | 31,504.64 | 6693.863 | 23,325.42 | 13,609.97 |
best | 1800.382 | 1813.308 | 7389.737 | 1,161,205 | 1855.98 | 7482.826 | 4795.665 | 3018.931 | 6287.974 | 25,593.54 | 2757.193 | 2958.931 | 3554.508 | |
worst | 1801.23 | 1866.786 | 30,487.91 | 2.29 × 108 | 1925.128 | 38,281.51 | 18,261.51 | 28,200.17 | 43,428.11 | 39,435.71 | 11,618.87 | 43,550.36 | 19,687.74 | |
std | 0.425238 | 23.52028 | 11,179.23 | 1.13 × 108 | 32.02221 | 16,834.36 | 5938.542 | 10,954.3 | 16,105.16 | 6367.121 | 3682.255 | 20,955.05 | 7046.641 | |
median | 1800.869 | 1842.473 | 8663.093 | 2,922,614 | 1865.207 | 22,234.15 | 11,900.81 | 18,389.54 | 31,259.02 | 30,494.65 | 6199.696 | 23,396.19 | 15,598.82 | |
rank | 1 | 2 | 7 | 13 | 3 | 9 | 5 | 8 | 11 | 12 | 4 | 10 | 6 | |
C17-F19 | mean | 1900.699 | 1907.221 | 17,358.96 | 878,425.8 | 1988.542 | 69,005.95 | 90,424.78 | 2040.642 | 9820.11 | 4898.742 | 36,643.02 | 26,610.54 | 6492.073 |
best | 1900.02 | 1901.521 | 11,828.97 | 259,265.4 | 1939.983 | 1970.087 | 2408.219 | 1915.575 | 1928.924 | 2053.504 | 19,411.47 | 2676.945 | 2235.907 | |
worst | 1901.018 | 1917.582 | 22,721.81 | 1,443,245 | 2029.189 | 26,983.7 | 299,607.6 | 2164.619 | 14,822.13 | 13,254.21 | 55,613.04 | 82,298.3 | 10,459.09 | |
std | 0.469791 | 7.145903 | 4482.402 | 563,481.2 | 37.74168 | 131,992.5 | 140,090.8 | 137.2124 | 5786.879 | 5570.514 | 16,664.04 | 37,542.78 | 3392.754 | |
median | 1900.878 | 1904.891 | 17,442.54 | 905,596.3 | 1992.498 | 3535.02 | 29,841.65 | 2041.187 | 11,264.69 | 2143.627 | 35,773.79 | 10,733.45 | 6636.648 | |
rank | 1 | 2 | 8 | 13 | 3 | 11 | 12 | 4 | 7 | 5 | 10 | 9 | 6 | |
C17-F20 | mean | 2026.662 | 2034.642 | 2147.227 | 2292.086 | 2012.062 | 2331.222 | 2203.439 | 2070.82 | 2063.92 | 2077.176 | 2275.049 | 2181.152 | 2053.815 |
best | 2013.865 | 2021.307 | 2076.582 | 2232.916 | 2000.995 | 2226.58 | 2194.177 | 2040.177 | 2040.405 | 2065.354 | 2190.026 | 2155.286 | 2038.374 | |
worst | 2038.307 | 2044.877 | 2266.378 | 2360.461 | 2022.277 | 2500.44 | 2222.75 | 2152.489 | 2101.134 | 2088.349 | 2394.247 | 2215.298 | 2062.141 | |
std | 13.07228 | 11.03511 | 84.87342 | 54.33571 | 10.64651 | 129.4526 | 13.04085 | 54.64582 | 26.46466 | 9.641058 | 98.96337 | 29.82688 | 10.95787 | |
median | 2027.237 | 2036.192 | 2122.974 | 2287.484 | 2012.488 | 2298.934 | 2198.414 | 2045.306 | 2057.07 | 2077.501 | 2257.962 | 2177.013 | 2057.373 | |
rank | 2 | 3 | 8 | 12 | 1 | 13 | 10 | 6 | 5 | 7 | 11 | 9 | 4 | |
C17-F21 | mean | 2230.958 | 2255.077 | 2281.079 | 2353.337 | 2300.981 | 2301.662 | 2295.278 | 2291.145 | 2317.044 | 2306.962 | 2362.034 | 2327.466 | 2305.331 |
best | 2200 | 2201.126 | 2203.848 | 2268.27 | 2276.646 | 2206.365 | 2238.668 | 2200.011 | 2305.236 | 2203.991 | 2342.354 | 2318.817 | 2228.495 | |
worst | 2323.833 | 2308.936 | 2367.125 | 2393.638 | 2319.224 | 2398.948 | 2357.396 | 2332.814 | 2323.9 | 2348.473 | 2373.923 | 2335.569 | 2342.504 | |
std | 61.91636 | 60.47791 | 89.24471 | 57.35467 | 18.20708 | 102.8811 | 62.9355 | 61.28073 | 8.151 | 69.14021 | 13.6687 | 8.239775 | 51.87787 | |
median | 2200 | 2255.124 | 2276.672 | 2375.72 | 2304.028 | 2300.667 | 2292.523 | 2315.878 | 2319.52 | 2337.692 | 2365.929 | 2327.739 | 2325.162 | |
rank | 1 | 2 | 3 | 12 | 6 | 7 | 5 | 4 | 10 | 9 | 13 | 11 | 8 | |
C17-F22 | mean | 2266.732 | 2309.061 | 2307.691 | 3057.272 | 2301.898 | 2714.923 | 2319.448 | 2304.337 | 2311.086 | 2321.01 | 2361.062 | 2314.243 | 2319.245 |
best | 2225.162 | 2304.818 | 2302.728 | 2789.931 | 2300.346 | 2334.84 | 2312.699 | 2303.309 | 2301.875 | 2314.271 | 2300 | 2300.685 | 2316.136 | |
worst | 2300 | 2313.926 | 2319.708 | 3303.004 | 2306.031 | 3150.748 | 2327.601 | 2305.381 | 2325.309 | 2333.618 | 2445.235 | 2348.82 | 2324.026 | |
std | 39.00767 | 3.810058 | 8.080836 | 227.6039 | 2.763264 | 410.991 | 6.415496 | 0.846824 | 11.19175 | 8.848757 | 72.99001 | 23.1002 | 3.37026 | |
median | 2270.884 | 2308.75 | 2304.165 | 3068.076 | 2300.607 | 2687.051 | 2318.745 | 2304.328 | 2308.58 | 2318.076 | 2349.508 | 2303.733 | 2318.408 | |
rank | 1 | 5 | 4 | 13 | 2 | 12 | 9 | 3 | 6 | 10 | 11 | 7 | 8 | |
C17-F23 | mean | 2573.243 | 2573.12 | 2641.556 | 2691.514 | 2634.124 | 2671.267 | 2667.856 | 2655.194 | 2619.849 | 2645.742 | 2758.891 | 2647.616 | 2660.372 |
best | 2300.003 | 2377.404 | 2624.533 | 2680.076 | 2609.415 | 2628.779 | 2650.955 | 2614.194 | 2610.113 | 2634.093 | 2688.971 | 2639.73 | 2638.96 | |
worst | 2776.963 | 2646.48 | 2672.977 | 2714.233 | 2699.371 | 2720.796 | 2687.563 | 2759.569 | 2626.772 | 2655.608 | 2923.019 | 2660.513 | 2669.42 | |
std | 198.8117 | 130.6378 | 21.45668 | 15.59204 | 43.6031 | 40.64644 | 15.13134 | 69.72568 | 8.312072 | 9.556135 | 109.9465 | 9.372923 | 14.49226 | |
median | 2608.003 | 2634.299 | 2634.356 | 2685.874 | 2613.855 | 2667.747 | 2666.454 | 2623.507 | 2621.255 | 2646.634 | 2711.786 | 2645.111 | 2666.553 | |
rank | 2 | 1 | 5 | 12 | 4 | 11 | 10 | 8 | 3 | 6 | 13 | 7 | 9 | |
C17-F24 | mean | 2517.265 | 2628.48 | 2782.755 | 2853.722 | 2500 | 2779.188 | 2796.677 | 2743.409 | 2751.65 | 2765.308 | 2582.671 | 2775.772 | 2730.119 |
best | 2513.188 | 2500.074 | 2762.559 | 2835.68 | 2500 | 2643.075 | 2767.067 | 2739.998 | 2734.241 | 2760.859 | 2500 | 2757.415 | 2523.272 | |
worst | 2520.307 | 2751.903 | 2814.627 | 2869.479 | 2500 | 2870.335 | 2829 | 2752.217 | 2778.471 | 2769.47 | 2830.685 | 2790.675 | 2817.267 | |
std | 2.967858 | 140.9207 | 22.81526 | 15.09578 | 0.000208 | 97.28497 | 25.56641 | 5.900329 | 19.28029 | 3.526871 | 165.3426 | 14.04169 | 138.498 | |
median | 2517.783 | 2630.972 | 2776.916 | 2854.864 | 2500 | 2801.671 | 2795.32 | 2740.711 | 2746.944 | 2765.451 | 2500 | 2777.5 | 2789.97 | |
rank | 2 | 4 | 11 | 13 | 1 | 10 | 12 | 6 | 7 | 8 | 3 | 9 | 5 | |
C17-F25 | mean | 2862.423 | 2910.104 | 2973.2 | 3346.147 | 2980.623 | 3053.727 | 2933.158 | 2921.475 | 2938.295 | 2933.596 | 2932.066 | 2922.641 | 2953.708 |
best | 2756.464 | 2897.743 | 2948.764 | 3256.737 | 2897.743 | 2949.278 | 2907.26 | 2897.897 | 2913.367 | 2913.96 | 2897.94 | 2898.714 | 2941.202 | |
worst | 2897.743 | 2945.28 | 3024.363 | 3420.107 | 3093.93 | 3308.727 | 2957.932 | 2946.111 | 2947.324 | 2952.974 | 2943.456 | 2946.61 | 2964.225 | |
std | 70.63967 | 23.4674 | 35.52094 | 69.42892 | 82.11035 | 171.5326 | 28.38164 | 27.07956 | 16.62652 | 20.74106 | 22.7505 | 27.11627 | 9.803424 | |
median | 2897.743 | 2898.696 | 2959.837 | 3353.872 | 2965.409 | 2978.451 | 2933.72 | 2920.945 | 2946.245 | 2933.724 | 2943.434 | 2922.619 | 2954.702 | |
rank | 1 | 2 | 10 | 13 | 11 | 12 | 6 | 3 | 8 | 7 | 5 | 4 | 9 | |
C17-F26 | mean | 2754.982 | 2943.073 | 3351.736 | 4051.78 | 2825.003 | 3869.985 | 4044.972 | 3225.067 | 3169.235 | 3229.716 | 3254.197 | 2904.365 | 2947.415 |
best | 2692.913 | 2800.885 | 3053.663 | 3728.9 | 2800.002 | 3472.705 | 3115.481 | 2900.125 | 2900.207 | 2912.962 | 2800 | 2800 | 2773.079 | |
worst | 2800 | 3133.611 | 4095.261 | 4287.423 | 2900 | 4259.634 | 4697.221 | 4199.868 | 3803.627 | 3949.226 | 4356.049 | 3017.461 | 3125.39 | |
std | 53.81419 | 167.603 | 500.4959 | 235.0147 | 49.99818 | 428.5773 | 676.5947 | 649.8669 | 424.9744 | 482.8277 | 738.0429 | 88.92102 | 164.2531 | |
median | 2763.508 | 2918.898 | 3129.009 | 4095.399 | 2800.005 | 3873.799 | 4183.593 | 2900.139 | 2986.552 | 3028.338 | 2930.37 | 2900 | 2945.596 | |
rank | 1 | 4 | 10 | 13 | 2 | 11 | 12 | 7 | 6 | 8 | 9 | 3 | 5 | |
C17-F27 | mean | 3095.651 | 3155.778 | 3100.402 | 3198.815 | 3089.302 | 3181.938 | 3139.425 | 3092.936 | 3096.247 | 3117.018 | 3252.796 | 3139.581 | 3165.314 |
best | 3093.138 | 3107.813 | 3094.856 | 3132.671 | 3088.978 | 3153.813 | 3092.968 | 3089.738 | 3092.809 | 3095.827 | 3241.634 | 3097.666 | 3121.59 | |
worst | 3096.979 | 3188.745 | 3104.844 | 3327.562 | 3089.706 | 3211.238 | 3246.443 | 3095.297 | 3103.359 | 3177.422 | 3260.285 | 3190.464 | 3228.683 | |
std | 1.711133 | 34.28873 | 5.10199 | 87.45869 | 0.366278 | 27.96866 | 71.87095 | 2.364432 | 4.918617 | 40.27925 | 8.221604 | 39.02481 | 45.27772 | |
median | 3096.244 | 3163.277 | 3100.954 | 3167.514 | 3089.262 | 3181.35 | 3109.144 | 3093.354 | 3094.41 | 3097.412 | 3254.632 | 3135.097 | 3155.491 | |
rank | 3 | 9 | 5 | 12 | 1 | 11 | 7 | 2 | 4 | 6 | 13 | 8 | 10 | |
C17-F28 | mean | 3113.935 | 3177.694 | 3259.269 | 3768.182 | 3100 | 3451.178 | 3368.732 | 3199.942 | 3410.869 | 3341.745 | 3473.798 | 3320.885 | 3257.183 |
best | 3100.15 | 3100.001 | 3100 | 3605.245 | 3100 | 3217.585 | 3174.627 | 3100.127 | 3383.764 | 3222.407 | 3413.862 | 3182.82 | 3148.201 | |
worst | 3130.273 | 3217.332 | 3411.822 | 4044.617 | 3100 | 3652.941 | 3475.963 | 3383.75 | 3434.275 | 3412.081 | 3510.006 | 3412.053 | 3543.984 | |
std | 16.04256 | 54.9365 | 130.9643 | 198.0034 | 7.84 × 10−5 | 178.7025 | 132.8519 | 134.107 | 20.73145 | 90.53327 | 42.51919 | 103.9299 | 191.9303 | |
median | 3112.659 | 3196.722 | 3262.628 | 3711.433 | 3100 | 3467.092 | 3412.168 | 3157.946 | 3412.719 | 3366.247 | 3485.663 | 3344.334 | 3168.273 | |
rank | 2 | 3 | 6 | 13 | 1 | 11 | 9 | 4 | 10 | 8 | 12 | 7 | 5 | |
C17-F29 | mean | 3144.189 | 3217.825 | 3295.537 | 3338.434 | 3236.274 | 3303.244 | 3368.142 | 3262.597 | 3176.277 | 3218.734 | 3328.987 | 3276.182 | 3245.186 |
best | 3136.956 | 3165.889 | 3189.716 | 3274.636 | 3152.918 | 3217.457 | 3258.78 | 3200.595 | 3160.275 | 3168.356 | 3236.83 | 3170.757 | 3192.605 | |
worst | 3153.72 | 3349.479 | 3456.253 | 3373.345 | 3303.413 | 3456.374 | 3507.331 | 3310.243 | 3196.453 | 3242.962 | 3525.19 | 3365.159 | 3298.151 | |
std | 7.730902 | 87.95734 | 124.8115 | 43.68494 | 64.01218 | 108.1025 | 103.1848 | 51.8816 | 15.04045 | 35.00934 | 132.3611 | 88.34778 | 44.37193 | |
median | 3143.039 | 3177.967 | 3268.089 | 3352.879 | 3244.383 | 3269.572 | 3353.228 | 3269.775 | 3174.189 | 3231.809 | 3276.964 | 3284.406 | 3244.995 | |
rank | 1 | 3 | 9 | 12 | 5 | 10 | 13 | 7 | 2 | 4 | 11 | 8 | 6 | |
C17-F30 | mean | 3422.278 | 9969.272 | 284,851.7 | 11,811,886 | 3399.757 | 803,656.6 | 1,269,588 | 390,395.5 | 778,432.3 | 64,677.52 | 925,304.9 | 414,393.2 | 1,635,020 |
best | 3418.586 | 4191.371 | 30,391.26 | 1,919,018 | 3395.483 | 20,061.19 | 228,475.9 | 15,899.26 | 6287.419 | 31,122.82 | 570,711.4 | 6603.207 | 562,734.7 | |
worst | 3426.636 | 23,642.72 | 677,453.5 | 30,929,943 | 3406.359 | 1,678,417 | 3,019,728 | 1,479,145 | 2,878,412 | 108,709.8 | 1,272,741 | 821,874.7 | 3,725,142 | |
std | 3.707695 | 9240.159 | 313,955.1 | 13,044,105 | 4.745776 | 901,821.7 | 1,308,347 | 726,003.4 | 1,402,476 | 37,893.81 | 286,632.7 | 469,896.9 | 1,490,657 | |
median | 3421.945 | 6021.499 | 215,781 | 7,199,292 | 3398.593 | 758,074.1 | 915,074.1 | 33,268.63 | 114,515 | 59,438.72 | 928,883.5 | 414,547.5 | 1,126,102 | |
rank | 2 | 3 | 5 | 13 | 1 | 9 | 11 | 6 | 8 | 4 | 10 | 7 | 12 | |
Sum rank | 48 | 104 | 218 | 363 | 88 | 303 | 280 | 152 | 178 | 217 | 258 | 207 | 223 | |
Mean rank | 1.655172 | 3.586207 | 7.517241 | 12.51724 | 3.034483 | 10.44828 | 9.655172 | 5.241379 | 6.137931 | 7.482759 | 8.896552 | 7.137931 | 7.689655 | |
Total rank | 1 | 3 | 8 | 13 | 2 | 12 | 11 | 4 | 5 | 7 | 10 | 6 | 9 |
GAO | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 2965.641 | 5.61 × 109 | 96,586.16 | 4.35 × 1010 | 86,759 | 1.96 × 1010 | 1.67 × 109 | 505,100.8 | 1.3 × 109 | 5.71 × 109 | 32,552,559 | 4.2 × 108 | 1.92 × 108 |
best | 105.4059 | 1.63 × 109 | 3775.707 | 3.92 × 1010 | 7863.15 | 1.85 × 1010 | 9.03 × 108 | 347,301.5 | 5.83 × 108 | 3.66 × 109 | 104.8029 | 6710.215 | 1.56 × 108 | |
worst | 6756.63 | 8.1 × 109 | 363,121.4 | 4.78 × 1010 | 217,079.1 | 2.11 × 1010 | 2.61 × 109 | 809,113.2 | 1.73 × 109 | 1.01 × 1010 | 1.3 × 108 | 1.03 × 109 | 2.35 × 108 | |
std | 2967.156 | 2.79 × 109 | 177,756.2 | 3.59 × 109 | 99,555.51 | 1.16 × 109 | 7.07 × 108 | 208,219 | 5.09 × 108 | 2.94 × 109 | 65,065,475 | 5.08 × 108 | 33,433,720 | |
median | 2500.265 | 6.36 × 109 | 9723.769 | 4.34 × 1010 | 61,046.89 | 1.95 × 1010 | 1.59 × 109 | 431,994.3 | 1.45 × 109 | 4.55 × 109 | 29,684.6 | 3.26 × 108 | 1.89 × 108 | |
rank | 1 | 10 | 3 | 13 | 2 | 12 | 9 | 4 | 8 | 11 | 5 | 7 | 6 | |
C17-F3 | mean | 742.8731 | 57,920.14 | 52,951.58 | 77,211.19 | 789.4722 | 62,088.78 | 210,060.4 | 1624.497 | 65,596.78 | 35,343.56 | 103,615.2 | 44,565.91 | 149,306.7 |
best | 513.4013 | 48,314.06 | 42,383.07 | 70,955.93 | 540.9163 | 44,706.74 | 154,454.5 | 726.4012 | 56,524.54 | 28,173.29 | 98,570.69 | 15,600.4 | 111,040.5 | |
worst | 1141.321 | 81,363.34 | 63,002.48 | 82,275.53 | 1214.161 | 73,753.25 | 254,369.3 | 2486.051 | 79,838.62 | 44,107.98 | 108,512.9 | 88,268.11 | 182,709.5 | |
std | 289.4161 | 15,759.39 | 8486.713 | 4692.112 | 309.0768 | 12,486.41 | 48,983.66 | 787.5179 | 10,425.3 | 7060.413 | 4665.24 | 32,704.73 | 37,175.16 | |
median | 658.3851 | 51,001.57 | 53,210.38 | 77,806.65 | 701.4055 | 64,947.56 | 215,709 | 1642.768 | 63,011.97 | 34,546.48 | 103,688.7 | 37,197.58 | 151,738.5 | |
rank | 1 | 7 | 6 | 10 | 2 | 8 | 13 | 3 | 9 | 4 | 11 | 5 | 12 | |
C17-F4 | mean | 491.1351 | 837.3914 | 534.7466 | 13,336.8 | 509.4025 | 3117.836 | 848.5098 | 503.0084 | 661.7039 | 748.9401 | 624.7152 | 675.6909 | 735.2118 |
best | 468.6344 | 725.9771 | 521.2662 | 7325.298 | 486.7772 | 868.6846 | 745.6112 | 488.4792 | 538.4455 | 668.2051 | 567.1673 | 499.2964 | 707.5575 | |
worst | 512.6268 | 1058.681 | 549.2611 | 26,000.81 | 542.6027 | 5006.098 | 936.1373 | 517.528 | 754.3157 | 849.7198 | 752.0121 | 1076.728 | 761.2708 | |
std | 18.01092 | 154.883 | 12.25453 | 8716.748 | 25.44004 | 1808.51 | 95.9796 | 15.12204 | 92.02884 | 80.56382 | 86.61078 | 271.7502 | 26.1284 | |
median | 491.6396 | 782.4537 | 534.2294 | 10,010.54 | 504.115 | 3298.28 | 856.1454 | 503.0133 | 677.0271 | 738.9177 | 589.8407 | 563.3699 | 736.0095 | |
rank | 1 | 10 | 4 | 13 | 3 | 12 | 11 | 2 | 6 | 9 | 5 | 7 | 8 | |
C17-F5 | mean | 585.6623 | 644.6729 | 762.3586 | 917.5582 | 604.7663 | 884.8544 | 838.1558 | 594.886 | 619.214 | 731.8464 | 717.6456 | 674.1303 | 706.7469 |
best | 582.592 | 616.8786 | 735.8031 | 894.1469 | 594.6117 | 796.6634 | 807.3832 | 579.0498 | 588.317 | 719.8893 | 702.9702 | 660.1907 | 686.0723 | |
worst | 591.1983 | 687.2621 | 786.545 | 948.5521 | 629.3993 | 1049.042 | 900.7655 | 631.5963 | 646.9154 | 747.028 | 727.844 | 685.1118 | 720.6189 | |
std | 4.041704 | 31.89212 | 22.97672 | 23.33033 | 16.49975 | 112.9375 | 43.3928 | 24.77706 | 26.59695 | 12.88375 | 11.92192 | 11.58915 | 14.84429 | |
median | 584.4295 | 637.2754 | 763.5432 | 913.7669 | 597.527 | 846.8561 | 822.2373 | 584.4489 | 620.8117 | 730.2343 | 719.8841 | 675.6094 | 710.1482 | |
rank | 1 | 5 | 10 | 13 | 3 | 12 | 11 | 2 | 4 | 9 | 8 | 6 | 7 | |
C17-F6 | mean | 606.7204 | 637.6933 | 657.7141 | 685.7894 | 602.6388 | 682.6748 | 681.8045 | 622.9356 | 606.9295 | 643.482 | 658.2771 | 647.6491 | 631.1395 |
best | 605.1486 | 633.5361 | 641.1756 | 679.3235 | 600.8551 | 671.0576 | 669.5708 | 615.361 | 604.7665 | 632.1329 | 653.7776 | 637.6309 | 630.2327 | |
worst | 607.4042 | 644.45 | 667.264 | 688.9118 | 603.6152 | 695.4225 | 697.3843 | 628.5635 | 608.055 | 659.2047 | 662.2351 | 661.9608 | 632.1984 | |
std | 1.05629 | 4.867309 | 11.70441 | 4.513135 | 1.261537 | 10.19072 | 12.05372 | 5.52481 | 1.476224 | 11.71106 | 3.483087 | 10.33603 | 0.976799 | |
median | 607.1643 | 636.3935 | 661.2084 | 687.4612 | 603.0425 | 682.1095 | 680.1315 | 623.9089 | 607.4483 | 641.2951 | 658.5478 | 645.5023 | 631.0635 | |
rank | 2 | 6 | 9 | 13 | 1 | 12 | 11 | 4 | 3 | 7 | 10 | 8 | 5 | |
C17-F7 | mean | 820.8024 | 1089.043 | 1182.495 | 1395.582 | 854.1701 | 1325.59 | 1270.217 | 845.7349 | 881.1955 | 1068.159 | 949.8174 | 930.2214 | 984.2242 |
best | 813.7177 | 995.5985 | 1059.063 | 1322.22 | 835.6078 | 1266.912 | 1240.955 | 833.2816 | 854.9027 | 1041.927 | 922.6795 | 868.6313 | 961.3759 | |
worst | 827.619 | 1184.217 | 1248.513 | 1438.018 | 869.8823 | 1349.314 | 1329.113 | 860.5127 | 902.7389 | 1092.014 | 976.0323 | 992.083 | 1011.485 | |
std | 6.229666 | 77.96311 | 88.58013 | 50.57298 | 17.30967 | 39.38619 | 40.02886 | 13.81518 | 19.79133 | 26.48992 | 26.05838 | 50.43402 | 23.39094 | |
median | 820.9365 | 1088.178 | 1211.201 | 1411.044 | 855.5951 | 1343.067 | 1255.4 | 844.5726 | 883.5701 | 1069.347 | 950.2788 | 930.0856 | 982.0181 | |
rank | 1 | 9 | 10 | 13 | 3 | 12 | 11 | 2 | 4 | 8 | 6 | 5 | 7 | |
C17-F8 | mean | 877.6456 | 916.3291 | 978.0973 | 1133.102 | 901.0738 | 1140.52 | 1017.573 | 902.8113 | 902.7396 | 1038.544 | 966.9033 | 924.7556 | 993.9056 |
best | 866.6767 | 887.4457 | 936.3094 | 1125.885 | 884.5957 | 1053.955 | 979.1085 | 863.1024 | 872.8583 | 1023.917 | 946.2582 | 887.5568 | 959.312 | |
worst | 892.3077 | 942.7474 | 1015.905 | 1146.021 | 911.7185 | 1205.168 | 1089.695 | 917.7493 | 928.7814 | 1053.247 | 1004.96 | 976.1195 | 1021.463 | |
std | 12.03403 | 24.70294 | 32.73762 | 8.879199 | 11.97364 | 64.32434 | 49.15648 | 26.50395 | 29.49711 | 12.9849 | 27.48129 | 43.15555 | 26.37234 | |
median | 875.7989 | 917.5616 | 980.0876 | 1130.251 | 903.9904 | 1151.478 | 1000.745 | 915.1968 | 904.6592 | 1038.506 | 958.1975 | 917.6731 | 997.4234 | |
rank | 1 | 5 | 8 | 12 | 2 | 13 | 10 | 4 | 3 | 11 | 7 | 6 | 9 | |
C17-F9 | mean | 1165.65 | 6118.317 | 5285.631 | 10,677.51 | 1310.315 | 13,059.8 | 7819.018 | 6584.038 | 2283.474 | 4651.679 | 4123.625 | 3535.136 | 1379.814 |
best | 1048.058 | 3812.091 | 4583.34 | 8370.654 | 1103.222 | 8931.468 | 6525.942 | 1125.644 | 1241.751 | 3242.499 | 3402.813 | 2404.144 | 1225.076 | |
worst | 1337.301 | 7705.346 | 5737.959 | 12,502.83 | 1788.264 | 19,283.94 | 9256.488 | 11,627.78 | 3578.942 | 5837.91 | 4747.383 | 5875.287 | 1543.585 | |
std | 130.0098 | 1697.137 | 556.4414 | 1715.525 | 325.1294 | 4428.538 | 1255.761 | 4991.033 | 982.1215 | 1196.281 | 613.4941 | 1593.562 | 137.1979 | |
median | 1138.621 | 6477.916 | 5410.614 | 10,918.27 | 1174.887 | 12,011.89 | 7746.822 | 6791.365 | 2156.601 | 4763.153 | 4172.152 | 2930.556 | 1375.297 | |
rank | 1 | 9 | 8 | 12 | 2 | 13 | 11 | 10 | 4 | 7 | 6 | 5 | 3 | |
C17-F10 | mean | 3686.42 | 5097.435 | 5376.248 | 8165.39 | 3966.598 | 7339.579 | 7588.39 | 5284.051 | 4409.938 | 8329.399 | 4799.841 | 4968.059 | 6555.299 |
best | 3486.984 | 4046.474 | 5210.865 | 8063.814 | 3600.688 | 6817.31 | 6285.025 | 4499.451 | 4009.121 | 8216.554 | 4150.098 | 4099.397 | 5554.57 | |
worst | 3851.9 | 7007.736 | 5672.714 | 8257.688 | 4371.786 | 7861.61 | 8551.306 | 6421.91 | 5039.747 | 8519.895 | 5515.315 | 5511.443 | 7161.94 | |
std | 189.092 | 1365.454 | 209.6517 | 80.84512 | 346.6865 | 426.3938 | 989.7159 | 811.0246 | 458.9879 | 131.8935 | 622.5674 | 670.3383 | 706.2351 | |
median | 3703.398 | 4667.766 | 5310.706 | 8170.029 | 3946.959 | 7339.699 | 7758.615 | 5107.422 | 4295.441 | 8290.573 | 4766.976 | 5130.698 | 6752.344 | |
rank | 1 | 6 | 8 | 12 | 2 | 10 | 11 | 7 | 3 | 13 | 4 | 5 | 9 | |
C17-F11 | mean | 1176.86 | 1510.898 | 1316.714 | 7335.945 | 1209.9 | 3557.005 | 7893.704 | 1361.737 | 1683.239 | 1916.548 | 3506.789 | 1349.558 | 5022.123 |
best | 1156.088 | 1422.613 | 1266.473 | 6658.404 | 1160.183 | 2246.748 | 3014.369 | 1289.335 | 1556.019 | 1726.753 | 3036.57 | 1298.049 | 3707.247 | |
worst | 1200.911 | 1658.534 | 1437.228 | 8165.895 | 1237.557 | 4990.051 | 12,541.55 | 1445.222 | 1913.274 | 2124.247 | 4371.403 | 1394.515 | 7220.175 | |
std | 18.56114 | 109.8245 | 81.3137 | 622.5615 | 34.54917 | 1165.235 | 3987.813 | 71.07825 | 158.4847 | 166.7819 | 629.2975 | 51.30956 | 1525.397 | |
median | 1175.22 | 1481.223 | 1281.577 | 7259.74 | 1220.931 | 3495.611 | 8009.447 | 1356.196 | 1631.832 | 1907.597 | 3309.592 | 1352.835 | 4580.536 | |
rank | 1 | 6 | 3 | 12 | 2 | 10 | 13 | 5 | 7 | 8 | 9 | 4 | 11 | |
C17-F12 | mean | 85,555.87 | 25,949,230 | 10,375,592 | 1.32 × 1010 | 89,184.91 | 6.12 × 109 | 3.34 × 108 | 28,219,307 | 1.35 × 108 | 3.08 × 108 | 84,031,918 | 62,898,515 | 8,506,616 |
best | 25,576.26 | 1,213,875 | 1,853,642 | 9.56 × 109 | 26,351.25 | 4.1 × 109 | 44,146,877 | 9,447,872 | 77,445,909 | 1.76 × 108 | 3,464,275 | 201,962.8 | 3,266,660 | |
worst | 191,112.3 | 73,085,854 | 30,139,971 | 1.66 × 1010 | 200,262 | 8.4 × 109 | 8.95 × 108 | 71,379,451 | 2.74 × 108 | 4.53 × 108 | 1.6 × 108 | 2 × 108 | 12,986,786 | |
std | 72,522.38 | 32,367,345 | 13,248,399 | 2.96 × 109 | 76,266.98 | 2.02 × 109 | 3.84 × 108 | 29,109,113 | 93,894,353 | 1.37 × 108 | 77,920,027 | 94,482,882 | 5,007,932 | |
median | 62,767.48 | 14,748,596 | 4,754,377 | 1.34 × 1010 | 65,063.21 | 5.98 × 109 | 1.99 × 108 | 16,024,953 | 93,914,719 | 3.01 × 108 | 86,487,233 | 25,671,885 | 8,886,510 | |
rank | 1 | 5 | 4 | 13 | 2 | 12 | 11 | 6 | 9 | 10 | 8 | 7 | 3 | |
C17-F13 | mean | 1679.051 | 65,307.57 | 196,312.1 | 9.71 × 109 | 1663.41 | 1.62 × 109 | 1,218,387 | 169,962.5 | 107,891.8 | 1.05 × 108 | 34,883.97 | 1,140,606 | 9,001,402 |
best | 1509.439 | 10,167.41 | 64,177.33 | 5.02 × 109 | 1496.899 | 9,775,852 | 190,877.6 | 61,271.86 | 80,912.23 | 73,593,614 | 29,396.19 | 27,575.57 | 2,238,017 | |
worst | 1846.767 | 222,691.8 | 385,695.2 | 1.73 × 1010 | 1828.612 | 4.01 × 109 | 3,666,218 | 384,298.9 | 157,114.6 | 1.61 × 108 | 47,660 | 4,444,295 | 13,874,918 | |
std | 138.2768 | 104,969.9 | 146,282.3 | 5.43 × 109 | 136.0205 | 1.9 × 109 | 1,643,068 | 146,086.5 | 34,141.59 | 38,514,757 | 8575.928 | 2,202,480 | 5,734,672 | |
median | 1679.999 | 14,185.55 | 167,687.9 | 8.27 × 109 | 1664.065 | 1.23 × 109 | 508,225.6 | 117,139.5 | 96,770.14 | 92,927,829 | 31,239.85 | 45,277.58 | 9,946,336 | |
rank | 2 | 4 | 7 | 13 | 1 | 12 | 9 | 6 | 5 | 11 | 3 | 8 | 10 | |
C17-F14 | mean | 1445.686 | 5029.534 | 310,318 | 3,166,786 | 1506.721 | 944,929.1 | 1,449,403 | 8360.852 | 312,592.2 | 104,927.4 | 1,488,236 | 17,259.01 | 2,471,053 |
best | 1439.939 | 1874.271 | 190,232.1 | 1,938,929 | 1490.417 | 43,337.9 | 831,823.4 | 5657.736 | 44,267.26 | 55,063.1 | 589,278.8 | 5235.579 | 1,453,463 | |
worst | 1458.422 | 13,681.86 | 385,275.7 | 5,133,496 | 1521.294 | 1,897,719 | 1,916,237 | 11,991.96 | 1,004,397 | 156,646 | 2,344,763 | 25,836.68 | 3,521,220 | |
std | 8.727275 | 5779.772 | 87,907.64 | 1,445,810 | 13.57225 | 1,040,334 | 532,404.3 | 3010.837 | 464,006.7 | 57,133.45 | 881,268.4 | 9220.18 | 1,034,268 | |
median | 1442.191 | 2281.001 | 332,882.1 | 2,797,359 | 1507.587 | 919,329.9 | 1,524,776 | 7896.855 | 100,852.1 | 104,000.2 | 1,509,451 | 18,981.88 | 2,454,764 | |
rank | 1 | 3 | 7 | 13 | 2 | 9 | 10 | 4 | 8 | 6 | 11 | 5 | 12 | |
C17-F15 | mean | 1588.785 | 2511.297 | 45,133.53 | 3.52 × 108 | 1577.262 | 2.66 × 108 | 1,282,549 | 56,902.87 | 629,660.2 | 2,881,979 | 18,208.94 | 8283.199 | 986,862.4 |
best | 1560.073 | 1925.339 | 26,535.07 | 2.27 × 108 | 1550.94 | 206,063.4 | 348,434.1 | 38,106.18 | 21,681.95 | 1,030,920 | 8605.33 | 2205.324 | 367,843.7 | |
worst | 1624.03 | 3215.395 | 59,058.66 | 5.16 × 108 | 1612.701 | 1.03 × 109 | 2,123,573 | 96,468.19 | 2,007,235 | 4,849,628 | 22,396.17 | 15,491.71 | 1,359,201 | |
std | 26.94309 | 601.986 | 14,789.58 | 1.28 × 108 | 26.55107 | 5.06 × 108 | 948,175.3 | 27,305.97 | 939,116.3 | 1,581,134 | 6440.914 | 5566.237 | 447,634.1 | |
median | 1585.518 | 2452.228 | 47,470.2 | 3.32 × 108 | 1572.705 | 19,428,469 | 1,329,094 | 46,518.56 | 244,862 | 2,823,685 | 20,917.14 | 7717.879 | 1,110,203 | |
rank | 2 | 3 | 6 | 13 | 1 | 12 | 10 | 7 | 8 | 11 | 5 | 4 | 9 | |
C17-F16 | mean | 2157.589 | 2621.237 | 3504.832 | 5684.392 | 2411.321 | 3393.39 | 4006.918 | 2640.575 | 2419.743 | 3554.599 | 3382.484 | 2628.98 | 3048.951 |
best | 2037.231 | 2230.767 | 3285.167 | 4800.654 | 2317.615 | 2965.308 | 3410.842 | 2505.972 | 2097.616 | 3255.021 | 3093.147 | 2304.9 | 2816.301 | |
worst | 2228.757 | 2887.896 | 3750.51 | 7790.203 | 2527.256 | 3870.972 | 4848.864 | 2829.698 | 2713.406 | 4153.135 | 3550.905 | 3171.968 | 3285.631 | |
std | 87.98998 | 277.6318 | 202.3443 | 1409.831 | 88.86949 | 388.2075 | 675.2394 | 145.1525 | 262.9818 | 420.4846 | 201.6026 | 375.8814 | 209.7332 | |
median | 2182.184 | 2683.142 | 3491.826 | 5073.356 | 2400.206 | 3368.641 | 3883.982 | 2613.315 | 2433.974 | 3405.121 | 3442.941 | 2519.526 | 3046.937 | |
rank | 1 | 4 | 10 | 13 | 2 | 9 | 12 | 6 | 3 | 11 | 8 | 5 | 7 | |
C17-F17 | mean | 1871.456 | 2005.135 | 2453.821 | 10,597.65 | 1909.902 | 2475.363 | 2640.065 | 2224.961 | 2019.268 | 2264.054 | 2517.678 | 2212.343 | 2210.214 |
best | 1831.18 | 1929.821 | 2053.719 | 3574.957 | 1846.274 | 2095.324 | 2481.288 | 1977.931 | 1914.84 | 2076.245 | 2318.989 | 1853.445 | 2079.712 | |
worst | 1906.218 | 2165.417 | 2812.059 | 31,274.61 | 1967.102 | 2698.859 | 2719.99 | 2613.998 | 2144.187 | 2524.232 | 2753.058 | 2559.711 | 2400.234 | |
std | 34.6833 | 108.3281 | 340.2979 | 13,785.77 | 50.24343 | 276.5611 | 108.6442 | 275.7001 | 97.66128 | 187.9479 | 216.4953 | 294.7102 | 143.1001 | |
median | 1874.214 | 1962.652 | 2474.753 | 3770.522 | 1913.116 | 2553.635 | 2679.491 | 2153.958 | 2009.023 | 2227.87 | 2499.333 | 2218.109 | 2180.455 | |
rank | 1 | 3 | 9 | 13 | 2 | 10 | 12 | 7 | 4 | 8 | 11 | 6 | 5 | |
C17-F18 | mean | 1884.562 | 90,919.87 | 1,389,568 | 80,080,025 | 1950.484 | 2,428,856 | 8,909,556 | 517,529.6 | 1,541,680 | 3,526,422 | 240,227.7 | 198,781.2 | 5,054,893 |
best | 1857.253 | 26,791.6 | 299,648 | 52,474,251 | 1905.935 | 122,389.8 | 852,143 | 118,784.1 | 100,638.4 | 1,433,012 | 99,249.04 | 68,546.56 | 1,605,174 | |
worst | 1941.743 | 266,184.6 | 3,384,215 | 99,570,904 | 1995.318 | 5,934,470 | 21,737,586 | 984,081.8 | 3,883,479 | 6,498,024 | 404,021.8 | 406,261.2 | 7,996,236 | |
std | 38.65561 | 117,099.7 | 1,452,873 | 20,359,139 | 39.19088 | 2,482,090 | 9,892,121 | 367,838.4 | 1,668,754 | 2,264,944 | 137,125 | 149,305.7 | 3,298,551 | |
median | 1869.625 | 35,351.63 | 937,204.9 | 84,137,472 | 1950.342 | 1,829,282 | 6,524,247 | 483,626.2 | 1,091,301 | 3,087,327 | 228,820.1 | 160,158.4 | 5,309,081 | |
rank | 1 | 3 | 7 | 13 | 2 | 9 | 12 | 6 | 8 | 10 | 5 | 4 | 11 | |
C17-F19 | mean | 1950.499 | 3335.472 | 91,572.27 | 6.82 × 108 | 1933.262 | 1.54 × 109 | 14,619,971 | 1,421,627 | 276,846.2 | 5,881,714 | 160,121 | 14,630.44 | 485,098.8 |
best | 1940.669 | 2030.43 | 14,294.76 | 4.52 × 108 | 1921.712 | 41,342,458 | 5,450,995 | 72,186 | 73,307.97 | 4,590,769 | 121,887.8 | 8707.597 | 171,700.8 | |
worst | 1958.422 | 5624.54 | 144,128.7 | 8.89 × 108 | 1939.359 | 5.66 × 109 | 32,121,702 | 2,690,213 | 490,870.3 | 7,719,442 | 215,531.7 | 18,279.15 | 847,776 | |
std | 7.641626 | 1581.365 | 55,588.55 | 2.04 × 108 | 7.885053 | 2.75 × 109 | 12,527,996 | 1,129,134 | 170,582.7 | 1,476,862 | 44,979.38 | 4145.322 | 295,341.7 | |
median | 1951.452 | 2843.459 | 103,932.8 | 6.94 × 108 | 1935.989 | 2.35 × 108 | 10,453,594 | 1,462,055 | 271,603.3 | 5,608,322 | 151,532.2 | 15,767.5 | 460,459.2 | |
rank | 2 | 3 | 5 | 12 | 1 | 13 | 11 | 9 | 7 | 10 | 6 | 4 | 8 | |
C17-F20 | mean | 2218.661 | 2321.351 | 2605.831 | 3021.328 | 2217.587 | 2692.641 | 3100.685 | 2494.312 | 2542.181 | 2581.204 | 3143.322 | 2630.276 | 2434.181 |
best | 2172.115 | 2237.079 | 2338.79 | 2931.969 | 2153.46 | 2543.643 | 3041.176 | 2281.39 | 2348.435 | 2429.147 | 2904.297 | 2303.65 | 2279.759 | |
worst | 2243.554 | 2411.444 | 2769.648 | 3102.604 | 2258.994 | 2862.524 | 3229.713 | 2750.27 | 2743.214 | 2770.632 | 3264.54 | 3049.42 | 2518.498 | |
std | 31.80584 | 86.94046 | 185.8798 | 72.53707 | 47.02587 | 131.2394 | 87.90274 | 219.2801 | 170.086 | 148.2222 | 167.9671 | 309.2781 | 106.8744 | |
median | 2229.487 | 2318.44 | 2657.442 | 3025.37 | 2228.948 | 2682.199 | 3065.925 | 2472.794 | 2538.537 | 2562.518 | 3202.225 | 2584.017 | 2469.234 | |
rank | 2 | 3 | 8 | 11 | 1 | 10 | 12 | 5 | 6 | 7 | 13 | 9 | 4 | |
C17-F21 | mean | 2403.602 | 2455.2 | 2537.576 | 2671.54 | 2451.798 | 2596.489 | 2624.108 | 2464.941 | 2410.178 | 2548.284 | 2616.671 | 2454.839 | 2547.871 |
best | 2355.743 | 2413.064 | 2515.265 | 2616.289 | 2381.612 | 2592.025 | 2590.862 | 2410.388 | 2368.967 | 2531.453 | 2609.737 | 2435.622 | 2516.184 | |
worst | 2519.24 | 2491.044 | 2565.94 | 2732.226 | 2527.027 | 2603.754 | 2654.393 | 2581.813 | 2499.48 | 2569.234 | 2620.676 | 2473.227 | 2568.211 | |
std | 77.40211 | 32.04248 | 25.48828 | 50.22592 | 66.98331 | 5.380629 | 34.4848 | 80.83535 | 60.28216 | 15.62456 | 5.011353 | 20.69181 | 22.45604 | |
median | 2369.713 | 2458.347 | 2534.549 | 2668.822 | 2449.276 | 2595.088 | 2625.589 | 2433.781 | 2386.132 | 2546.225 | 2618.136 | 2455.253 | 2553.544 | |
rank | 1 | 5 | 7 | 13 | 3 | 10 | 12 | 6 | 2 | 9 | 11 | 4 | 8 | |
C17-F22 | mean | 2300.912 | 3420.821 | 6016.585 | 8171.962 | 2435.215 | 9572.129 | 8317.425 | 4285.503 | 5403.623 | 5171.095 | 7079.976 | 6949.861 | 2764.351 |
best | 2300.607 | 2826.629 | 2312.315 | 7003.963 | 2423.944 | 9378.809 | 8097.021 | 2307.191 | 2612.314 | 3144.675 | 6045.552 | 5921.042 | 2717.751 | |
worst | 2301.75 | 4314.511 | 7897.47 | 9708.421 | 2442.782 | 9901.309 | 8511.15 | 6555.56 | 7165.865 | 10,311.14 | 7937.065 | 7465.019 | 2810.387 | |
std | 0.559452 | 694.6689 | 2514.73 | 1125.176 | 7.982382 | 241.5606 | 169.8963 | 2295.564 | 1953.817 | 3437.178 | 779.0079 | 696.902 | 43.96047 | |
median | 2300.646 | 3271.073 | 6928.279 | 7987.733 | 2437.066 | 9504.198 | 8330.764 | 4139.63 | 5918.157 | 3614.284 | 7168.643 | 7206.692 | 2764.634 | |
rank | 1 | 4 | 8 | 11 | 2 | 13 | 12 | 5 | 7 | 6 | 10 | 9 | 3 | |
C17-F23 | mean | 2730.471 | 3215.293 | 2991.025 | 3298.124 | 2774.497 | 3300.559 | 3153.664 | 2764.772 | 2761.243 | 2948.592 | 3884.844 | 3000.973 | 2999.073 |
best | 2691.157 | 3096.518 | 2917.382 | 3122.908 | 2725.57 | 3189.956 | 2894.171 | 2719.353 | 2741.353 | 2935.222 | 3783.583 | 2871.538 | 2969.309 | |
worst | 2806.588 | 3435.044 | 3070.868 | 3564.946 | 2861.898 | 3476.408 | 3302.155 | 2829.515 | 2784.476 | 2959.248 | 4063.831 | 3136.266 | 3021.883 | |
std | 52.25212 | 154.119 | 62.77169 | 188.2427 | 62.9445 | 122.8799 | 183.8363 | 49.77987 | 21.54624 | 10.06741 | 123.1166 | 135.0474 | 22.61169 | |
median | 2712.069 | 3164.806 | 2987.924 | 3252.32 | 2755.26 | 3267.937 | 3209.165 | 2755.109 | 2759.571 | 2949.949 | 3845.981 | 2998.045 | 3002.549 | |
rank | 1 | 10 | 6 | 11 | 4 | 12 | 9 | 3 | 2 | 5 | 13 | 8 | 7 | |
C17-F24 | mean | 2880.63 | 3259.635 | 3118.144 | 3406.151 | 2907.605 | 3367.598 | 3213.517 | 2920.928 | 2939.198 | 3069.087 | 3490.473 | 3079.172 | 3259.002 |
best | 2809.71 | 2786.217 | 3088.489 | 3350.229 | 2894.427 | 3255.152 | 3129.533 | 2904.032 | 2880.904 | 3027.837 | 3441.392 | 2972.894 | 3201.354 | |
worst | 2905.164 | 3458.681 | 3144.198 | 3521.157 | 2932.457 | 3464.58 | 3330.582 | 2949.794 | 3057.925 | 3100.627 | 3538.605 | 3258.899 | 3339.613 | |
std | 47.28496 | 317.1838 | 24.04771 | 77.69108 | 16.93679 | 96.09487 | 84.67507 | 20.89335 | 83.43905 | 36.60211 | 50.18546 | 132.8847 | 59.21531 | |
median | 2903.824 | 3396.821 | 3119.945 | 3376.608 | 2901.769 | 3375.33 | 3196.976 | 2914.944 | 2908.981 | 3073.941 | 3490.948 | 3042.448 | 3247.52 | |
rank | 1 | 10 | 7 | 12 | 2 | 11 | 8 | 3 | 4 | 5 | 13 | 6 | 9 | |
C17-F25 | mean | 2887.905 | 3057.34 | 2938.705 | 5015.747 | 3023.956 | 3466.492 | 3091.419 | 2918.07 | 3043.638 | 3150.619 | 2979.409 | 2922.536 | 3114.78 |
best | 2883.986 | 2987.626 | 2901.366 | 4384.512 | 2890.06 | 3332.176 | 3007.826 | 2888.094 | 3016.157 | 3077.278 | 2952.687 | 2897.356 | 3072.749 | |
worst | 2891.073 | 3119.548 | 2992.388 | 6638.173 | 3089.805 | 3555.045 | 3148.11 | 2971.717 | 3100.885 | 3309.807 | 3001.141 | 2942.863 | 3167.876 | |
std | 2.933447 | 54.63684 | 40.01622 | 1085.805 | 92.49693 | 95.26176 | 59.59986 | 36.8016 | 39.61029 | 109.4526 | 25.09905 | 20.98515 | 39.36999 | |
median | 2888.281 | 3061.094 | 2930.532 | 4520.151 | 3057.98 | 3489.374 | 3104.87 | 2906.234 | 3028.756 | 3107.696 | 2981.904 | 2924.962 | 3109.247 | |
rank | 1 | 8 | 4 | 13 | 6 | 12 | 9 | 2 | 7 | 11 | 5 | 3 | 10 | |
C17-F26 | mean | 2932.162 | 5792.551 | 7112.147 | 10,557.33 | 2983.243 | 8157.806 | 8582.206 | 5399.407 | 5149.351 | 6657.232 | 8101.595 | 5167.292 | 4370.346 |
best | 2887.387 | 4244.662 | 6655.78 | 9945.558 | 2900.722 | 7082.87 | 8242.061 | 4798.038 | 4796.37 | 6422.825 | 7075.436 | 3618.219 | 4134.387 | |
worst | 3041.078 | 7147.491 | 7659.167 | 10,890.32 | 3093.717 | 9406.218 | 8827.586 | 5939.213 | 5750.536 | 6899.911 | 8712.858 | 6951.381 | 4757.879 | |
std | 72.85753 | 1451.242 | 494.8827 | 426.6739 | 91.42468 | 1081.231 | 249.6577 | 480.6749 | 416.3707 | 201.3114 | 711.6418 | 1720.183 | 269.6611 | |
median | 2900.091 | 5889.027 | 7066.82 | 10,696.71 | 2969.267 | 8071.068 | 8629.589 | 5430.189 | 5025.249 | 6653.096 | 8309.043 | 5049.785 | 4294.56 | |
rank | 1 | 7 | 9 | 13 | 2 | 11 | 12 | 6 | 4 | 8 | 10 | 5 | 3 | |
C17-F27 | mean | 3212.022 | 3534.047 | 3250.925 | 3962.572 | 3298.17 | 3496.265 | 3494.564 | 3236.161 | 3231.383 | 3307.425 | 5546.879 | 3314.279 | 3512.212 |
best | 3195.721 | 3352.081 | 3233.082 | 3632.976 | 3229.714 | 3407.483 | 3358.285 | 3206.726 | 3216.532 | 3261.276 | 5064.765 | 3233.265 | 3430.828 | |
worst | 3222.351 | 3740.069 | 3276.898 | 4849.667 | 3327.071 | 3595.241 | 3813.546 | 3291.474 | 3237.716 | 3362.276 | 6389.948 | 3428.025 | 3576.987 | |
std | 11.44629 | 170.5496 | 18.90387 | 592.3009 | 45.85752 | 89.95278 | 214.1498 | 37.69573 | 9.949078 | 41.58353 | 595.0611 | 83.74264 | 66.5742 | |
median | 3215.009 | 3522.018 | 3246.861 | 3683.823 | 3317.949 | 3491.168 | 3403.213 | 3223.222 | 3235.643 | 3303.073 | 5366.403 | 3297.913 | 3520.516 | |
rank | 1 | 11 | 4 | 12 | 5 | 9 | 8 | 3 | 2 | 6 | 13 | 7 | 10 | |
C17-F28 | mean | 3302.861 | 3546.371 | 3285.617 | 5932.203 | 3221.572 | 4134.473 | 3494.575 | 3246.338 | 3424.764 | 3666.029 | 3691.62 | 3314.008 | 3627.343 |
best | 3254.533 | 3469.684 | 3267.981 | 5550.003 | 3202.752 | 3948.554 | 3413.911 | 3220.435 | 3327.276 | 3536.347 | 3489.929 | 3218.089 | 3539.319 | |
worst | 3362.259 | 3604.984 | 3309.976 | 6420.009 | 3252.13 | 4537.352 | 3626.089 | 3280.945 | 3471.122 | 3927.693 | 4071.334 | 3392.695 | 3680.818 | |
std | 45.60338 | 57.61343 | 20.43417 | 429.9783 | 22.14656 | 274.6438 | 92.90273 | 29.05037 | 67.28895 | 179.3281 | 270.4868 | 85.12066 | 65.47424 | |
median | 3297.327 | 3555.407 | 3282.255 | 5879.401 | 3215.704 | 4025.993 | 3469.15 | 3241.986 | 3450.329 | 3600.038 | 3602.609 | 3322.625 | 3644.617 | |
rank | 4 | 8 | 3 | 13 | 1 | 12 | 7 | 2 | 6 | 10 | 11 | 5 | 9 | |
C17-F29 | mean | 3560.528 | 3889.112 | 4479.882 | 5919.125 | 3675.267 | 5353.658 | 5306.859 | 4004.846 | 4025.698 | 4349.599 | 5280.968 | 4218.421 | 4293.605 |
best | 3490.151 | 3584.398 | 4313.698 | 4909.763 | 3542.422 | 5046.272 | 4630.521 | 3646.815 | 3755.698 | 4237.691 | 4911.985 | 3808.914 | 4140.599 | |
worst | 3611.59 | 4163.922 | 4589.025 | 6982.043 | 3823.444 | 5681.6 | 5963.599 | 4220.558 | 4263.946 | 4591.053 | 5740.286 | 4865.097 | 4443.725 | |
std | 54.88954 | 237.8957 | 118.5045 | 847.9831 | 117.1898 | 292.4008 | 561.9992 | 254.8365 | 247.9412 | 166.1172 | 389.2517 | 452.4459 | 158.5205 | |
median | 3570.185 | 3904.065 | 4508.403 | 5892.347 | 3667.601 | 5343.38 | 5316.658 | 4076.006 | 4041.574 | 4284.826 | 5235.801 | 4099.837 | 4295.048 | |
rank | 1 | 3 | 9 | 13 | 2 | 12 | 11 | 4 | 5 | 8 | 10 | 6 | 7 | |
C17-F30 | mean | 7742.305 | 179,776.5 | 1,269,100 | 3.38 × 109 | 7679.743 | 60,768,716 | 32,463,948 | 3,549,182 | 6,660,655 | 28,705,893 | 2,737,261 | 99,984.65 | 992,091.5 |
best | 6292.261 | 22,142.69 | 383,760.8 | 2.52 × 109 | 6248.998 | 13,475,637 | 9,172,643 | 1,518,619 | 5,440,686 | 19,256,126 | 1,341,586 | 17,644.38 | 266,268.1 | |
worst | 9407.668 | 459,312.2 | 2,509,342 | 4.45 × 109 | 9322.427 | 1.18 × 108 | 54,601,906 | 7,489,490 | 8,069,479 | 44,576,334 | 4,164,795 | 290,688.3 | 2,346,103 | |
std | 1283.647 | 191,970.5 | 921,032.2 | 9.95 × 108 | 1265.365 | 43,813,635 | 23,396,892 | 2,771,717 | 1,213,043 | 11,210,682 | 1,399,201 | 129,358 | 925,161.8 | |
median | 7634.645 | 118,825.6 | 1,091,648 | 3.27 × 109 | 7573.774 | 55,723,914 | 33,040,622 | 2,594,310 | 6,566,227 | 25,495,556 | 2,721,331 | 45,802.95 | 677,997.4 | |
rank | 2 | 4 | 6 | 13 | 1 | 12 | 11 | 8 | 9 | 10 | 7 | 3 | 5 | |
Sum rank | 38 | 174 | 195 | 361 | 64 | 324 | 309 | 141 | 157 | 249 | 244 | 166 | 217 | |
Mean rank | 1.310345 | 6 | 6.724138 | 12.44828 | 2.206897 | 11.17241 | 10.65517 | 4.862069 | 5.413793 | 8.586207 | 8.413793 | 5.724138 | 7.482759 | |
Total rank | 1 | 6 | 7 | 13 | 2 | 12 | 11 | 3 | 4 | 10 | 9 | 5 | 8 |
GAO | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 14,553.5 | 2.52 × 1010 | 12,002,919 | 9.79 × 1010 | 8,328,904 | 4.48 × 1010 | 8.24 × 109 | 4,657,064 | 1.08 × 1010 | 2.21 × 1010 | 1.79 × 1010 | 4.29 × 109 | 7.95 × 10 9 |
best | 11,540.48 | 1.57 × 1010 | 4,081,906 | 8.7 × 1010 | 5,232,940 | 2.5 × 1010 | 4.23 × 109 | 4,298,380 | 4.37 × 109 | 1.9 × 1010 | 1.41 × 1010 | 1.63 × 109 | 4.59 × 10 9 | |
worst | 18,594.35 | 2.97 × 1010 | 30,750,213 | 1.1 × 1011 | 11,801,662 | 5.49 × 1010 | 1.26 × 1010 | 5,533,840 | 1.52 × 1010 | 3.05 × 1010 | 2.24 × 1010 | 7.79 × 109 | 1.06 × 10 10 | |
std | 2982.205 | 6.44 × 109 | 12,587,166 | 9.2 × 109 | 2,866,669 | 1.37 × 1010 | 3.45 × 109 | 589,793.4 | 4.81 × 109 | 5.58 × 109 | 3.67 × 109 | 2.59 × 109 | 2.62 × 10 9 | |
median | 14,039.59 | 2.77 × 1010 | 6,589,779 | 9.76 × 1010 | 8,140,507 | 4.96 × 1010 | 8.08 × 109 | 4,398,018 | 1.19 × 1010 | 1.95 × 1010 | 1.76 × 1010 | 3.87 × 109 | 8.29 × 10 9 | |
rank | 1 | 11 | 4 | 13 | 3 | 12 | 7 | 2 | 8 | 10 | 9 | 5 | 6 | |
C17-F3 | mean | 17,143.34 | 105,001.8 | 165,391.3 | 175,765.8 | 17,990.03 | 104,172.2 | 256,160.7 | 47,195.6 | 132,271.4 | 96,821.27 | 198,666.9 | 189,249.9 | 295,551.5 |
best | 14,095.85 | 82,400.47 | 158,593.6 | 163,034.7 | 14,878.3 | 83,456.61 | 210,096.4 | 38,369.45 | 116,283.4 | 93,036.56 | 180,821 | 150,802.2 | 233,017.7 | |
worst | 20,804.6 | 125,914.7 | 184,587.1 | 189,487.5 | 21,815.8 | 126,814.1 | 322,045.9 | 57,270.58 | 143,028.9 | 101,964.3 | 206,713.8 | 224,403.1 | 349,331.2 | |
std | 2926.758 | 18,840.53 | 12,801.09 | 10,869.46 | 3124.825 | 21,210.52 | 48,332.24 | 9608.053 | 12,184.08 | 3778.635 | 12,005.96 | 33,873.53 | 47,753.24 | |
median | 16,836.45 | 105,845.9 | 159,192.3 | 175,270.5 | 17,633.01 | 103,209.1 | 246,250.2 | 46,571.19 | 134,886.7 | 96,142.11 | 203,566.5 | 190,897.1 | 299,928.5 | |
rank | 1 | 6 | 8 | 9 | 2 | 5 | 12 | 3 | 7 | 4 | 11 | 10 | 13 | |
C17-F4 | mean | 555.9812 | 3922.348 | 668.4579 | 24,374.45 | 581.4708 | 8455.619 | 2572.61 | 568.3633 | 1370.46 | 2192.35 | 3087.765 | 1068.314 | 1748.455 |
best | 533.964 | 2936.023 | 594.6227 | 18,669.14 | 558.7435 | 5004.304 | 1750.866 | 541.0309 | 1262.635 | 1176.683 | 2613.392 | 672.7473 | 1533.777 | |
worst | 583.575 | 5345.994 | 743.6194 | 26,403.46 | 624.1394 | 12,427.34 | 3482.656 | 620.8195 | 1468.316 | 4872.366 | 3772.885 | 1687.916 | 2035.707 | |
std | 24.79482 | 1017.416 | 64.95445 | 3805.576 | 30.36838 | 3309.715 | 712.975 | 37.57762 | 86.09834 | 1789.646 | 561.3773 | 475.3013 | 222.7235 | |
median | 553.193 | 3703.689 | 667.7947 | 26,212.6 | 571.5002 | 8195.416 | 2528.459 | 555.8013 | 1375.445 | 1360.176 | 2982.392 | 956.2969 | 1712.169 | |
rank | 1 | 11 | 4 | 13 | 3 | 12 | 9 | 2 | 6 | 8 | 10 | 5 | 7 | |
C17-F5 | mean | 714.1266 | 802.4974 | 901.4393 | 1166.905 | 759.3991 | 1220.453 | 1069.522 | 804.4484 | 760.2189 | 1044.878 | 846.7404 | 815.0165 | 947.1408 |
best | 681.6816 | 764.8877 | 884.7392 | 1146.007 | 709.5423 | 1156.624 | 1000.118 | 709.3516 | 745.8673 | 1019.009 | 830.3242 | 751.8603 | 890.8249 | |
worst | 764.4116 | 869.0053 | 924.423 | 1209.405 | 814.5279 | 1274.963 | 1176.858 | 1007.618 | 789.3257 | 1089.369 | 879.0758 | 927.8653 | 977.0538 | |
std | 38.65027 | 48.52667 | 17.12741 | 28.97798 | 49.22487 | 54.88339 | 81.04347 | 140.6692 | 19.80102 | 30.78979 | 21.95627 | 77.49311 | 40.3683 | |
median | 705.2067 | 788.0483 | 898.2975 | 1156.103 | 756.7632 | 1225.113 | 1050.556 | 750.412 | 752.8413 | 1035.567 | 838.7808 | 790.1702 | 960.3423 | |
rank | 1 | 4 | 8 | 12 | 2 | 13 | 11 | 5 | 3 | 10 | 7 | 6 | 9 | |
C17-F6 | mean | 611.2095 | 657.5897 | 660.8563 | 698.9123 | 638.1769 | 695.1733 | 700.1844 | 638.8012 | 621.6137 | 668.3177 | 663.8223 | 650.4509 | 646.5533 |
best | 609.7563 | 648.602 | 654.2488 | 696.8387 | 626.523 | 684.2707 | 696.5667 | 629.1829 | 617.123 | 658.1773 | 657.2969 | 645.7214 | 638.6868 | |
worst | 612.6181 | 671.2048 | 667.3298 | 700.4788 | 649.3564 | 703.0004 | 705.4916 | 651.6013 | 627.9207 | 678.5366 | 669.878 | 658.6062 | 655.6196 | |
std | 1.225993 | 10.35935 | 5.352443 | 1.667333 | 9.503886 | 8.42664 | 4.266327 | 9.615536 | 4.92571 | 9.30888 | 5.167045 | 5.886562 | 6.951281 | |
median | 611.2318 | 655.276 | 660.9234 | 699.1658 | 638.4141 | 696.711 | 699.3397 | 637.2102 | 620.7055 | 668.2784 | 664.0572 | 648.7379 | 645.9535 | |
rank | 1 | 7 | 8 | 12 | 3 | 11 | 13 | 4 | 2 | 10 | 9 | 6 | 5 | |
C17-F7 | mean | 1025.881 | 1721.176 | 1662.322 | 1979.496 | 1061.397 | 1869.978 | 1952.088 | 1122.436 | 1175.817 | 1555.17 | 1489.926 | 1294.5 | 1340.208 |
best | 1000.164 | 1616.331 | 1507.457 | 1926.181 | 1041.209 | 1737.332 | 1856.546 | 1041.995 | 1075.823 | 1497.521 | 1409.155 | 1193.467 | 1306.069 | |
worst | 1057.179 | 1834.234 | 1814.065 | 2015.581 | 1070.832 | 2015.128 | 2040.279 | 1205.173 | 1337.112 | 1655.586 | 1569.725 | 1373.801 | 1369.909 | |
std | 24.35707 | 112.7002 | 141.5327 | 40.63313 | 13.62912 | 119.6811 | 90.20122 | 66.70626 | 112.9076 | 74.73389 | 70.13841 | 77.66052 | 26.6831 | |
median | 1023.091 | 1717.069 | 1663.884 | 1988.111 | 1066.772 | 1863.727 | 1955.764 | 1121.288 | 1145.167 | 1533.787 | 1490.412 | 1305.365 | 1342.426 | |
rank | 1 | 10 | 9 | 13 | 2 | 11 | 12 | 3 | 4 | 8 | 7 | 5 | 6 | |
C17-F8 | mean | 995.6338 | 1199.155 | 1187.135 | 1475.118 | 1047.464 | 1481.246 | 1287.263 | 1091.472 | 1048.355 | 1328.305 | 1167.883 | 1138.155 | 1266.072 |
best | 983.0873 | 1157.66 | 1104.657 | 1442.163 | 1029.584 | 1373.77 | 1255.154 | 1019.53 | 978.9894 | 1293.787 | 1142.263 | 1056.075 | 1220.748 | |
worst | 1013.932 | 1243.697 | 1273.021 | 1518.174 | 1071.654 | 1617.331 | 1339.21 | 1149.662 | 1111.758 | 1373.885 | 1229.819 | 1194.697 | 1319.763 | |
std | 14.65683 | 42.67117 | 70.45638 | 31.82365 | 20.59496 | 105.9277 | 37.15687 | 54.45485 | 55.44733 | 36.7254 | 41.67991 | 60.67326 | 47.71119 | |
median | 992.7582 | 1197.632 | 1185.432 | 1470.067 | 1044.309 | 1466.941 | 1277.345 | 1098.349 | 1051.337 | 1322.774 | 1149.726 | 1150.925 | 1261.889 | |
rank | 1 | 8 | 7 | 12 | 2 | 13 | 10 | 4 | 3 | 11 | 6 | 5 | 9 | |
C17-F9 | mean | 3508.77 | 28,911.38 | 14,239.23 | 36,756.45 | 4405.262 | 40,698.39 | 27,774.69 | 16,769.14 | 9682.165 | 21,676.54 | 11,727.2 | 10,563.16 | 12,676.64 |
best | 2346.403 | 23,517.24 | 12,456.48 | 35,478.1 | 2454.814 | 25,476.68 | 20,652.83 | 6137.118 | 4087.611 | 13,214.73 | 9840.69 | 7224.243 | 10,662.33 | |
worst | 4108.611 | 33,883.7 | 16,745.19 | 38,570.8 | 7193.914 | 49,967.28 | 36,542.78 | 25,502.92 | 19,344.7 | 24,926.32 | 13,118.38 | 15,004.49 | 18,314.94 | |
std | 802.4975 | 5435.387 | 1862.83 | 1513.347 | 2006.523 | 10,591.15 | 6557.658 | 8003.097 | 6849.259 | 5651.353 | 1499.96 | 3310.715 | 3760.074 | |
median | 3790.033 | 29,122.29 | 13,877.63 | 36,488.46 | 3986.16 | 43,674.8 | 26,951.58 | 17,718.27 | 7648.173 | 24,282.56 | 11,974.87 | 10,011.96 | 10,864.65 | |
rank | 1 | 11 | 7 | 12 | 2 | 13 | 10 | 8 | 3 | 9 | 5 | 4 | 6 | |
C17-F10 | mean | 5767.859 | 8659.802 | 8739.107 | 14,657.63 | 6478.647 | 12,244.83 | 12,459.21 | 8006.238 | 7533.535 | 14,827.86 | 8542.661 | 7895.046 | 12,313.92 |
best | 5366.673 | 6200.492 | 8098.813 | 13,640.76 | 5496.015 | 11,283.26 | 11,117.82 | 6719.282 | 6798.832 | 14,503.11 | 8163.447 | 6177.5 | 11,437.17 | |
worst | 6104.604 | 14,286.54 | 9637.659 | 15,377.43 | 7166.545 | 12,768.73 | 13,353.26 | 9065.671 | 7954.246 | 15,217.52 | 9146.476 | 9662.261 | 13,740.61 | |
std | 335.1443 | 3810.289 | 691.5653 | 853.5516 | 711.7507 | 657.4143 | 1024.224 | 968.6225 | 546.4662 | 334.1279 | 446.1412 | 1429.865 | 1006.377 | |
median | 5800.079 | 7076.087 | 8609.978 | 14,806.17 | 6626.014 | 12,463.65 | 12,682.88 | 8120 | 7690.53 | 14,795.4 | 8430.361 | 7870.211 | 12,038.94 | |
rank | 1 | 7 | 8 | 12 | 2 | 9 | 11 | 5 | 3 | 13 | 6 | 4 | 10 | |
C17-F11 | mean | 1263.481 | 6096.42 | 1626.641 | 20,780.93 | 1282.969 | 11,745.2 | 6389.68 | 1437.742 | 5679.881 | 4963.278 | 16,289.4 | 2583.926 | 24,961.02 |
best | 1232.308 | 3844.968 | 1430.406 | 19,217.1 | 1246.454 | 5214.658 | 4045.917 | 1275.734 | 3552.577 | 3857.778 | 11,845.87 | 1564.863 | 14,294.87 | |
worst | 1283.051 | 8972.834 | 1722.341 | 22,088.57 | 1308.7 | 19,864.68 | 10,059.87 | 1576.555 | 8211.372 | 6388.745 | 19,867.07 | 4627.567 | 50,045.37 | |
std | 23.13329 | 2347.125 | 132.8201 | 1396.216 | 26.16396 | 6685.04 | 2575.006 | 132.8975 | 2117.415 | 1050.716 | 3574.724 | 1389.351 | 16,806.27 | |
median | 1269.283 | 5783.94 | 1676.908 | 20,909.02 | 1288.361 | 10,950.73 | 5726.466 | 1449.339 | 5477.787 | 4803.294 | 16,722.33 | 2071.638 | 17,751.93 | |
rank | 1 | 8 | 4 | 12 | 2 | 10 | 9 | 3 | 7 | 6 | 11 | 5 | 13 | |
C17-F12 | mean | 3,759,630 | 3.08 × 109 | 63,614,775 | 8.18 × 1010 | 15,933,816 | 2.13 × 1010 | 1.83 × 109 | 92,770,078 | 4.76 × 108 | 4.26 × 109 | 2.06 × 109 | 2.03 × 109 | 1.93 × 10 8 |
best | 3,120,877 | 6.07 × 108 | 25,515,066 | 6.07 × 1010 | 3,269,247 | 1.42 × 1010 | 1.01 × 109 | 66,570,980 | 68,637,499 | 2.05 × 109 | 1.07 × 109 | 1.29 × 108 | 1.54 × 10 8 | |
worst | 5,026,634 | 6.48 × 109 | 1.03 × 108 | 1.01 × 1011 | 29,463,946 | 2.83 × 1010 | 2.57 × 109 | 1.43 × 108 | 8.17 × 108 | 6.51 × 109 | 2.67 × 109 | 4.68 × 109 | 2.25 × 10 8 | |
std | 867,286.6 | 2.54 × 109 | 32,204,702 | 1.87 × 1010 | 11,215,199 | 7.09 × 109 | 7.33 × 108 | 33,904,696 | 3.49 × 108 | 1.88 × 109 | 6.94 × 108 | 1.97 × 109 | 35,866,307 | |
median | 3,445,505 | 2.61 × 109 | 63,038,260 | 8.28 × 1010 | 15,501,035 | 2.14 × 1010 | 1.87 × 109 | 80,957,677 | 5.1 × 108 | 4.24 × 109 | 2.25 × 109 | 1.66 × 109 | 1.98 × 10 8 | |
rank | 1 | 10 | 3 | 13 | 2 | 12 | 7 | 4 | 6 | 11 | 9 | 8 | 5 | |
C17-F13 | mean | 20,543.43 | 7.13 × 108 | 141,800.9 | 3.67 × 1010 | 21,237.92 | 7.59 × 109 | 2.11 × 108 | 247,156.6 | 2.47 × 108 | 5.88 × 108 | 11,242,163 | 6.16 × 108 | 26,005,027 |
best | 15,376.38 | 19,099,120 | 78,023.61 | 2.48 × 1010 | 16,056.18 | 5.03 × 109 | 1.2 × 108 | 194,166.2 | 2.17 × 108 | 3.8 × 108 | 45,145.04 | 26,221.25 | 12,818,531 | |
worst | 27,661.65 | 1.43 × 109 | 224,553 | 5.03 × 1010 | 28,607.16 | 1.12 × 1010 | 3.77 × 108 | 308,694.8 | 3.16 × 108 | 7.42 × 108 | 32,680,141 | 2.46 × 109 | 54,704,377 | |
std | 5265.513 | 7.92 × 108 | 65,454.08 | 1.08 × 1010 | 5377.922 | 2.79 × 109 | 1.18 × 108 | 52,336.76 | 46,903,226 | 1.59 × 108 | 15,396,915 | 1.23 × 109 | 19,804,620 | |
median | 19,567.85 | 7.03 × 108 | 132,313.6 | 3.59 × 1010 | 20,144.16 | 7.08 × 109 | 1.75 × 108 | 242,882.7 | 2.27 × 108 | 6.14 × 108 | 6,121,682 | 149,734 | 18,248,601 | |
rank | 1 | 11 | 3 | 13 | 2 | 12 | 7 | 4 | 8 | 9 | 5 | 10 | 6 | |
C17-F14 | mean | 1597.307 | 600,173.8 | 2,218,022 | 34,471,586 | 1678.635 | 5,093,227 | 4,192,458 | 279,639.4 | 1,793,375 | 1,267,223 | 4,946,211 | 240,948.6 | 11,575,392 |
best | 1562.632 | 185,224.1 | 110,573.9 | 12,465,227 | 1639.592 | 3,093,492 | 1,735,897 | 207,111.7 | 212,073.5 | 812,745.7 | 1,782,005 | 74,420.19 | 4,799,281 | |
worst | 1617.968 | 1,430,924 | 6,732,015 | 79,830,753 | 1725.082 | 9,688,319 | 7,361,760 | 412,568.6 | 5,453,517 | 2,266,987 | 8,569,881 | 688,466.4 | 14,217,124 | |
std | 24.00143 | 575,089 | 3,063,340 | 31,173,317 | 35.3101 | 3,084,397 | 2,727,676 | 96,387.31 | 2,463,724 | 679,539.8 | 2,853,620 | 299,315.4 | 4,540,074 | |
median | 1604.315 | 392,273.7 | 1,014,750 | 22,795,182 | 1674.933 | 3,795,549 | 3,836,088 | 249,438.6 | 753,954.7 | 994,580.2 | 4,716,480 | 100,453.9 | 13,642,580 | |
rank | 1 | 5 | 8 | 13 | 2 | 11 | 9 | 4 | 7 | 6 | 10 | 3 | 12 | |
C17-F15 | mean | 2278.122 | 1,918,426 | 56,625.99 | 5.26 × 109 | 2259.208 | 1.83 × 109 | 14,219,521 | 194,386.3 | 1.31 × 108 | 66,651,092 | 2.11 × 108 | 17,821,961 | 12,226,060 |
best | 2183.166 | 13,016.53 | 35,125.41 | 4.45 × 109 | 2168.222 | 1.08 × 109 | 4,542,309 | 46,119.64 | 54,273.51 | 17,897,687 | 12,105.45 | 8042.893 | 3,671,989 | |
worst | 2463.577 | 7,144,595 | 86,519.19 | 7.14 × 109 | 2443.118 | 3.61 × 109 | 32,284,842 | 458,767.1 | 4.32 × 108 | 1.36 × 108 | 8.44 × 108 | 71,236,824 | 20,439,957 | |
std | 126.4823 | 3,491,216 | 21,600.89 | 1.27 × 109 | 125.174 | 1.21 × 109 | 12,437,330 | 192,355 | 2.05 × 108 | 51,513,207 | 4.22 × 108 | 35,609,909 | 9,283,812 | |
median | 2232.872 | 258,046.4 | 52,429.69 | 4.73 × 109 | 2212.746 | 1.31 × 109 | 10,025,466 | 136,329.3 | 45,952,682 | 56,383,284 | 21,026.03 | 21,487.86 | 12,396,147 | |
rank | 2 | 5 | 3 | 13 | 1 | 12 | 7 | 4 | 10 | 9 | 11 | 8 | 6 | |
C17-F16 | mean | 2523.35 | 3142.7 | 4273.055 | 7676.857 | 2524.843 | 5581.054 | 7341.921 | 3652.628 | 3194.303 | 5172.976 | 3615.108 | 3531.027 | 3790.935 |
best | 2248.739 | 2865.182 | 3720.895 | 6111.503 | 2235.572 | 4317.16 | 6419.835 | 3314.145 | 2513.073 | 4937.946 | 3348.535 | 3133.521 | 3640.193 | |
worst | 2849.941 | 3306.808 | 4619.853 | 9059.164 | 2831.915 | 6921.292 | 9089.87 | 3852.877 | 3580.118 | 5485.408 | 3817.586 | 4237.175 | 3978.839 | |
std | 248.4592 | 191.8193 | 386.0529 | 1416.194 | 249.8163 | 1340.965 | 1189.901 | 237.443 | 472.1091 | 246.3174 | 233.5936 | 495.8781 | 140.9372 | |
median | 2497.361 | 3199.406 | 4375.736 | 7768.381 | 2515.943 | 5542.882 | 6928.989 | 3721.744 | 3342.01 | 5134.274 | 3647.156 | 3376.706 | 3772.355 | |
rank | 1 | 3 | 9 | 13 | 2 | 11 | 12 | 7 | 4 | 10 | 6 | 5 | 8 | |
C17-F17 | mean | 2707.987 | 2980.2 | 3569.067 | 12,417.77 | 2739.995 | 8694.875 | 3849.098 | 3174.238 | 2960.83 | 4242.461 | 3788.797 | 3327.726 | 3554.822 |
best | 2573.454 | 2826.593 | 3286.215 | 8706.209 | 2669.604 | 3961.759 | 3373.148 | 2874.678 | 2707.394 | 3907.595 | 3039.955 | 3129.702 | 2939.71 | |
worst | 2872.458 | 3175.288 | 4177.956 | 16,710.1 | 2782.582 | 20,149.38 | 4113.558 | 3356.334 | 3450.413 | 4386.915 | 4362.678 | 3628.122 | 3915.836 | |
std | 123.7582 | 167.3508 | 419.5302 | 3897.022 | 49.62537 | 7728.123 | 326.2007 | 214.7127 | 335.2494 | 225.1485 | 649.6461 | 218.2146 | 425.0624 | |
median | 2693.018 | 2959.46 | 3406.048 | 12,127.38 | 2753.897 | 5334.178 | 3954.842 | 3232.971 | 2842.756 | 4337.667 | 3876.278 | 3276.54 | 3681.87 | |
rank | 1 | 4 | 8 | 13 | 2 | 12 | 10 | 5 | 3 | 11 | 9 | 6 | 7 | |
C17-F18 | mean | 15,216.7 | 1,365,955 | 7,779,299 | 2.14 × 108 | 15,772.3 |