A Modular Chain Bioreactor Design for Fungal Productions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates and Microorganism
2.2. Modular Chain Bioreactor (MCB) Prototype & Arduino Setup for Environmental Control
- Keep environmental conditions at optimum levels that are favored by the organisms (temperature, water activity, oxygen concentration),
- Carry on solutions for ventilation and mixing required by the production process,
- Block any organism from entering inside to prevent contamination and keep colonized organisms inside to expel any harmful effect that the organism can cause,
- Be produced by a durable and corrosion-resistant material, which should also not cause any toxic effect on colonized organisms-,
- Allow sampling and observation,
- Be suitable for any process required for solid-state fermentation (substrate preparation, inoculation, loading, unloading, sterilization),
- Humidity-controlled environment
- Better air circulation
- Modularity (each colonization unit can be separated from the chain without risking others with contamination)
- Sterile conditions
- Low cost
2.3. Fungal Biomass Production Experiments
2.4. Contamination Spread Pilot Experiment
3. Results and Discussion
3.1. Contamination Control Experiments
3.2. Modular Chain Bioreactor System Results
4. Conclusions
- High ventilation capacity
- Moisture level control
- Easy mixing
- Efficient contamination control
- Permitting cultivation and harvesting without risking the rest of the bags through modularity
- Cultivability of different microorganisms for different purposes
- Observability of mycelial growth through the process
- Low cost
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Battaglino, R.A.; Huergo, M.; Pilosof AM, R.; Bartholomai, G.B. Culture requirements for the production of protease by Aspergillus oryzae in solid state fermentation. Appl. Microbiol. Biotechnol. 1991, 35, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Perez, M.; Rodriguez-Gomez, D.; Loera, O. Production of conidia of Beauveria bassiana in solid-state culture: Current status and future perspectives. Crit. Rev. Biotechnol. 2015, 35, 334–341. [Google Scholar] [CrossRef]
- Khoo, S.C.; Ma, N.L.; Peng, W.X.; Ng, K.K.; Goh, M.S.; Chen, H.L.; Tan, S.H.; Lee, C.H.; Luang-In, V.; Sonne, C. Valorisation of biomass and diaper waste into a sustainable production of the medical mushroom Lingzhi Ganoderma lucidum. Chemosphere 2022, 286, 131477. [Google Scholar] [CrossRef]
- Fatima, S.; Khan, F.; Asif, M.; Alotaibi, S.S.; Islam, K.; Shariq, M.; Khan, A.; Ikram, M.; Ahmad, F.; Khan, T.A.; et al. Root-Knot Disease Suppression in Eggplant Based on Three Growth Ages of Ganoderma lucidum. Microorganisms 2022, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Raman, J.; Jang, K.Y.; Oh, Y.L.; Oh, M.; Im, J.H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and nutritional value of prominent Pleurotus spp.: An overview. Mycobiology 2021, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tesfay, T.; Godifey, T.; Mesfin, R.; Kalayu, G. Evaluation of waste paper for cultivation of oyster mushroom (Pleurotus ostreatus) with some added supplementary materials. AMB Express 2020, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.P.; Lawrie, A.C.; Huynh, T.T.; Morrison, P.D.; Mautner, A.; Bismarck, A.; John, S. Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process Biochem. 2019, 80, 95–102. [Google Scholar] [CrossRef]
- Ramezan, D.; Alizade Jahan Abadi, B.; Samzade Kermani, A.; Pirnia, M.; Farrokhzad, Y. Cultivation of Turkey Tail Mushroom (Trametes versicolor) on Lignocellulosic Wastes and Evaluation of Substrate Bioconversion. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2021, 91, 777–787. [Google Scholar] [CrossRef]
- Leiva, F.J.; Saenz-Díez, J.C.; Martínez, E.; Jiménez, E.; Blanco, J. Environmental impact of Agaricus bisporus mycelium production. Agric. Syst. 2015, 138, 38–45. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Goala, M.; Singh, J.; Kumar, P. Integrated use of treated dairy wastewater and agro-residue for Agaricus bisporus mushroom cultivation: Experimental and kinetics studies. Biocatal. Agric. Biotechnol. 2021, 32, 101940. [Google Scholar] [CrossRef]
- Samp, R. The bag or block system of Agaricus mushroom growing. Edible Med. Mushrooms Technol. Appl. 2017, 8, 175–195. [Google Scholar]
- Chen, M.; Chen, Y.; Zhang, Q. A Review of energy consumption in the acquisition of bio-feedstock for microalgae biofuel production. Sustainability 2021, 13, 8873. [Google Scholar] [CrossRef]
- Cui, J.; Purton, S.; Baganz, F. Characterisation of a simple ‘hanging bag’photobioreactor for low-cost cultivation of microalgae. J. Chem. Technol. Biotechnol. 2022, 97, 608–619. [Google Scholar] [CrossRef]
- You, X.; Yang, L.; Zhou, X.; Zhang, Y. Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review. Environ. Res. 2022, 209, 112860. [Google Scholar] [CrossRef] [PubMed]
- Hassan FR, H.; Medany, G.M.; Hussein, S.D. Cultivation of the king oyster mushroom (Pleurotus eryngii) in Egypt. Aust. J. Basic Appl. Sci. 2010, 4, 99–105. [Google Scholar]
- Mitchell, D.A.; Krieger, N.; Stuart, D.M.; Pandey, A. New developments in solid-state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem. 2020, 35, 1211–1225. [Google Scholar] [CrossRef]
- Sargin, S.; Gezgin, Y.; Eltem, R.; Vardar, F. Micropropagule production from Trichoderma harzianum EGE-K38 using solid-state fermentation and a comparative study for drying methods. Turk. J. Biol. 2013, 37, 139–146. [Google Scholar] [CrossRef]
- Ivarsson, M.; Bengtson, S.; Skogby, H.; Lazor, P.; Broman, C.; Belivanova, V.; Marone, F. A fungal-prokaryotic consortium at the basalt-zeolite interface in subsea floor igneous crust. PLoS ONE 2015, 10, e0140106. [Google Scholar] [CrossRef] [Green Version]
- Doran, P.M. Bioprocess Engineering Principles; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Liu, S. Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Raghavarao KS, M.S.; Ranganathan, T.V.; Karanth, N.G. Some engineering aspects of solid-state fermentation. Biochem. Eng. J. 2003, 13, 127–135. [Google Scholar] [CrossRef]
- El Sheikha, A.F.; Ray, R.C. Bioprocessing of horticultural wastes by solid-state fermentation into value-added/innovative bioproducts: A review. Food Rev. Int. 2022, 1–57. [Google Scholar] [CrossRef]
- Teigiserova, D.A.; Bourgine, J.; Thomsen, M. Closing the loop of cereal waste and residues with sustainable technologies: An overview of enzyme production via fungal solid-state fermentation. Sustain. Prod. Consum. 2021, 27, 845–857. [Google Scholar] [CrossRef]
- Kırdök, O. A Biodesign Collaborator in Architecture: Mycelium. Master’s Thesis, Dokuz Eylül University The Graduate School of Natural and Applied Sciences. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=wf-FPgY-5qjHEzEoOgvMs0KR1Q7W50JJXVMX7hhzba8-_3UHnWKVJJreSwsNbMmb (accessed on 25 May 2022).
- Guerra, G.; Casado, G.; Arguelles, J.; Acebal, C.; Castillón, M.; Ramos-Leal, M.; Gómez, B.; León, T.; Sánchez, M.; Torrija, E.; et al. Zeolite as source of saline nutrients in solid state fermentation of sugarcane straw Bytrichoderma citrinoviride. Sugar Tech. 2003, 5, 243–248. [Google Scholar] [CrossRef]
Bag System | Tray Bioreactor |
---|---|
Easy to sterilize | Sterilization is more difficult than the bag system |
Can be mixed during fermentation | Cannot be mixed effectively |
Cheap | More expensive than bag system |
Limited air circulation | Efficient air circulation |
Limited heat exchange | Efficient heat exchange |
Hard to remove microbial heat in fermentation | Microbial heat formed during fermentation can be removed |
Low area requirement | Wide area requirement |
Microbial growth is controllable | Microbial growth is uncontrollable |
Composition | Formula | Amount (g/L) |
---|---|---|
Glucose | C6H12O6 | 30 |
Peptone | 2 | |
Ammonium nitrate | NH4NO3 | 2 |
Trisodium citrate dihydrate | C6H5Na3O7·2H2O | 2.5 |
Potassium dihydrogen phosphate | KH2PO4 | 5 |
Magnesium sulfate heptahydrate | MgSO4·7H2O | 0.2 |
Calcium chloride dihydrate | CaCl2·2H2O | 0.1 |
Di ammonium hydrogen phosphate | (NH4)2HPO4 | 4 |
Bag | Final Weight (g) | Final Dry Weight (g) | Zeolite (g) | Biomass (g) |
---|---|---|---|---|
1 | 264.4 | 220.7 | 200 | 20.7 |
2 | 285.2 | 255.7 | 200 | 55.7 |
3 | 255.4 | 211.3 | 200 | 11.3 |
Bag | Final Weight | Final Dry Weight | Zeolite | Biomass |
---|---|---|---|---|
1 | 263.88 | 221.88 | 200 | 21.88 |
2 | 251.1 | 217.4 | 200 | 17.4 |
3 | 271.5 | 220.3 | 200 | 20.3 |
Control candy bag | 261.3 | 209.7 | 200 | 9.7 |
Control traditional bag | 248.2 | 206.1 | 200 | 6.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kırdök, O.; Çetintaş, B.; Atay, A.; Kale, İ.; Akyol Altun, T.D.; Hameş, E.E. A Modular Chain Bioreactor Design for Fungal Productions. Biomimetics 2022, 7, 179. https://doi.org/10.3390/biomimetics7040179
Kırdök O, Çetintaş B, Atay A, Kale İ, Akyol Altun TD, Hameş EE. A Modular Chain Bioreactor Design for Fungal Productions. Biomimetics. 2022; 7(4):179. https://doi.org/10.3390/biomimetics7040179
Chicago/Turabian StyleKırdök, Onur, Berker Çetintaş, Asena Atay, İrem Kale, Tutku Didem Akyol Altun, and Elif Esin Hameş. 2022. "A Modular Chain Bioreactor Design for Fungal Productions" Biomimetics 7, no. 4: 179. https://doi.org/10.3390/biomimetics7040179
APA StyleKırdök, O., Çetintaş, B., Atay, A., Kale, İ., Akyol Altun, T. D., & Hameş, E. E. (2022). A Modular Chain Bioreactor Design for Fungal Productions. Biomimetics, 7(4), 179. https://doi.org/10.3390/biomimetics7040179