Use of Amalgam and Composite Restorations Among 12-Year-Old Children in Israel: A Retrospective Study
Abstract
1. Introduction
1.1. Composition of Dental Amalgam and Potential Interactions with Bone
1.2. Biocompatibility of Dental Amalgam with Bone Tissue
1.3. Composite Resin Fillings
1.4. Comparison with Alternative Restorative Materials
1.5. Dental Health Reform
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SES | Socio Economic Status |
| HMO | Health Maintenance Organization |
References
- Bernabe, E.; Marcenes, W.; Abdulkader, R.S.; Abreu, L.G.; Afzal, S.; Alhalaiqa, F.N.; Al-Maweri, S.; Alsharif, U.; Anyasodor, A.E.; Arora, A.; et al. Trends in the global, regional, and national burden of oral conditions from 1990 to 2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2025, 405, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Sheiham, A. Dental caries affects body weight, growth and quality of life in pre-school children. Br. Dent. J. 2006, 201, 625–626. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jia, L.; Wang, Q.; Wang, J.-J.; Tian, Y.; Zhang, Z.; Xie, L. Global, regional, and national burden of caries in primary teeth from 1990 to 2021: Results from the global burden of disease study 2021. BMC Oral Health 2025, 25, 1381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blomma, C.; Davidson, T.; Gerdin, E.W.; Bågesund, M.; Lyth, J. Persistent oral health inequality in children—Repeated cross-sectional studies in 2010 and 2019. BMC Public Health 2024, 24, 3528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Foláyan, M.O.; Coelho, E.M.R.d.B.; Feldens, C.A.; Gaffar, B.; Virtanen, J.I.; Abodunrin, O.R.; Duangthip, D.; Al-Batayneh, O.B.; Vukovic, A.; El Tantawi, M.; et al. A scoping review on early childhood caries and inequalities using the Sustainable Development Goal 10 framework. BMC Oral Health 2025, 25, 219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iheozor-Ejiofor, Z.; Walsh, T.; Lewis, S.R.; Riley, P.; Boyers, D.; E Clarkson, J.; Worthington, H.V.; Glenny, A.-M.; O’MAlley, L. Water fluoridation for the prevention of dental caries. Cochrane Database Syst Rev. 2024, 10, CD010856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Veneri, F.; Vinceti, S.R.; Filippini, T. Fluoride and caries prevention: A scoping review of public health policies. Ann. Ig. Med. Prev. Comunità 2024, 36, 270–280. [Google Scholar] [CrossRef] [PubMed]
- McLaren, L.; McNeil, D.A.; Potestio, M.; Patterson, S.; Thawer, S.; Faris, P.; Shi, C.; Shwart, L. Equity in children’s dental caries before and after cessation of community water fluoridation: Differential impact by dental insurance status and geographic material deprivation. Int. J. Equity Health 2016, 15, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bailey, O. The long-term oral health consequences of an amalgam phase-out. Br. Dent. J. 2025, 238, 621–629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Safety of Dental Amalgam. Available online: https://www.iadr.org/science-policy/safety-dental-amalgam (accessed on 10 November 2025).
- Martin, M.D.; Woods, J.S. The safety of dental amalgam in children. Expert Opin. Drug Saf. 2006, 5, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Ciosek, Ż.; Kot, K.; Rotter, I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. Int. J. Environ. Res. Public Health 2023, 20, 2197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Public Health Statement for Tin. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp55-c1-b.pdf (accessed on 10 November 2025).
- Uçar, Y.; Brantley, W.A. Biocompatibility of Dental Amalgams. Int. J. Dent. 2011, 2011, 981595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nagem-Filho, H.; Araujo, P.; Chiodi-Netto, J.; Vieira, D. Tissue reaction to dispersion alloy amalgam. J. Prosthet. Dent. 1976, 36, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Ellender, G.; Ham, K.N.; Harcourt, J.K. Toxic effects of dental amalgam implants. Optical histological and histochemical observations. Aust. Dent. J. 1978, 23, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Salah, H.M.; Hashem, A.A.R.; Mustafa, T.; Soliman, A.H.; Khallaf, M.; Haddadeen, H. The impact of root end filling material type and the application of bone graft on healing of periapical tissues after endodontic microsurgery (a clinical randomized controlled trial). Sci. Rep. 2024, 14, 25378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parsell, D.E.; Streckfus, C.F.; Stewart, B.M.; Buchanan, W.T. The effect of amalgam overhangs on alveolar bone height as a function of patient age and overhang width. Oper. Dent. 1998, 23, 94–99. [Google Scholar] [PubMed]
- Jeffcoat, M.K.; Howell, T.H. Alveolar Bone Destruction Due to Overhanging Amalgam in Periodontal Disease. J. Periodontol. 1980, 51, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Hurley, S. Dental amalgam: A material choice. Br. Dent. J. 2022, 233, 872–873. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, S. The great dental amalgam debate. Br. Dent. J. 2022, 233, 874. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leinfelder, K.F. Dental amalgam alloys. Curr. Opin. Dent. 1991, 1, 214–217. [Google Scholar] [PubMed]
- Opdam, N.J.M.; Bronkhorst, E.M.; Roeters, J.M.; Loomans, B.A.C. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent. Mater. 2007, 23, 2–8. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.J.; Tyas, M.J. Local adverse effects of amalgam restorations. Int. Dent. J. 2008, 58, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Spierings, T.; De Vree, J.; Peters, M.; Plasschaert, A. The Influence of Restorative Dental Materials on Heat Transmission in Human Teeth. J. Dent. Res. 1984, 63, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Lancet, T. Minamata Convention on mercury: A contemporary reminder. Lancet 2017, 390, 822. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S. Mercury, dentistry, minamata convention and research opportunities. Indian J. Dent. Res. 2019, 30, 819. [Google Scholar] [CrossRef] [PubMed]
- Joy, A.; Qureshi, A. Mercury in Dental Amalgam, Online Retail, and the Minamata Convention on Mercury. Environ. Sci. Technol. 2020, 54, 14139–14142. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. A Historical Perspective on Dental Composite Restorative Materials. J. Funct. Biomater. 2024, 15, 173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moraschini, V.; Fai, C.K.; Alto, R.M.; dos Santos, G.O. Amalgam and resin composite longevity of posterior restorations: A systematic review and meta-analysis. J. Dent. 2015, 43, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Correa, M.; Peres, M.; Peres, K.; Horta, B.; Barros, A.; Demarco, F. Amalgam or composite resin? Factors influencing the choice of restorative material. J. Dent. 2012, 40, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Watson, T.F. Essentials of minimally invasive operative dentistry. In Pickard’s Guide to Minimally Invasive Operative Dentistry, 10th ed.; Banerjee, A., Watson, T.F., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 60–97. [Google Scholar]
- Worthington, H.V.; Khangura, S.; Seal, K.; Mierzwinski-Urban, M.; Veitz-Keenan, A.; Sahrmann, P.; Schmidlin, P.R.; Davis, D.; Iheozor-Ejiofor, Z.; Alcaraz, M.G.R. Direct composite resin fillings versus amalgam fillings for permanent posterior teeth. Cochrane Database Syst. Rev. 2021, 8, CD005620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chin, K.-Y.; Pang, K.-L.; Mark-Lee, W.F. A Review on the Effects of Bisphenol A and Its Derivatives on Skeletal Health. Int. J. Med. Sci. 2018, 15, 1043–1050. [Google Scholar] [CrossRef]
- García-Recio, E.; Costela-Ruiz, V.J.; Melguizo-Rodriguez, L.; Ramos-Torrecillas, J.; García-Martínez, O.; Ruiz, C.; de Luna-Bertos, E. Repercussions of Bisphenol A on the Physiology of Human Osteoblasts. Int. J. Mol. Sci. 2022, 23, 5349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Austin, B.; Keating, K.M.; Hohenfeldt, P.R.; Gerstein, H. Osseous reactions to bimetallic couples composed of amalgam and gold implanted in rat tibias. Oral Surg. Oral Med. Oral Pathol. 1982, 54, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Shahrabani, S.; Benzion, U.; Machnes, Y.; Gal, A. The use of dental services for children: Implications of the 2010 dental reform in Israel. Heal. Policy 2015, 119, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health (Israel). Dental Treatments for Children and Adolescents. Available online: https://www.gov.il/en/service/dental-treatments-for-children (accessed on 10 July 2025).
- Tobias, G.; Mordechai, F.; Tali, C.; Yaron, B.; Beatrice, G.P.; Jonathan, M.; Harold, S.-C. The effect of community water fluoridation cessation on children’s dental health: A national experience. Isr. J. Health Policy Res. 2022, 11, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Central Bureau of Statistics (Israel). List of Local Authorities by Districts and Socio-Economic Cluster. 2015. Available online: https://www.gov.il/BlobFolder/generalpage/most_planning2020/he/מדד%20חברתי%20כלכלי%202015-יישובים%20בתוך%20מועצות%20אזוריות.pdf (accessed on 1 December 2023). (In Hebrew)
- Reher, V.; Reher, P.; Peres, K.G.; A Peres, M. Fall of amalgam restoration: A 10-year analysis of an Australian university dental clinic. Aust. Dent. J. 2021, 66, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, J.; Murray, C.; Schwass, D.R.; Brosnan, M.; Brunton, P.; Lyons, K.; Thomson, W. The Dental Amalgam Phasedown in New Zealand: A 20-year Trend. Oper. Dent. 2020, 45, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Dentino, F.C.; Yepes, J.F.; Jones, J.E.; Scully, A.C.; Eckert, G.J.; Downey, T.; Maupome, G. Amalgam or composite in pediatric dentistry: Analysis of private insurance claims data. J. Am. Dent. Assoc. 2023, 154, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Alexander, G.; Hopcraft, M.S.; Tyas, M.; Wong, R. Dentists’ restorative decision-making and implications for an ‘amalgamless’ profession. Part 1: A review. Aust. Dent. J. 2014, 59, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.J.M.C.; Zare, E.; McDermott, P.; Junior, G.C.S. Multifactorial Contributors to the Longevity of Dental Restorations: An Integrated Review of Related Factors. Dent. J. 2024, 12, 291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Collares, K.; Opdam, N.J.; Peres, K.G.; Peres, M.A.; Horta, B.L.; Demarco, F.F.; Correa, M.B. Higher experience of caries and lower income trajectory influence the quality of restorations: A multilevel analysis in a birth cohort. J. Dent. 2018, 68, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Corrêa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J.M. Longevity of posterior composite restorations: Not only a matter of materials. Dent. Mater. 2012, 28, 87–101. [Google Scholar] [CrossRef] [PubMed]
- E Varughese, R.; Andrews, P.; Sigal, M.J.; Azarpazhooh, A. An assessment of direct restorative material use in posterior teeth by American and Canadian pediatric dentists: I. Material choice. Pediatr Dent. 2016, 38, 489–496. [Google Scholar] [PubMed]
- Santos, M.J.M.C.; Rêgo, H.M.C.; Siddique, I.; Jessani, A. Five-year clinical performance of complex class II resin composite and amalgam restorations—A retrospective study. Dent. J. 2023, 11, 88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ben-Gal, G.; Weiss, E.I. Trends in material choice for posterior restorations in an israeli dental school: Composite resin versus amalgam. J. Dent. Educ. 2011, 75, 1590–1595. [Google Scholar] [CrossRef] [PubMed]




| Variable | Female N (%) | Male N (%) | Total |
|---|---|---|---|
| Number of patients—Amalgam | 476 | 419 | 895 |
| Number of patients—Composite resin | 7255 | 5406 | 12,661 |
| Number of treatments—Amalgam | 816 | 719 | 1535 |
| Number of treatments—Composite resin | 15,078 | 10,684 | 25,762 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassar, R.; Chackartchi, T.; Doron, H.; Mann, J.; Findler, M.; Tobias, G. Use of Amalgam and Composite Restorations Among 12-Year-Old Children in Israel: A Retrospective Study. Biomimetics 2025, 10, 833. https://doi.org/10.3390/biomimetics10120833
Nassar R, Chackartchi T, Doron H, Mann J, Findler M, Tobias G. Use of Amalgam and Composite Restorations Among 12-Year-Old Children in Israel: A Retrospective Study. Biomimetics. 2025; 10(12):833. https://doi.org/10.3390/biomimetics10120833
Chicago/Turabian StyleNassar, Rimah, Tali Chackartchi, Haim Doron, Jonathan Mann, Mordechai Findler, and Guy Tobias. 2025. "Use of Amalgam and Composite Restorations Among 12-Year-Old Children in Israel: A Retrospective Study" Biomimetics 10, no. 12: 833. https://doi.org/10.3390/biomimetics10120833
APA StyleNassar, R., Chackartchi, T., Doron, H., Mann, J., Findler, M., & Tobias, G. (2025). Use of Amalgam and Composite Restorations Among 12-Year-Old Children in Israel: A Retrospective Study. Biomimetics, 10(12), 833. https://doi.org/10.3390/biomimetics10120833

