Deuterohemin-Ala-His-Thr-Val-Glu-Lys (DhHP-6) Mimicking Enzyme as Synergistic Antioxidant and Anti-Inflammatory Material for Periodontitis Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Animals
2.2. MTT Assay
2.3. ROS, MDA, GSH, and CAT Assays
2.4. Analysis of Cell Apoptosis
2.5. ELISA Assays
2.6. Rat Periodontitis Model
2.7. Micro-CT Assays
2.8. H&E Staining Assays
2.9. Statistical Analysis
3. Results
3.1. Effects of DhHP-6 on HGFs Treated with H2O2
3.2. Effects of DhHP-6 on the Expression of HGFs Inflammatory Cytokines Induced by LPS
3.3. The In Vivo Effect of DhHP-6 on Periodontal Histomorphology and Histology
3.4. The In Vivo Effect of DhHP-6 on the Expression of GSH, SOD, CAT and Inflammatory Factors in Rat
3.5. The In Vivo Effect of DhHP-6 on Alveolar Bone in Rats
3.6. In Vivo Biosafety of DhHP-6
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89, S159–S172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlaczyk-Kamienska, T.; Borysewicz-Lewicka, M.; Sniatala, R. Periodontal condition and periodontal risk assessment in adult patients with cystic fibrosis. Ann. Agric. Environ. Med. 2020, 27, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Bas, N.; Kayar, N.A.; Baba, Z.F.; Avunduk, M.C.; Haliloğlu, S.; Alptekin, N.Ö. Systemic treatment with alpha-tocopherol and/or sodium selenite decreases the progression of experimental periodontitis. Clin. Oral Investig. 2021, 25, 2677–2688. [Google Scholar] [CrossRef] [PubMed]
- Rubio, M.D.C.; Rudzinski, J.J.; Ramos, C.; Lifshitz, F.; Friedman, S.M.; Nicolosi, L.N. Cognitive impairment related to arterial stiffness in cardiovascular disease patients with severe periodontitis. Acta Odontol. Latinoam. 2020, 33, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zheng, Z.; Zhang, M.; Wang, Y.; Hu, R.; Lin, W.; Huang, C.; Xu, C.; Wu, J.; Deng, H. Design, synthesis, and evaluation of mono-carbonyl analogues of curcumin (MCACs) as potential antioxidants against periodontitis. J. Periodontal Res. 2021, 56, 656–666. [Google Scholar] [CrossRef]
- Toraman, A.; Arabaci, T.; Aytekin, Z.; Albayrak, M.; Bayir, Y. Effects of vitamin c local application on ligature-induced periodontitis in diabetic rats. J. Appl. Oral Sci. 2020, 28, e20200444. [Google Scholar] [CrossRef]
- Costa, F.P.; Puty, B.; Nogueira, L.S.; Mitre, G.P.; Dos Santos, S.M.; Teixeira, B.J.B.; Kataoka, M.S.d.S.; Martins, M.D.; Barboza, C.A.G.; Monteiro, M.C.; et al. Piceatannol increases antioxidant defense and reduces cell death in human periodontal ligament fibroblast under oxidative stress. Antioxidants 2020, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, M.A.d.S.; Fischer, R.G.; Pereira, N.R.; Martins, M.A.; Moss, M.B.; Mendes-Ribeiro, A.C.; Figueredo, C.M.d.S.; Brunini, T.M.C. Effects of non-surgical periodontal treatment on the l-arginine-nitric oxide pathway and oxidative status in platelets. Exp. Biol. Med. 2013, 238, 713–722. [Google Scholar] [CrossRef]
- Chiu, A.V.; Saigh, M.A.; McCulloch, C.A.; Glogauer, M. The Role of NrF2 in the Regulation of Periodontal Health and Disease. J. Dent. Res. 2017, 96, 975–983. [Google Scholar] [CrossRef]
- Yağan, A.; Kesim, S.; Liman, N. Effect of Low-Dose Doxycycline on Serum Oxidative Status, Gingival Antioxidant Levels, and Alveolar Bone Loss in Experimental Periodontitis in Rats. J. Periodontol. 2014, 85, 478–489. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kang, S.J.; Kim, J.W.; Cho, H.R.; Moon, S.B.; Kim, K.Y.; Lee, H.S.; Han, C.H.; Ku, S.K.; Lee, Y.J. Effects of Polycan, a β-glucan, on experimental periodontitis and alveolar bone loss in Sprague-Dawley rats. J. Periodontal Res. 2012, 47, 800–810. [Google Scholar] [CrossRef] [PubMed]
- Odatsu, T.; Kuroshima, S.; Shinohara, A.; Valanezhad, A.; Sawase, T. Lactoferrin with Zn-ion protects and recovers fibroblast from H.sub.2O.sub.2-induced oxidative damage. Int. J. Biol. Macromol. 2021, 190, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.A.D.; Morais, H.B.D.; Medeiros, C.A.C.X.D.; Brito, G.A.D.C.; Guedes, P.M.M.; Hiyari, S.; Pirih, F.Q.; Araújo Júnior, R.F.D. Gliclazide reduced oxidative stress, inflammation, and bone loss in an experimental periodontal disease model. J. Appl. Oral Sci. 2019, 27, e20180211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocaman, G.; Altinoz, E.; Erdemli, M.E.; Gul, M.; Erdemli, Z.; Gul, S.; Bag, H.G. Protective effects of crocin on biochemistry and histopathology of experimental periodontitis in rats. Biotech. Histochem. 2019, 94, 366–373. [Google Scholar] [CrossRef]
- Yang, W.H.; Kuo, M.Y.P.; Liu, C.M.; Deng, Y.T.; Chang, H.H.; Chang, J.Z.C. Curcumin Inhibits TGF1-induced CCN2 via Src, JNK, and Smad3 in Gingiva. J. Dent. Res. 2013, 92, 629–634. [Google Scholar] [CrossRef]
- Piedrafita, G.; Keller, M.A.; Ralser, M. The impact of non-enzymatic reactions and enzyme promiscuity on cellular metabolism during (Oxidative) stress conditions. Biomolecules 2015, 5, 2101–2122. [Google Scholar] [CrossRef] [Green Version]
- Copeland, R.A.; Harpel, M.R.; Tummino, P.J. Targeting enzyme inhibitors in drug discovery. Expert Opin. Ther. Targets 2007, 11, 967–978. [Google Scholar] [CrossRef]
- Alanine, A.I.; Bleicher, K.H.; Böhm, H.-J.; Müller, K. Hit and lead generation: Beyond high-throughput screening. Nat. Rev. Drug Discov. 2003, 2, 369–378. [Google Scholar] [CrossRef]
- Clement, C.C.; Nanaware, P.P.; Yamazaki, T.; Negroni, M.P.; Ramesh, K.; Morozova, K.; Thangaswamy, S.; Graves, A.; Kim, H.J.; Li, T.W.; et al. Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Immunity 2021, 54, 721–736. [Google Scholar] [CrossRef]
- Sant, D.W.S.; Agarwal, R.; Dillender, S.; Ferrell, N. Glycation alters the mechanical behavior of kidney extracellular matrix. Matrix Biol. Plus 2020, 8, 1–11. [Google Scholar] [CrossRef]
- Kadić, A.; Várnai, A.; Eijsink, V.G.H.; Horn, S.J.; Lidén, G. In situ measurements of oxidation–reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose. Biotechnol. Biofuels 2021, 14, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, K.; Yuan, Y.; Li, H.; Zhang, R.; Guan, S.; Wang, L. A novel peroxidase mimics and ameliorates alzheimer’s disease-related pathology and cognitive decline in mice. Int. J. Mol. Sci. 2018, 19, 3304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Liang, Y.; Su, Y.; Wang, L. DhHP-6 ameliorates hepatic oxidative stress and insulin resistance in type 2 diabetes mellitus through the PI3K/AKT and AMPK pathway. Biochem. J. 2020, 477, 2363–2381. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.G.; Zhang, Y.; Wang, M.S.; Feng, J.; Zhang, H.H.; Wu, Y.G.; Gu, T.J.; Yu, X.H.; Jiang, C.L.; Chen, Y.; et al. Improvement of enzymatic stability and intestinal permeability of deuterohemin-peptide conjugates by specific multi-site N-methylation. Amino Acids 2012, 43, 2431–2441. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, Y.; Zhang, R.; Song, Y.; Sui, T.; Wang, J.; Wang, C.; Chen, Y.; Guan, S.; Wang, L. A deuterohemin peptide protects a transgenic Caenorhabditis elegans model of Alzheimer’s disease by inhibiting A beta(1-42) aggregation. Bioorg. Chem. 2019, 82, 332–339. [Google Scholar] [CrossRef]
- Mainnemare, A.; Mégarbane, B.; Soueidan, A.; Daniel, A.; Chapple, I.L.C. Hypochlorous Acid and Taurine-N-Monochloramine in Periodontal Diseases. J. Dent. Res. 2004, 83, 823–831. [Google Scholar] [CrossRef]
- Yan, J.; Li, Z.; Liu, M.; Sun, X.; Ma, L.; Wang, Z.; Zhao, Z.; Huang, X.; Yuan, L. Activity adaptability of a DhHP-6 peroxidase-mimic in wide pH and temperature ranges and solvent media. Catal. Sci. Technol. 2020, 1, 1848–1857. [Google Scholar] [CrossRef]
- Hasturk, H.; Steed, D.; Tosun, E.; Martins, M.; Floros, C.; Nguyen, D.; Stephens, D.; Cugini, M.; Starr, J.; Van Dyke, T.E. Use of amnion-derived cellular cytokine solution for the treatment of gingivitis: A 2-week safety, dose-ranging, proof-of-principle randomized trialAu. J. Periodontol. 2021, 92, 1317–1328. [Google Scholar] [CrossRef]
- Caetano, V.d.S.; Andrade, R.S.B.; França, L.F.d.C.; Pessoa, L.d.S.; Rodrigues, A.A.; Alves, E.H.P.; Lenardo, D.D.; Nascimento, H.M.S.; Ayala, K.N.R.; Carvalho, A.d.S.; et al. Food restriction reduces hepatic alterations associated with experimental periodontitis. J. Periodontol. 2022, 93, 156–165. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, L.; Liu, X.; Li, H.; Zeng, Z.; He, X.; Zhan, Z.; Chen, Y. Pirfenidone mediates cigarette smoke extract induced inflammation and oxidative stress in vitro and in vivo. Int. Immunopharmacol. 2021, 96, 107593–107601. [Google Scholar] [CrossRef]
- Ellert-Miklaszewska, A.; Kaminska, B.; Konarska, L. Cannabinoids down-regulate PI3K/Akt and Erk signalling pathways and activate proapoptotic function of Bad protein. Cell Signal. 2005, 17, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tao, S.; Yu, Z.; Luo, Y.; Li, Y.; Tang, J.; Chen, G.; Shuai, R.; Hu, X.; Wu, P. Effect of Moxibustion on β-EP and Dyn Levels of Pain-Related Indicators in Patients with Rheumatoid Arthritis. Evid. Based Complement. Altern. Med. 2021, 2021, 6637554–6637562. [Google Scholar] [CrossRef] [PubMed]
- Kuraji, R.; Wu, Y.H.; Hashimoto, S.; Miyashita, Y.; Mishiro, S.; Ito, H.; Kamarajan, P.; Kapila, Y.; Numabe, Y. Periodontal inflammation triggers a site-specific and wide radius of calcium metabolic effects on alveolar bone. J. Periodontal Res. 2021, 56, 314–329. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.Y.; Yu, H.; Chen, Q.J.; Zhai, S.; Zhang, C.F.; Li, F.; Wang, C.Z.; Yuan, C.S. Effect of liquiritin on neuroendocrine-immune network in menopausal rat model. Phytother. Res. 2020, 34, 2665–2674. [Google Scholar] [CrossRef] [PubMed]
- Rowińska, I.; Szyperska-ślaska, A.; Zariczny, P.; Pasławski, R.; Kramkowski, K.; Kowalczyk, P. Impact of the diet on the formation of oxidative stress and inflammation induced by bacterial biofilm in the oral cavity. Materials 2021, 14, 1372. [Google Scholar] [CrossRef]
- Kwon, Y.; Haam, C.E.; Byeon, S.; Choi, S.J.; Shin, D.-H.; Choi, S.-K.; Lee, Y.-H. Vasodilatory effect of phellinus linteus extract in rat mesenteric arteries. Molecules 2020, 25, 3160. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Huan, Y.; Cao, H.; Sun, S.; Lei, L.; Liu, Q.; Liu, S.; Ji, W.; Huang, K.; et al. Diphenyl diselenide ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats via suppressing oxidative stress and inflammation. Chem. Biol. Interact. 2021, 338, 109427–109440. [Google Scholar] [CrossRef]
- Šalamúnová, P.; Cupalová, L.; Majerská, M.; Treml, J.; Ruphuy, G.; Šmejkal, K.; Štěpánek, F.; Hanuš, J.; Hošek, J. Incorporating natural anti-inflammatory compounds into yeast glucan particles increases their bioactivity in vitro. Int. J. Biol. Macromol. 2021, 169, 443–451. [Google Scholar] [CrossRef]
- Casao, T.d.R.L.; Pinheiro, C.G.; Sarandy, M.M.; Zanatta, A.C.; Vilegas, W.; Novaes, R.D.; Gonçalves, R.V.; Viana Leite, J.P. Croton urucurana Baillon stem bark ointment accelerates the closure of cutaneous wounds in knockout IL-10 mice. J. Ethnopharmacol. 2020, 261, 113042–113054. [Google Scholar] [CrossRef]
- Kasuyama, K.; Tomofuji, T.; Ekuni, D.; Tamaki, N.; Azuma, T.; Irie, K.; Endo, Y.; Morita, M. Hydrogen-rich water attenuates experimental periodontitis in a rat model. J. Clin. Periodontol. 2011, 38, 1085–1090. [Google Scholar] [CrossRef]
- Cavalla, F.; Osorio, C.; Paredes, R.; Valenzuela, M.A.; García-Sesnich, J.; Sorsa, T.; Tervahartiala, T.; Hernández, M. Matrix metalloproteinases regulate extracellular levels of SDF-1/CXCL12, IL-6 and VEGF in hydrogen peroxide-stimulated human periodontal ligament fibroblasts. Cytokine 2015, 73, 114–121. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Zhang, Y.; Zhang, S.; Ahmad, S.; Luo, Y. Synthesis and Photoactivated Toxicity of 2-Thiophenylfuranocoumarin Induce Midgut Damage and Apoptosis in Aedes aegypti Larvae. J. Agric. Food Chem. 2021, 69, 1091–1106. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Nie, G.; Hu, R.; Wang, C.; Xing, C.; Li, G.; Hu, G.; Yang, F.; Zhang, C. Inhibition of autophagy aggravates molybdenum-induced mitochondrial dysfunction by aggravating oxidative stress in duck renal tubular epithelial cells. Ecotoxicol. Environ. Saf. 2021, 209, 111771–111782. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, V.S.; Gomes Castro, A.J.; Marins, K.; Bittencourt Mendes, A.K.; Araújo Leite, G.A.; Zamoner, A.; Van Der Kraak, G.; Mena Barreto Silva, F.R. Pyriproxyfen induces intracellular calcium overload and alters antioxidant defenses in Danio rerio testis that may influence ongoing spermatogenesis. Environ. Pollut. 2021, 270, 116055–116064. [Google Scholar] [CrossRef]
- Li, J.-E.; Nie, S.-P.; Xie, M.-Y.; Huang, D.-F.; Wang, Y.-T.; Li, C. Chemical composition and antioxidant activities in immumosuppressed mice of polysaccharides isolated from Mosla chinensis Maxim cv. jiangxiangru. Int. Immunopharmacol. 2013, 17, 267–274. [Google Scholar] [CrossRef]
- Min, K.; Chen, K.; Arora, R. A metabolomics study of ascorbic acid-induced in situ freezing tolerance in spinach (Spinacia oleracea L.). Plant Direct 2020, 4, e00202–e00215. [Google Scholar] [CrossRef] [Green Version]
- Liang, M.; Wang, Z.; Li, H.; Cai, L.; Yang, L. Rice Protein Depresses DNA Damage by Activating P53 Pathway in Adult Rats. Ann. Nutr. Metab. 2019, 75, 162–586. [Google Scholar] [CrossRef]
- Imai, H.; Nakagawa, Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol. Med. 2003, 34, 145–169. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Shi, B.; Li, Y.; Wang, R.; Sun, J.; Hu, Y.; Yuan, C.; Xu, Q. Effect of gingival mesenchymal stem cell-derived exosomes on inflammatory macrophages in a high-lipid microenvironment. Int. Immunopharmacol. 2021, 94, 107455–107464. [Google Scholar] [CrossRef]
- Hori, Y.; Kondo, Y.; Nodai, T.; Masaki, C.; Ono, K.; Hosokawa, R. Xerostomia aggravates ligation-induced peri-implantitis: A preclinical in vivo study. Clin. Oral Implant. Res. 2021, 32, 581–589. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Liu, M.; Zhang, Y.; Zhu, Y.; Chen, Q.; Yang, Y.; Hu, M.; Yu, H. Deuterohemin-Ala-His-Thr-Val-Glu-Lys (DhHP-6) Mimicking Enzyme as Synergistic Antioxidant and Anti-Inflammatory Material for Periodontitis Therapy. Biomimetics 2022, 7, 240. https://doi.org/10.3390/biomimetics7040240
Yan J, Liu M, Zhang Y, Zhu Y, Chen Q, Yang Y, Hu M, Yu H. Deuterohemin-Ala-His-Thr-Val-Glu-Lys (DhHP-6) Mimicking Enzyme as Synergistic Antioxidant and Anti-Inflammatory Material for Periodontitis Therapy. Biomimetics. 2022; 7(4):240. https://doi.org/10.3390/biomimetics7040240
Chicago/Turabian StyleYan, Jiaqing, Min Liu, Yan Zhang, Ying Zhu, Qiuyan Chen, Yimeng Yang, Min Hu, and Huimei Yu. 2022. "Deuterohemin-Ala-His-Thr-Val-Glu-Lys (DhHP-6) Mimicking Enzyme as Synergistic Antioxidant and Anti-Inflammatory Material for Periodontitis Therapy" Biomimetics 7, no. 4: 240. https://doi.org/10.3390/biomimetics7040240
APA StyleYan, J., Liu, M., Zhang, Y., Zhu, Y., Chen, Q., Yang, Y., Hu, M., & Yu, H. (2022). Deuterohemin-Ala-His-Thr-Val-Glu-Lys (DhHP-6) Mimicking Enzyme as Synergistic Antioxidant and Anti-Inflammatory Material for Periodontitis Therapy. Biomimetics, 7(4), 240. https://doi.org/10.3390/biomimetics7040240