Skin-Inspired Healthcare Electronics
Abstract
1. Introduction
2. Material Selection and Signaling for Skin Electronics
2.1. Material Selection for Skin Electronics
2.1.1. Nanomaterials
2.1.2. Conductive Hydrogel
2.1.3. Liquid Metals
2.2. Wireless Data Transmission for Bionic Skin Devices
2.2.1. Near-Field Communication
2.2.2. Bluetooth Low Energy
2.3. Data Processing and Analysis for Bionic Skin Devices
3. Applications of Skin Electronics
3.1. Body Temperature Sensor
3.2. Pulse Sensor
3.3. Blood Pressure and Oxygen Sensors
4. Summary and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
e-skin | Electronic skin |
RFID | Radio frequency identification |
NFC | Near-field communication |
BLE | Bluetooth Low Energy |
0D | Zero-dimensional |
1D | One-dimensional |
2D | Two-dimensional |
3D | Three-dimensional |
CNTs | Carbon nanotubes |
CVD | Chemical vapor deposition |
GO | Graphene oxide |
rGO | Reduced graphene oxide |
MoS2 | Molybdenum disulphide |
MOF | Metal–organic skeleton |
MFC | Microbial fuel cell |
Ni | Nickel |
NP | Nanoparticle |
CNF | Carbon nanofibers |
PANI | Polyaniline |
PPy | Polypyrrole |
PAM | Polyacrylamide |
Ga | Gallium |
IoT | Internet of Things |
P2P | Peer-to-peer |
RF | Radio frequency |
Q factor | Quality factor |
ECG | Electrocardiogram |
LSTM | Long Short-Term Memory |
CNN | Convolutional neural network |
PPG | Photoplethysmography |
PAAm-SA | Polyacrylamide-sodium alginate |
TCR | Temperature coefficient of resistance |
EMPA | Tlectrospun micro-pyramid array |
TSMS | Thin, soft, miniaturized system |
GUI | Graphical user interface |
BHS | British Hypertension Society |
SO2 | Oxygen saturation |
SaO2 | Arterial oxygen saturation |
rSO2 | Tissue oxygen saturation |
LEDs | Light-emitting diodes |
PDs | Photodetectors |
References
- Fiore, M.C. The New Vital Sign—Assessing and Documenting Smoking Status. JAMA 1991, 266, 3183–3184. [Google Scholar] [CrossRef] [PubMed]
- McDuff, D. Camera Measurement of Physiological Vital Signs. ACM Comput. Surv. 2023, 55, 176. [Google Scholar] [CrossRef]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Martinez-Hurtado, J.L.; Ünal, B.; Khademhosseini, A.; Butt, H. Wearables in Medicine. Adv. Mater. 2018, 30, 1706910. [Google Scholar] [CrossRef] [PubMed]
- Gehr, S.; Russmann, C. Shaping the future of cardiovascular medicine in the new era of wearable devices. Nat. Rev. Cardiol. 2022, 19, 501–502. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Tian, J.J.; Sun, G.L.; Zou, Y.; Liu, Z.; Li, H.; Zhao, L.M.; Shi, B.J.; Fan, Y.B.; Fan, Y.F.; et al. Self-Powered Pulse Sensor for Antidiastole of Cardiovascular Disease. Adv. Mater. 2017, 29, 1703456. [Google Scholar] [CrossRef]
- Tandon, A.; de Ferranti, S.D. Wearable Biosensors in Pediatric Cardiovascular Disease Promises and Pitfalls Toward Generating Actionable Insights. Circulation 2019, 140, 350–352. [Google Scholar] [CrossRef]
- Ginsburg, G.S.; Picard, R.W.; Friend, S.H. Key Issues as Wearable Digital Health Technologies Enter Clinical Care. N. Engl. J. Med. 2024, 390, 1118–1127. [Google Scholar] [CrossRef]
- Agaronnik, N.; Campbell, E.G.; Ressalam, J.; Iezzoni, L.I. Accessibility of Medical Diagnostic Equipment for Patients With Disability: Observations From Physicians. Arch. Phys. Med. Rehabil. 2019, 100, 2032–2038. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Zaferani, S.H.; Rafiefard, N.; Baraeinejad, B.; Vazifeh, A.R.; Mohammadpour, R.; Ghomashchi, R.; Dillersberger, H.; Tham, D.; Vashaee, D. Advancing personalized healthcare and entertainment: Progress in energy harvesting materials and techniques of self-powered wearable devices. Prog. Mater. Sci. 2023, 139, 101184. [Google Scholar] [CrossRef]
- Gong, S.; Lu, Y.; Yin, J.L.; Levin, A.; Cheng, W.L. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem. Rev. 2024, 124, 455–553. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, I.; Husain, A.; Khan, A.; Asiri, A.M. Electrical Conductivity Based Ammonia Sensing Properties of Polypyrrole/MoS2 Nanocomposite. Polymers 2020, 12, 3047. [Google Scholar] [CrossRef]
- Park, Y.G.; Lee, S.; Park, J.U. Recent Progress in Wireless Sensors for Wearable Electronics. Sensors 2019, 19, 4353. [Google Scholar] [CrossRef]
- Liu, J.H.; Liu, M.L.; Bai, Y.; Zhang, J.H.; Liu, H.W.; Zhu, W.B. Recent Progress in Flexible Wearable Sensors for Vital Sign Monitoring. Sensors 2020, 20, 4009. [Google Scholar] [CrossRef]
- Tian, H.Y.; Liu, C.; Hao, H.M.; Wang, X.R.; Chen, H.; Ruan, Y.L.; Huang, J.H. Recent advances in wearable flexible electronic skin: Types, power supply methods, and development prospects. J. Biomater. Sci. Polym. Ed. 2024, 35, 1455–1492. [Google Scholar] [CrossRef]
- Banitaba, S.N.; Khademolqorani, S.; Jadhav, V.V.; Chamanehpour, E.; Mishra, Y.K.; Mostafavi, E.; Kaushik, A. Recent progress of bio-based smart wearable sensors for healthcare applications. Mater. Today Electron. 2023, 5, 100055. [Google Scholar] [CrossRef]
- Rajkumar, J.; Chandan, N.; Lio, P.; Shi, V.V. The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair. Skin Pharmacol. Physiol. 2023, 36, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.; Huang, C.S.A.; Radi, R.; Moll, S.B.; Jules, E.; Arbiser, J.L. Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties. Cells 2023, 12, 2745. [Google Scholar] [CrossRef]
- Li, D.F.; Yao, K.M.; Gao, Z.; Liu, Y.M.; Yu, X.E. Recent progress of skin-integrated electronics for intelligent sensing. Light Adv. Manuf. 2021, 2, 4. [Google Scholar] [CrossRef]
- Min, S.W.; An, J.H.; Lee, J.H.; Kim, J.H.; Joe, D.J.; Eom, S.H.; Yoo, C.D.; Ahn, H.S.; Hwang, J.Y.; Xu, S.; et al. Wearable blood pressure sensors for cardiovascular monitoring and machine learning algorithms for blood pressure estimation. Nat. Rev. Cardiol. 2025, 22, 629–648. [Google Scholar] [CrossRef]
- Chen, S.W.; Fan, S.C.; Qiao, Z.; Wu, Z.X.; Lin, B.B.; Li, Z.J.; Riegler, M.A.; Wong, M.Y.H.; Opheim, A.; Korostynska, O.; et al. Transforming Healthcare: Intelligent Wearable Sensors Empowered by Smart Materials and Artificial Intelligence. Adv. Mater. 2025, 37, 2500412. [Google Scholar] [CrossRef]
- Song, R.; Cho, S.; Khan, S.; Park, I.; Gao, W. Lighting the Path to Precision Healthcare: Advances and Applications of Wearable Photonic Sensors. Adv. Mater. 2025, 2419161. [Google Scholar] [CrossRef]
- Xin, M.; Yu, T.; Jiang, Y.C.; Tao, R.W.; Li, J.; Ran, F.; Zhu, T.S.; Huang, J.R.; Zhang, J.; Zhang, J.H.; et al. Multi-vital on-skin optoelectronic biosensor for assessing regional tissue hemodynamics. SmartMat 2023, 4, e1157. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, K.; Huang, J.R.; Sun, X.D.; Li, J.; Cheng, Y.; Sun, Y.Q.; Shi, Y.; Pan, L.J. Mechanically Robust, Flexible, Fast Responding Temperature Sensor and High-Resolution Array with Ionically Conductive Double Cross-Linked Hydrogel. Adv. Funct. Mater. 2024, 34, 2314433. [Google Scholar] [CrossRef]
- Seo, Y.W.; La Marca, V.; Tandon, A.; Chiao, J.C.; Drummond, C.K. Exploring the Design for Wearability of Wearable Devices: A Scoping Review. Computers 2024, 13, 326. [Google Scholar] [CrossRef]
- Zhu, P.Y.; Li, Z.H.; Pang, J.B.; He, P.; Zhang, S.Y. Latest developments and trends in electronic skin devices. Soft Sci. 2024, 4, 17. [Google Scholar] [CrossRef]
- Piet, A.; Jablonski, L.; Onwuchekwa, J.I.D.; Unkel, S.; Weber, C.; Grzegorzek, M.; Ehlers, J.P.; Gaus, O.; Neumann, T. Non-Invasive Wearable Devices for Monitoring Vital Signs in Patients with Type 2 Diabetes Mellitus: A Systematic Review. Bioengineering 2023, 10, 1321. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.H.; Kim, B.J.; Ji, S.H.Y.; Hong, J.Y.; Katiyar, A.K.; Ahn, J.H. Smart electronics based on 2D materials for wireless healthcare monitoring. Appl. Phys. Rev. 2022, 9, 041308. [Google Scholar] [CrossRef]
- Huang, K.; Ma, Z.Q.; Khoo, B.L. Advancements in Bio-Integrated Flexible Electronics for Hemodynamic Monitoring in Cardiovascular Healthcare. Adv. Sci. 2025, 12, e2415215. [Google Scholar] [CrossRef]
- Lin, R.X.; Lei, M.; Ding, S.; Cheng, Q.S.; Ma, Z.C.; Wang, L.P.; Tang, Z.K.; Zhou, B.P.; Zhou, Y.N. Applications of flexible electronics related to cardiocerebral vascular system. Mater. Today Bio 2023, 23, 100787. [Google Scholar] [CrossRef]
- Zhang, T.Q.; Liu, N.; Xu, J.; Liu, Z.Y.; Zhou, Y.L.; Yang, Y.C.; Li, S.J.; Huang, Y.; Jiang, S. Flexible electronics for cardiovascular healthcare monitoring. Innovation 2023, 4, 100485. [Google Scholar] [CrossRef]
- Wu, W.T.; Li, L.L.; Li, Z.X.; Sun, J.Z.; Wang, L.L. Extensible Integrated System for Real-Time Monitoring of Cardiovascular Physiological Signals and Limb Health. Adv. Mater. 2023, 35, e2304596. [Google Scholar] [CrossRef]
- Li, J.; Jia, H.L.; Zhou, J.K.; Huang, X.C.; Xu, L.; Jia, S.X.; Gao, Z.; Yao, K.M.; Li, D.F.; Zhang, B.B.; et al. Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure. Nat. Commun. 2023, 14, 5009. [Google Scholar] [CrossRef] [PubMed]
- Song, E.M. Soft, biocompatible materials and skin-like electronics as wearable devices: An interview with John A. Rogers. Natl. Sci. Rev. 2023, 10, nwac191. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Chen, X.Y.; Wang, L.; Makihata, M.; Liu, H.C.; Zhou, T.; Zhao, X.H. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 2022, 377, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Won, D.; Bang, J.; Choi, S.H.; Pyun, K.R.; Jeong, S.; Lee, Y.S.; Ko, S.H. Transparent Electronics for Wearable Electronics Application. Chem. Rev. 2023, 123, 9982–10078. [Google Scholar] [CrossRef]
- Yu, J.H.; Ai, M.X.; Liu, C.R.; Bi, H.C.; Wu, X.; Ying, W.B.; Yu, Z. Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications. Sensors 2025, 25, 76. [Google Scholar] [CrossRef]
- Liu, H.X.; Wang, L.; Lin, G.M.; Feng, Y.H. Recent progress in the fabrication of flexible materials for wearable sensors. Biomater. Sci. 2022, 10, 614–632. [Google Scholar] [CrossRef]
- Corzo, D.; Tostado-Blázquez, G.; Baran, D. Flexible Electronics: Status, Challenges and Opportunities. Front. Electron. 2020, 1, 594003. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, J.W.; Yan, J.H.; Liu, X.Q. Advanced Fiber Materials for Wearable Electronics. Adv. Fiber Mater. 2023, 5, 12–35. [Google Scholar] [CrossRef]
- Yi, Q.; Pei, X.C.; Das, P.; Qin, H.T.; Lee, S.W.; Esfandyarpour, R. A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 2022, 101, 107511. [Google Scholar] [CrossRef]
- Kim, H.; Rigo, B.; Wong, G.; Lee, Y.J.; Yeo, W.H. Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring. Nano-Micro Lett. 2024, 16, 52. [Google Scholar] [CrossRef]
- Wei, J.J.; Zhu, C.L.; Zeng, Z.H.; Pan, F.; Wan, F.Q.; Lei, L.W.; Nyström, G.; Fu, Z.Y. Bioinspired cellulose-integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater. 2022, 1, 495–506. [Google Scholar] [CrossRef]
- Zhang, X.; Grajal, J.; Vazquez-Roy, J.L.; Radhakrishna, U.; Wang, X.X.; Chern, W.; Zhou, L.; Lin, Y.X.; Shen, P.C.; Ji, X.; et al. Two-dimensional MoS-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 2019, 566, 368–372. [Google Scholar] [CrossRef]
- Barnes, S.J. Under the skin: Short-range embedded wireless technology. Int. J. Inform. Manag. 2002, 22, 165–179. [Google Scholar] [CrossRef]
- Ling, Y.Z.; An, T.C.; Yap, L.W.; Zhu, B.W.; Gong, S.; Cheng, W.L. Disruptive, Soft, Wearable Sensors. Adv. Mater. 2020, 32, 1904664. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.B.; Xie, Y.Q. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors 2018, 18, 645. [Google Scholar] [CrossRef] [PubMed]
- Dutta, T.; Chaturvedi, P.; Llamas-Garro, I.; Velázquez-González, J.S.; Dubey, R.; Mishra, S.K. Smart materials for flexible electronics and devices: Hydrogel. RSC Adv. 2024, 14, 12984–13004. [Google Scholar] [CrossRef]
- Zhao, K.Y.; Zou, J.X.; Huang, F.M.; Gao, C.F.; Wang, X.; Li, W.W.; Tian, W.; Lin, Y.F.; Hu, Z.G.; Chu, J.H. Asymmetric Au Electrodes-Induced Self-Powered Organic-Inorganic Perovskite Photodetectors. IEEE Trans. Electron. Devices 2021, 68, 1149–1154. [Google Scholar] [CrossRef]
- Ren, J.; Li, M.; Wang, X.M.; Li, Y.; Yang, W. Adhesive hydrogels with toughness, stretchability, and conductivity performances for motion monitoring. Polym. Bull. 2023, 80, 1335–1351. [Google Scholar] [CrossRef]
- Liu, P.Z.; Wilhams, J.R.; Cha, J.J. Topological nanomaterials. Nat. Rev. Mater. 2019, 4, 479–496. [Google Scholar] [CrossRef]
- Yun, Q.B.; Ge, Y.Y.; Shi, Z.Y.; Liu, J.W.; Wang, X.X.; Zhang, A.; Huang, B.; Yao, Y.; Luo, Q.X.; Zhai, L.; et al. Recent Progress on Phase Engineering of Nanomaterials. Chem. Rev. 2023, 123, 13489–13692. [Google Scholar] [CrossRef] [PubMed]
- Campalani, C.; Monbaliu, J.C.M. Towards sustainable quantum dots: Regulatory framework, toxicity and emerging strategies. Mater. Sci. Eng. R Rep. 2025, 163, 100940. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, Q.W.; Knoll, W.G.; Liedberg, B.; Wang, Y. Rational Design of Functional Peptide-Gold Hybrid Nanomaterials for Molecular Interactions. Adv. Mater. 2020, 32, 2000866. [Google Scholar] [CrossRef]
- Shin, J.; Kang, N.Y.; Kim, B.; Hong, H.Y.S.; Yu, L.; Kim, J.; Kang, H.M.; Kim, J.S. One-dimensional nanomaterials for cancer therapy and diagnosis. Chem. Soc. Rev. 2023, 52, 4488–4514. [Google Scholar] [CrossRef]
- Lee, Y.J.; Choi, U.; Kim, K.; Zettl, A. Recent progress in realizing novel one-dimensional polymorphs via nanotube encapsulation. Nano Converg. 2024, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Huang, Q.; Cui, J.; Lin, H.J.; Li, W.; Lin, Z.D.; Zhang, P. Rapid and Facile Synthesis of High-Performance Silver Nanowires by a Halide-Mediated, Modified Polyol Method for Transparent Conductive Films. Nanomaterials 2020, 10, 1139. [Google Scholar] [CrossRef]
- Pang, Y.Z.; Jin, M.L. Self-Assembly of Silver Nanowire Films for Surface-Enhanced Raman Scattering Applications. Nanomaterials 2023, 13, 1358. [Google Scholar] [CrossRef]
- Li, Y.L.; Kinloch, I.A.; Windle, A.H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–278. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, J.; Yang, W.; Zhang, Y.; Li, J.; Xie, H.; Bao, R.; Gao, W.; Pan, C. Biodegradable, Breathable Leaf Vein-Based Tactile Sensors with Tunable Sensitivity and Sensing Range. Small 2022, 18, e2106906. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, J.; Mo, Y.; Bao, R.; Pan, C. Ultrasensitive Touch Sensor for Simultaneous Tactile and Slip Sensing. Adv. Mater. 2024, 36, e2313857. [Google Scholar] [CrossRef]
- Gogurla, N.; Kim, Y.; Cho, S.; Kim, J.; Kim, S. Multifunctional and Ultrathin Electronic Tattoo for On-Skin Diagnostic and Therapeutic Applications. Adv. Mater. 2021, 33, e2008308. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cui, S.L.; Bian, R.J.; Pan, E.R.; Cao, G.M.; Li, W.W.; Liu, F.C. The Integration of Two-Dimensional Materials and Ferroelectrics for Device Applications. Acs Nano 2024, 18, 1778–1819. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Y.; Akbari, M.K.; Zhuiykov, S. 2D Semiconductor Nanomaterials and Heterostructures: Controlled Synthesis and Functional Applications. Nanoscale Res. Lett. 2021, 16, 94. [Google Scholar] [CrossRef]
- Li, T.T.; Jing, T.Y.; Rao, D.W.; Mourdikoudis, S.; Zuo, Y.P.; Wang, M.Y. Two-dimensional materials for electrocatalysis and energy storage applications. Inorg. Chem. Front. 2022, 9, 6008–6046. [Google Scholar] [CrossRef]
- Alves, T.; Mota, W.S.; Barros, C.; Almeida, D.; Komatsu, D.; Zielinska, A.; Cardoso, J.C.; Severino, P.; Souto, E.B.; Chaud, M.V. Review of scientific literature and standard guidelines for the characterization of graphene-based materials. J. Mater. Sci. 2024, 59, 14948–14980. [Google Scholar] [CrossRef]
- Saeed, M.; Alshammari, Y.; Majeed, S.A.; Al-Nasrallah, E. Chemical Vapour Deposition of Graphene-Synthesis, Characterisation, and Applications: A Review. Molecules 2020, 25, 3856. [Google Scholar] [CrossRef]
- Urade, A.R.; Lahiri, I.; Suresh, K.S. Graphene Properties, Synthesis and Applications: A Review. JOM 2023, 75, 614–630. [Google Scholar] [CrossRef]
- Zheng, S.H.; Ma, J.X.; Fang, K.X.; Li, S.W.; Qin, J.Q.; Li, Y.G.; Wang, J.M.; Zhang, L.Z.; Zhou, F.; Liu, F.Y.; et al. High-Voltage Potassium Ion Micro-Supercapacitors with Extraordinary Volumetric Energy Density for Wearable Pressure Sensor System. Adv. Energy Mater. 2021, 11, 2003835. [Google Scholar] [CrossRef]
- Kornilov, D.Y.; Gubin, S.P. Graphene Oxide: Structure, Properties, Synthesis, and Reduction (A Review). Russ. J. Inorg. Chem. 2020, 65, 1965–1976. [Google Scholar] [CrossRef]
- Li, B.; Ju, Q.K.; Hong, W.T.; Cai, Q.; Lin, J.X.; Liu, W. Edge defect-assisted synthesis of chemical vapor deposited bilayer molybdenum disulfide. Ceram. Int. 2021, 47, 30106–30112. [Google Scholar] [CrossRef]
- Zhao, S.C.; Weng, J.X.; Jin, S.Z.; Lv, Y.F.; Ji, Z.G. Chemical Vapor Transport Deposition of Molybdenum Disulfide Layers Using H2O Vapor as the Transport Agent. Coatings 2018, 8, 78. [Google Scholar] [CrossRef]
- Park, Y.J.; Sharma, B.K.; Shinde, S.M.; Kim, M.S.; Jang, B.; Kim, J.H.; Ahn, J.H. All MoS2-Based Large Area, Skin-Attachable Active-Matrix Tactile Sensor. ACS Nano 2019, 13, 3023–3030. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.B.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.F.; Rummeli, M.H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133. [Google Scholar] [CrossRef]
- Najam, T.; Shah, S.S.A.; Peng, L.S.; Javed, M.S.; Imran, M.; Zhao, M.Q.; Tsiakaras, P. Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coord. Chem. Rev. 2022, 454, 214339. [Google Scholar] [CrossRef]
- Shyam, R.; Sharma, S.; Pandey, S.S.; Manaka, T.; Prakash, R. Study on the charge transport behaviour of mxene- polymer nanocomposite-based self-assembled floating films at the air-liquid interface. Mater. Today Electron. 2024, 9, 100112. [Google Scholar] [CrossRef]
- Kedambaimoole, V.; Kumar, N.; Shirhatti, V.; Nuthalapati, S.; Sen, P.; Nayak, M.M.; Rajanna, K.; Kumar, S. Laser-Induced Direct Patterning of Free-standing Ti3C2-MXene Films for Skin Conformal Tattoo Sensors. ACS Sens. 2020, 5, 2086–2095. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X.Y.; Zheng, Y.J.; Zhang, D.B.; Zhao, Y.; Wang, C.F.; Pan, C.F.; Liu, C.T.; Shen, C.Y. Lightweight, Superelastic, and Hydrophobic Polyimide Nanofiber/MXene Composite Aerogel for Wearable Piezoresistive Sensor and Oil/Water Separation Applications. Adv. Funct. Mater. 2021, 31, 2008006. [Google Scholar] [CrossRef]
- Verma, C.; Berdimurodov, E.; Verma, D.K.; Berdimuradov, K.; Alfantazi, A.; Hussain, C.M. 3D Nanomaterials: The future of industrial, biological, and environmental applications. Inorg. Chem. Commun. 2023, 156, 111163. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Lu, C.R.; Li, J.; Liu, C.Y.; Cao, C.; Wu, T.L. Graphene quantum dots decorated 3D transitional metal (Fe, Co) oxide graphene nanoribbons for oxygen reduction reaction. Carbon Lett. 2023, 33, 155–162. [Google Scholar] [CrossRef]
- Liu, Y.X.; Dong, X.C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.Y.; Liang, R.P.; Li, Y.H.; Qiu, J.D. Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the “Abnormal” Aggregation-Induced Photoluminescence Enhancement. Anal. Chem. 2014, 86, 4423–4430. [Google Scholar] [CrossRef]
- Shan, C.S.; Yang, H.F.; Han, D.X.; Zhang, Q.X.; Ivaska, A.; Niu, L. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron. 2010, 25, 1070–1074. [Google Scholar] [CrossRef]
- Abo-zeid, Y.; Williams, G.R. The potential anti-infective applications of metal oxide nanoparticles: A systematic review. Wires Nanomed. Nanobiotechnol. 2020, 12, e1592. [Google Scholar] [CrossRef]
- Bandas, C.; Orha, C.; Nicolaescu, M.; Morariu, M.I.; Lazau, C. 2D and 3D Nanostructured Metal Oxide Composites as Promising Materials for Electrochemical Energy Storage Techniques: Synthesis Methods and Properties. Int. J. Mol. Sci. 2024, 25, 12521. [Google Scholar] [CrossRef] [PubMed]
- Khare, P.; Ramkumar, J.; Verma, N. Carbon Nanofiber-skinned Three Dimensional Ni/Carbon Micropillars: High Performance Electrodes of a Microbial Fuel Cell. Electrochim. Acta 2016, 219, 88–98. [Google Scholar] [CrossRef]
- Zhu, T.X.; Ni, Y.M.; Biesold, G.M.; Cheng, Y.; Ge, M.Z.; Li, H.Q.; Huang, J.Y.; Lin, Z.Q.; Lai, Y.K. Recent advances in conductive hydrogels: Classifications, properties, and applications. Chem. Soc. Rev. 2023, 52, 473–509. [Google Scholar] [CrossRef]
- Gao, D.; Fabiano, S. Conductive hydrogels put electrons in charge. Science 2024, 384, 509–510. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Wan, R.T.; Feig, V.R.; Tringides, C.M.; Xu, J.K.; Yuk, H.; Lu, B.Y. PEDOTs-Based Conductive Hydrogels: Design, Fabrications, and Applications. Adv. Mater. 2024, 37, 2415151. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Hu, J.K.; Zhang, Y.T.; Xiao, L. Preparation of PAAS/GL/GO anti-freezing conductive hydrogels based on chemical cross-linking networks and their application in wearable sensors. J. Mater. Sci. Mater. Electron. 2024, 35, 2009. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yang, X.L.; Wang, B. Self-healing and wearable conductive hydrogels with dynamic physically crosslinked structure. J. Mater. Sci. Mater. Electron. 2022, 33, 18952–18960. [Google Scholar] [CrossRef]
- Chen, J.Y.; Liu, F.F.; Abdiryim, T.; Liu, X. An overview of conductive composite hydrogels for flexible electronic devices. Adv. Compos. Hybrid Mater. 2024, 7, 35. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, B.R.; Pan, L.J.; Yu, G.H. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 2013, 6, 2856–2870. [Google Scholar] [CrossRef]
- Han, X.T.; Xiao, G.C.; Wang, Y.C.; Chen, X.N.; Duan, G.G.; Wu, Y.Z.; Gong, X.; Wang, H.X. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. J. Mater. Chem. A 2020, 8, 23059–23095. [Google Scholar] [CrossRef]
- Chiang, C.K.; Fincher, C.R.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; Macdiarmid, A.G. Electrical-Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977, 39, 1098–1101. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.X.; Liu, K.; Liu, Y.; Xu, T.; Du, H.S.; Si, C.L. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohydr. Polym. 2023, 305, 120567. [Google Scholar] [CrossRef]
- Tan, P.; Wang, H.F.; Xiao, F.R.; Lu, X.; Shang, W.H.; Deng, X.B.; Song, H.F.; Xu, Z.Y.; Cao, J.F.; Gan, T.S.; et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 2022, 13, 358. [Google Scholar] [CrossRef]
- Yuk, H.; Lu, B.Y.; Zhao, X.H. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667. [Google Scholar] [CrossRef] [PubMed]
- Li, L.L.; Sun, X.D.; Guo, Y.C.; Cheng, W.; Shi, Y.; Pan, L.J. Recent Advances in Stimuli-Responsive Conductive Hydrogels for Smart Sensing and Actuation: Properties, Design Strategies, and Applications. Macromol. Mater. Eng. 2025, e00097. [Google Scholar] [CrossRef]
- Pan, Y.H.; Zhang, J.; Guo, X.; Li, Y.R.; Li, L.L.; Pan, L.J. Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications. Polymers 2024, 16, 1597. [Google Scholar] [CrossRef]
- Yuk, H.; Zhang, T.; Parada, G.A.; Liu, X.Y.; Zhao, X.H. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, B.; Xiang, F.; Zhou, J.; Wang, H.; Suo, Z. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 2014, 105, 151903. [Google Scholar] [CrossRef]
- Li, Y.F.; Xu, S.W.; Zhu, P.Y.; Zhang, S.; Sun, Y.T.; Zhang, S.Y.; He, P. Recent advances and future prospects of flexible and wearable applications based on liquid metal demands. J. Mater. Chem. A 2025, 13, 4693–4717. [Google Scholar] [CrossRef]
- Bo, G.Y.; Ren, L.; Xu, X.; Du, Y.; Dou, S.X. Recent progress on liquid metals and their applications. Adv. Phys. X 2018, 3, 411–441. [Google Scholar] [CrossRef]
- Abbasi, R.; Mayyas, M.; Ghasemian, M.B.; Centurion, F.; Yang, J.; Saborio, M.; Allioux, F.M.; Han, J.L.; Tang, J.B.; Christoe, M.J.; et al. Photolithography-enabled direct patterning of liquid metals. J. Mater. Chem. C 2020, 8, 7805–7811. [Google Scholar] [CrossRef]
- Gao, Y.J.; Ota, H.; Schaler, E.W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H.M.; Leng, Y.G.; Zheng, A.Z.; Xiong, F.R.; et al. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Adv. Mater. 2017, 29, 1701985. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.D.; An, J.Y.; Sun, Y.Q.; Guo, X.; Wu, J.; Hua, J.B.; Su, M.R.; Shi, Y.; Pan, L.J. Liquid-metal microgrid stretchable electronics based on bionic leaf veins with ultra-stretchability and high conductivity. Rare Met. 2024, 43, 2747–2757. [Google Scholar] [CrossRef]
- Lee, S.; Chung, W.G.; Jeong, H.; Cui, G.; Kim, E.; Lim, J.A.; Seo, H.; Kwon, Y.W.; Byeon, S.H.; Lee, J.; et al. Electrophysiological Analysis of Retinal Organoid Development Using 3D Microelectrodes of Liquid Metals. Adv. Mater. 2024, 36, e2404428. [Google Scholar] [CrossRef]
- Yang, X.W.; Yu, Y.; Lai, Q.; Yang, X.M.; Luo, P.; Zhang, B.; Zhang, X.Y.; Wei, Y. Recent development and advances on fabrication and biomedical applications of Ga-based liquid metal micro/nanoparticles. Compos. Part B-Eng. 2023, 248, 110384. [Google Scholar] [CrossRef]
- Song, H.; Kim, T.; Kang, S.; Jin, H.; Lee, K.; Yoon, H.J. Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. Small 2020, 16, 1903391. [Google Scholar] [CrossRef]
- Guo, X.; Li, J.A.; Wang, F.Y.; Zhang, J.H.; Zhang, J.; Shi, Y.; Pan, L.J. Application of conductive polymer hydrogels in flexible electronics. J. Polym. Sci. 2022, 60, 2635–2662. [Google Scholar] [CrossRef]
- Cao, H.L.; Cai, S.Q. Recent advances in electronic skins: Material progress and applications. Front. Bioeng. Biotechnol. 2022, 10, 1083579. [Google Scholar] [CrossRef]
- Guo, Q.Q.; Qiu, X.Y.; Zhang, X.X. Recent Advances in Electronic Skins with Multiple-Stimuli-Responsive and Self-Healing Abilities. Materials 2022, 15, 1661. [Google Scholar] [CrossRef]
- Sun, P.J.; Shen, S.G.; Wan, Y.; Wu, Z.D.; Fang, Z.X.; Gao, X.Z. A Survey of IoT Privacy Security: Architecture, Technology, Challenges, and Trends. IEEE Internet Things 2024, 11, 34567–34591. [Google Scholar] [CrossRef]
- Sun, X.D.; Zhao, C.Y.; Li, H.; Yu, H.W.; Zhang, J.; Qiu, H.; Liang, J.G.; Wu, J.; Su, M.R.; Shi, Y.; et al. Wearable Near-Field Communication Sensors for Healthcare: Materials, Fabrication and Application. Micromachines 2022, 13, 784. [Google Scholar] [CrossRef] [PubMed]
- Juels, A. The vision of secure RFID. Proc. IEEE 2007, 95, 1507–1508. [Google Scholar] [CrossRef]
- Dardari, D.; D’Errico, R.; Roblin, C.; Sibille, A.; Win, M.Z. Ultrawide Bandwidth RFID: The Next Generation? Proc. IEEE 2010, 98, 1570–1582. [Google Scholar] [CrossRef]
- Olenik, S.; Lee, H.S.; Güder, F. The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 2021, 6, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Jegan, R.; Nimi, W.S. On the development of low power wearable devices for assessment of physiological vital parameters: A systematic review. J. Public Health 2024, 32, 1093–1108. [Google Scholar] [CrossRef]
- Lu, B.Y.; Yuk, H.; Lin, S.T.; Jian, N.N.; Qu, K.; Xu, J.K.; Zhao, X.H. Pure PEDOT:PSS hydrogels. Nat. Commun. 2019, 10, 1043. [Google Scholar] [CrossRef]
- Sid, A.; Cresson, P.Y.; Joly, N.; Braud, F.; Lasri, T. Bio-based substrate for flexible electronics- application to a 2.45 GHz wearable patch antenna. Mater. Today Electron. 2023, 5, 100049. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, Y.H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J.A.; Su, Y.W.; Su, J.; Zhang, H.G.; et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, B.; Yang, S.; Byun, I.; Jeong, I.; Cho, S.M. Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing. Curr. Appl. Phys. 2012, 12, 473–478. [Google Scholar] [CrossRef]
- Huang, F.M.; Xu, Y.; Pan, Z.C.; Li, W.W.; Chu, J.H. Direct Patterning on Top-Gate Organic Thin-Film Transistors: Improvement of On/Off Ratio, Subthreshold Swing, and Uniformity. IEEE Electron. Device Lett. 2020, 41, 1082–1085. [Google Scholar] [CrossRef]
- Ortego, I.; Sanchez, N.; Garcia, J.; Casado, F.; Valderas, D.; Sancho, J.I. Inkjet Printed Planar Coil Antenna Analysis for NFC Technology Applications. Int. J. Antennas Propag. 2012, 2012, 486565. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, C.; Cheng, S.Y.; Xu, Z.Q.; Sun, X.; Xu, Y.H.; Chen, J.J.; Jiang, Z.; Liang, K.; Feng, Z.S. Flexible RFID Tag Metal Antenna on Paper-Based Substrate by Inkjet Printing Technology. Adv. Funct. Mater. 2019, 29, 1902579. [Google Scholar] [CrossRef]
- Haartsen, J. How we made Bluetooth. Nat. Electron. 2018, 1, 661. [Google Scholar] [CrossRef]
- Xia, N.; Chen, H.H.; Yang, C.S. Radio Resource Management in Machine-to-Machine Communications-A Survey. IEEE Commun. Surv. Tutor. 2018, 20, 791–828. [Google Scholar] [CrossRef]
- Liu, H.W.; Dubey, M.; Tseng, H.W. LAEBLE: A Lightweight Authentication and Encryption Mechanism for the E-Health System in Bluetooth Low Energy. IEEE Sens. J. 2023, 23, 26712–26727. [Google Scholar] [CrossRef]
- Kwon, K.; Wang, H.L.; Lim, J.; Chun, K.S.; Jang, H.; Yoo, I.; Wu, D.; Chen, A.J.; Gu, C.G.; Lipschultz, L.; et al. Wireless, soft electronics for rapid, multisensor measurements of hydration levels in healthy and diseased skin. Proc. Natl. Acad. Sci. USA 2021, 118, e2020398118. [Google Scholar] [CrossRef]
- Chung, H.U.; Rwei, A.Y.; Hourlier-Fargette, A.; Xu, S.; Lee, K.Y.; Dunne, E.C.; Xie, Z.Q.; Liu, C.R.; Carlini, A.; Kim, D.H.; et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 2020, 26, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.E.; She, J.; Soonsawad, P.; Ng, P.C. BLE Beacons for Internet of Things Applications: Survey, Challenges, and Opportunities. IEEE Internet Things 2018, 5, 811–828. [Google Scholar] [CrossRef]
- Hu, J.Q.; Chen, G.J.; Xue, C.L.; Liang, P.; Xiang, Y.Q.; Zhang, C.L.; Chi, X.K.; Liu, G.Y.; Ye, Y.F.; Cui, D.Y.; et al. RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization. Light-Sci. Appl. 2024, 13, 52. [Google Scholar] [CrossRef]
- Park, B.; Jeong, C.; Ok, J.; Kim, T.I. Materials and Structural Designs toward Motion Artifact-Free Bioelectronics. Chem. Rev. 2024, 124, 6148–6197. [Google Scholar] [CrossRef]
- Venkatachalam, K.L.; Herbrandson, J.E.; Asirvatham, S.J. Signals and Signal Processing for the Electrophysiologist Part I: Electrogram Acquisition. Circ. Arrhythmia Electrophysiol. 2011, 4, 965–973. [Google Scholar] [CrossRef]
- Shin, J.H.; Kwon, J.; Kim, J.U.; Ryu, H.; Ok, J.; Kwon, S.J.; Park, H.; Kim, T.I. Wearable EEG electronics for a Brain-AI Closed-Loop System to enhance autonomous machine decision-making. Npj Flex. Electron. 2022, 6, 32. [Google Scholar] [CrossRef]
- Chowdhury, R.H.; Reaz, M.B.I.; Ali, M.A.B.; Bakar, A.A.A.; Chellappan, K.; Chang, T.G. Surface Electromyography Signal Processing and Classification Techniques. Sensors 2013, 13, 12431–12466. [Google Scholar] [CrossRef]
- Hong, S.J.; Lee, Y.R.; Bag, A.; Kim, H.S.; Trung, T.Q.; Sultan, M.J.; Moon, D.B.; Lee, N.E. Bio-inspired artificial mechanoreceptors with built-in synaptic functions for intelligent tactile skin. Nat. Mater. 2025, 24, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D.K.; Molina-Mendoza, A.J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020, 579, 62–66. [Google Scholar] [CrossRef]
- Pereira, C.V.F.; de Oliveira, E.M.; de Souza, A.D. Machine Learning Applied to Edge Computing and Wearable Devices for Healthcare: Systematic Mapping of the Literature. Sensors 2024, 24, 6322. [Google Scholar] [CrossRef] [PubMed]
- Utsha, U.T.; Morshed, B.I. CardioHelp: A smartphone application for beat-by-beat ECG signal analysis for real-time cardiac disease detection using edge-computing AI classifiers. Smart Health 2024, 31, 100446. [Google Scholar] [CrossRef]
- Pankaj; Kumar, A.; Kumar, M.; Komaragiri, R. Edge-Based Computation of Super-Resolution Superlet Spectrograms for Real-Time Estimation of Heart Rate Using an IoMT-Based Reference-Signal-Less PPG Sensor. IEEE Internet Things 2024, 11, 8647–8657. [Google Scholar] [CrossRef]
- Sun, X.D.; Guo, X.; Gao, J.S.; Wu, J.; Huang, F.C.; Zhang, J.H.; Huang, F.H.; Lu, X.; Shi, Y.; Pan, L.J. E-Skin and Its Advanced Applications in Ubiquitous Health Monitoring. Biomedicines 2024, 12, 2307. [Google Scholar] [CrossRef]
- Wang, Y.; Haick, H.; Guo, S.Y.; Wang, C.Y.; Lee, S.; Yokota, T.; Someya, T. Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 2022, 51, 3759–3793. [Google Scholar] [CrossRef]
- Guarducci, S.; Jayousi, S.; Caputo, S.; Mucchi, L. Key Fundamentals and Examples of Sensors for Human Health: Wearable, Non-Continuous, and Non-Contact Monitoring Devices. Sensors 2025, 25, 556. [Google Scholar] [CrossRef]
- Zaman, N.I.D.; Hau, Y.W.; Leong, M.C.; Al-ashwal, R.H.A. A review on the significance of body temperature interpretation for early infectious disease diagnosis. Artif. Intell. Rev. 2023, 56, 15449–15494. [Google Scholar] [CrossRef]
- Feigin, V.L.; Owolabi, M.O. Pragmatic solutions to reduce the global burden of stroke: A World Stroke Organization-Lancet Neurology Commission. Lancet Neurol. 2023, 22, 1160–1206, Erratum in Lancet Neurol. 2023, 22, E13. [Google Scholar] [CrossRef]
- Dambrosio, N.; Porter, M.; Bauer, E.; Levitan, N.; Liedtke, D.; de Lima, M.; Malek, E. Identifying Neutropenic Fever Earlier: An Application of a Skin Patch for Continuous Temperature Monitoring. Blood 2018, 132, 4718. [Google Scholar] [CrossRef]
- Lin, M.Z.; Zheng, Z.J.; Yang, L.; Luo, M.S.; Fu, L.H.; Lin, B.F.; Xu, C.H. A High-Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human Motion and Skin Temperature Detection. Adv. Mater. 2022, 34, 2107309. [Google Scholar] [CrossRef]
- Wang, Y.X.; Hong, Y.; Hu, X.K.; Ye, Y.; Wang, P.K.; Luo, J.J.; Yin, A.; Ren, Z.Q.; Liu, H.P.; Qi, X.; et al. Flexible Fabric Temperature Sensor Based on Vo2/Pedot:Pss with High Performance. Adv. Mater. Technol. 2023, 8, 2300898. [Google Scholar] [CrossRef]
- Davidson, A.; Buis, A.; Glesk, I. Toward Novel Wearable Pyroelectric Temperature Sensor for Medical Applications. IEEE Sens. J. 2017, 17, 6682–6689. [Google Scholar] [CrossRef]
- Li, F.; Xue, H.; Lin, X.Z.; Zhao, H.R.; Zhang, T. Wearable Temperature Sensor with High Resolution for Skin Temperature Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 43844–43852. [Google Scholar] [CrossRef]
- Kwak, J.W.; Han, M.D.; Xie, Z.Q.; Chung, H.; Lee, J.Y.; Avila, R.; Yohay, J.; Chen, X.X.; Liang, C.M.; Patel, M.; et al. Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Sci. Transl. Med. 2020, 12, eabc4327. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, S.C.; Yin, H.F.; Weisbecker, H.; Tran, H.T.; Guo, Z.H.; Han, T.H.; Wang, Y.H.; Liu, Y.H.; Wu, Y.Z.; et al. Skin-inspired, sensory robots for electronic implants. Nat. Commun. 2024, 15, 4777. [Google Scholar] [CrossRef]
- Kang, X.X.; Zhang, J.; Shao, Z.M.; Wang, G.T.; Geng, X.G.; Zhang, Y.T.; Zhang, H.Y. A Wearable and Real-Time Pulse Wave Monitoring System Based on a Flexible Compound Sensor. Biosensors 2022, 12, 133. [Google Scholar] [CrossRef]
- Liu, G.Y.; Sha, W.Y.; Wu, Y.Y.; Luo, J.H.; Cai, Y.Y.; Zhang, T.M.; Yang, Y. The association between estimated pulse wave velocity and cardio-cerebrovascular disease risk: A cohort study. Eur. J. Med. Res. 2025, 30, 16. [Google Scholar] [CrossRef]
- Ferreira, A.D.; Lopes, A.J. Pulse waveform analysis as a bridge between pulse examination in Chinese medicine and cardiology. Chin. J. Integr. Med. 2013, 19, 307–314. [Google Scholar] [CrossRef]
- Yi, Z.R.; Liu, Z.X.; Li, W.B.; Ruan, T.; Chen, X.; Liu, J.Q.; Yang, B.; Zhang, W.M. Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring. Adv. Mater. 2022, 34, 2110291. [Google Scholar] [CrossRef]
- Zhang, Q.C.; Zhang, H.A.; Liang, J.; Zhao, X.F.; Li, B.; Zang, J.B.; Gao, L.B.; Zhang, Z.D.; Xue, C.Y. Ti3C2Tx-MXene/PET textile-based flexible pressure sensor for wearable pulse monitoring. J. Mater. Chem. C 2023, 11, 15638–15648. [Google Scholar] [CrossRef]
- Meng, K.Y.; Xiao, X.; Wei, W.X.; Chen, G.R.; Nashalian, A.; Shen, S.; Chen, J. Wearable Pressure Sensors for Pulse Wave Monitoring. Adv. Mater. 2022, 34, 2109357. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, Z.; Xu, J.; Li, J.; Yan, K.; Cheng, W.; Xin, M.; Zhu, T.; Du, J.; Chen, S.; et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 2022, 13, 5839. [Google Scholar] [CrossRef]
- Dias, D.; Cunha, J.P.S. Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies. Sensors 2018, 18, 2414. [Google Scholar] [CrossRef]
- Meng, K.Y.; Liu, Z.X.; Xiao, X.; Manshaii, F.; Li, P.; Yin, J.Y.; Wang, H.Y.; Mei, H.X.; Sun, Y.B.; He, X.M.; et al. Bioinspired Wearable Pulse Sensors for Ambulant Cardiovascular Monitoring and Biometric Authentication. Adv. Funct. Mater. 2024, 34, 2403163. [Google Scholar] [CrossRef]
- Chu, Y.; Tang, K.C.; Hsu, Y.C.; Huang, T.T.; Wang, D.L.; Li, W.T.; Savitz, S.I.; Jiang, X.Q.; Shams, S. Non-invasive arterial blood pressure measurement and SpO2 estimation using PPG signal: A deep learning framework. BMC Med. Inform. Decis. Mak. 2023, 23, 131. [Google Scholar] [CrossRef]
- Selvaraju, V.; Spicher, N.; Wang, J.; Ganapathy, N.; Warnecke, J.M.; Leonhardt, S.; Swaminathan, R.; Deserno, T.M. Continuous Monitoring of Vital Signs Using Cameras: A Systematic Review. Sensors 2022, 22, 4097. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Zhang, P.H.; Huang, W.Y.; Huang, W.; Tang, X.H.; Yu, H.; Wang, S.N. The impact of sphygmomanometer placement and cuff placement on blood pressure measurements. Front. Cardiovasc. Med. 2024, 11, 1388313. [Google Scholar] [CrossRef] [PubMed]
- Samartkit, P.; Pullteap, S. Non-invasive continuous blood pressure sensors in biomedical engineering research: A review. Sens. Actuators A Phys. 2024, 367, 115084. [Google Scholar] [CrossRef]
- Kumar, S.; Yadav, S.; Kumar, A. Blood pressure measurement techniques, standards, technologies, and the latest futuristic wearable cuff-less know-how. Sens. Diagn. 2024, 3, 181–202. [Google Scholar] [CrossRef]
- Rubins, U.; Marcinkevics, Z.; Cimurs, J.; Saknite, I.; Kviesis-Kipge, E.; Grabovskis, A. Multimodal Device for Real-Time Monitoring of Skin Oxygen Saturation and Microcirculation Function. Biosensors 2019, 9, 97. [Google Scholar] [CrossRef]
- Azizan, A.; Ahmed, W.; Razak, A.H.A. Sensing health: A bibliometric analysis of wearable sensors in healthcare. Health Technol. 2024, 14, 15–34. [Google Scholar] [CrossRef]
- X-trodes. X-trodes Receives FDA 510(k) Clearance for Wearable “Skin” Solution that Brings Medical-Grade Electrophysiological Monitoring to the Home. Available online: https://www.prnewswire.com/news-releases/x-trodes-receives-fda-510k-clearance-for-wearable-skin-solution-that-brings-medical-grade-electrophysiological-monitoring-to-the-home-302065750.html (accessed on 20 February 2024).
- Appeven, H.V. Smart Patch Takes over Time-Consuming Work of Nurses. Available online: https://www.tue.nl/en/news-and-events/news-overview/10-02-2023-smart-patch-takes-over-time-consuming-work-of-nurses (accessed on 10 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Xu, Q.; Zhou, Y.; Chu, Z.; Li, L.; Sun, X.; Huang, F.; Wang, F.; Chen, C.; Guo, X.; et al. Skin-Inspired Healthcare Electronics. Biomimetics 2025, 10, 531. https://doi.org/10.3390/biomimetics10080531
Li S, Xu Q, Zhou Y, Chu Z, Li L, Sun X, Huang F, Wang F, Chen C, Guo X, et al. Skin-Inspired Healthcare Electronics. Biomimetics. 2025; 10(8):531. https://doi.org/10.3390/biomimetics10080531
Chicago/Turabian StyleLi, Saite, Qiaosheng Xu, Yukai Zhou, Zhengdao Chu, Lulu Li, Xidi Sun, Fengchang Huang, Fei Wang, Cai Chen, Xin Guo, and et al. 2025. "Skin-Inspired Healthcare Electronics" Biomimetics 10, no. 8: 531. https://doi.org/10.3390/biomimetics10080531
APA StyleLi, S., Xu, Q., Zhou, Y., Chu, Z., Li, L., Sun, X., Huang, F., Wang, F., Chen, C., Guo, X., Li, J., Cheng, W., & Pan, L. (2025). Skin-Inspired Healthcare Electronics. Biomimetics, 10(8), 531. https://doi.org/10.3390/biomimetics10080531