Finite Element Analysis of Stress Distribution in Immature Permanent Incisors Following MTA Apexification with Different Coronal Base Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Construction
2.2. Supporting Structures
2.3. Restorative Scenarios
- Model 1: Control (sound immature tooth without restoration)
- Model 2: MTA apexification + gutta-percha backfill + conventional glass ionomer cement (Fuji IX, GC, Tokyo, Japan) as a 2 mm base
- Model 3: MTA apexification + resin-modified glass ionomer cement (Vitrebond, 3M ESPE, St. Paul, MN, USA)
- Model 4: MTA apexification + bulk-fill flowable composite (SDR, Dentsply, Konstanz, Germany)
- Model 5: MTA apexification + composite resin (Grandio, Voco, Cuxhaven, Germany)
- Model 6: MTA apexification + flowable composite resin (Tetric Flow, Ivoclar Vivadent, Schaan, Liechtenstein).
2.4. Mesh and Boundary Conditions
2.5. Loading Protocol
2.6. Derived Clinical Metrics and Statistics
2.7. Statistical Analysis
3. Results
Comparative Analysis
4. Discussions
4.1. Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sevtekin, S.; Ozlek, E. One-Visit Apexification Using Mineral Trioxide Aggregate in an Immature Permanent Tooth with Open Apex and Periapical Lesion. Turk. Klin. J. Dent. Sci. 2025, 31, 471–474. [Google Scholar] [CrossRef]
- Luder, H.U. Malformations of the tooth root in humans. Front. Physiol. 2015, 6, 307. [Google Scholar] [CrossRef]
- Hemalatha, H.; Sandeep, M.; Kulkarni, S.; Yakub, S.S. Evaluation of fracture resistance in simulated immature teeth using Resilon and Ribbond as root reinforcements–an in vitro study. Dent. Traumatol. 2009, 25, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, K.L.; Beeson, T.J.; Kirkpatrick, T.C. Fracture resistance of simulated immature teeth filled with resilon, gutta-percha, or composite. J. Endod. 2007, 33, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Talati, A.; Disfani, R.; Afshar, A.; Rastegar, A.F. Finite element evaluation of stress distribution in mature and immature teeth. Iran. Endod. J. 2007, 2, 47–53. [Google Scholar] [PubMed]
- Diogenes, A.; Ruparel, N.B. Regenerative endodontic procedures: Clinical outcomes. Dent. Clin. 2017, 61, 111–125. [Google Scholar]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef]
- Bird, D.C.; Komabayashi, T.; Guo, L.; Opperman, L.A.; Spears, R. In vitro evaluation of dentinal tubule penetration and biomineralization ability of a new root-end filling material. J. Endod. 2012, 38, 1093–1096. [Google Scholar] [CrossRef]
- Brett, A.; Foschi, F.; Patel, S. Clinician Perspective of Regenerative Endodontic Procedures for Immature Anterior Teeth: An Observational Web-based Study. J. Endod. 2025, 51, 1061–1071. [Google Scholar] [CrossRef]
- Gupta, A.; Malhotra, G.; Akadiri, O.; Jackson, I.T. Head and Neck Embryology and Anatomy. In Plastic and Reconstructive Surgery; Siemionow, M.Z., Eisenmann-Klein, M., Eds.; Springer: London, UK, 2010; pp. 235–252. [Google Scholar]
- Deshpande, S.R.; Gaddalay, S.L.; Damade, Y.N.; Khanvilkar, U.D.; Chaudhari, A.S.; Anala, V. Reinforcing the cervical dentin with bonded materials to improve fracture resistance of endodontically treated roots. J. Conserv. Dent. Endod. 2022, 25, 179–184. [Google Scholar] [CrossRef]
- Yıkılgan, İ.; Bala, O. How can stress be controlled in endodontically treated teeth? A 3D finite element analysis. Sci. World J. 2013, 2013, 426134. [Google Scholar] [CrossRef] [PubMed]
- Mumcu, K. CA(OH)2 Apexification to a Tooth with Chronic Apical Abscess: A Case Report. HRU Int. J. Dent. Oral Res. 2022, 2, 134–138. [Google Scholar]
- Kasimoglu, Y.; Koyuncuoglu, G.; Bayrak, S.; Ugur-Aydin, Z.; Aren, G. Evaluation of the Effects of MTA Apexification and Regenerative Endodontic Therapy on Lesion Healing using Fractal Analysis: A Retrospective Study. Eur. J. Paediatr. Dent. 2024, 1, 1. [Google Scholar] [CrossRef]
- Guven, N.; Topuz, O.; Yikilgan, İ. Evaluation of different restoration combinations used in the reattachment of fractured teeth: A finite element analysis. Appl. Bionics Biomech. 2018, 2018, 8916928. [Google Scholar] [CrossRef]
- Bucchi, C.; Marcé-Nogué, J.; Galler, K.; Widbiller, M. Biomechanical performance of an immature maxillary central incisor after revitalization: A finite element analysis. Int. Endod. J. 2019, 52, 1508–1518. [Google Scholar] [CrossRef]
- Qian, L.; Todo, M.; Morita, Y.; Matsushita, Y.; Koyano, K. Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament. Dent. Mater. 2009, 25, 1285–1292. [Google Scholar] [CrossRef]
- Al-Huthaifi, B.H.; Ghwainem, A.A.; Alqarni, A.S.; Alshehri, B.Y.; Almnea, R.A.; Alelyani, A.A.; Alshahrani, A.S.; Al Moaleem, M.M.; Alhumaidi, A.M.; Abdullah, B.M.A.; et al. Knowledge, perception, and management toward traumatic tooth avulsion among dental professionals: A cross-sectional study. BMC Med. Educ. 2025, 25, 1206. [Google Scholar] [CrossRef] [PubMed]
- Agha, A.; Parker, S.; Patel, M.P. The properties of experimental resin-modified glass-ionomer luting cements (RMGICs) containing novel monomers. Dent. Mater. 2017, 33, 1331–1339. [Google Scholar] [CrossRef]
- Eram, A.; Zuber, M.; Keni, L.G.; Kalburgi, S.; Naik, R.; Bhandary, S.; Amin, S.; Badruddin, I.A. Finite element analysis of immature teeth filled with MTA, Biodentine and Bioaggregate. Comput. Methods Programs Biomed. 2020, 190, 105356. [Google Scholar] [CrossRef] [PubMed]
- Anthrayose, P.; Nawal, R.R.; Yadav, S.; Talwar, S.; Yadav, S. Effect of revascularisation and apexification procedures on biomechanical behaviour of immature maxillary central incisor teeth: A three-dimensional finite element analysis study. Clin. Oral. Investig. 2021, 25, 6671–6679. [Google Scholar] [CrossRef]
- Belli, S.; Eraslan, O.; Eskitaşcıoğlu, G. Effect of Different Treatment Options on Biomechanics of Immature Teeth: A Finite Element Stress Analysis Study. J. Endod. 2018, 44, 475–479. [Google Scholar] [CrossRef]
- Kashfi, N.S.; Jalili, M.M.; Soltanianzadeh, M.; Kazemipoor, M. Finite element analysis of occlusal stress in cervical dentin: Effects of thickness and cross-section. BMC Oral Health 2025, 25, 924. [Google Scholar] [CrossRef]
- Maravić, T.; Comba, A.; Mazzitelli, C.; Bartoletti, L.; Balla, I.; di Pietro, E.; Josić, U.; Generali, L.; Vasiljević, D.; Blažić, L.; et al. Finite element and in vitro study on biomechanical behavior of endodontically treated premolars restored with direct or indirect composite restorations. Sci. Rep. 2022, 12, 12671. [Google Scholar] [CrossRef]
- Monteiro, P.J.M.; Chang, C.T. The elastic moduli of calcium hydroxide. Cem. Concr. Res. 1995, 25, 1605–1609. [Google Scholar] [CrossRef]
- Jonsson Sjögren, J.; Kvist, T.; Eliasson, A.; EndoReCo; Pigg, M. The frequency and characteristics of pain and discomfort associated with root filled teeth: A practice-based study. Int. Endod. J. 2019, 52, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- de Souza, G.L.; de Bragança, G.F.; Vilela, A.B.F.; Rondón, A.K.A.; Kahler, B.; Soares, C.J.; Moura, C.C.G. Stress in Immature Incisor Treated With Regenerative Endodontics or Restored With Bulk-Fill Resin Composite: A 2D Finite Element Analysis. Aust. Endod. J. 2025, 1–8. [Google Scholar] [CrossRef]
- Magne, P. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dent. Mater. 2007, 23, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Sönmez Uzel, Ö.; Ayna, B. Evaluation of Stress Distribution in Root Canal Treated Maxillary Incisors Treated with Different Fiber-Reinforced Composite Resins by Finite Element Analysis. HRU Int. J. Dent. Oral Res. 2023, 3, 91–98. [Google Scholar] [CrossRef]
- Davide, A.; Raffaella, A.; Marco, T.; Michele, S.; Syed, J.; Massimo, M.; Marco, F.; Antonio, A. Direct restoration modalities of fractured central maxillary incisors: A multi-levels validated finite elements analysis with in vivo strain measurements. Dent. Mater. 2015, 31, e289–e305. [Google Scholar] [CrossRef]
- Gidrão, G.M.S.; Carrazedo, R.; Bosse, R.M.; Silvestro, L.; Ribeiro, R.; de Souza, C.F.P. Numerical Modeling of the Dynamic Elastic Modulus of Concrete. Materials 2023, 16, 3955. [Google Scholar] [CrossRef]
- Celik, H.K.; Koc, S.; Kustarci, A.; Rennie, A.E.W. A literature review on the linear elastic material properties assigned in finite element analyses in dental research. Mater. Today Commun. 2022, 30, 103087. [Google Scholar] [CrossRef]
- Fill, T.S.; Carey, J.P.; Toogood, R.W.; Major, P.W. Experimentally determined mechanical properties of, and models for, the periodontal ligament: Critical review of current literature. J. Dent. Biomech. 2011, 2011, 312980. [Google Scholar] [CrossRef]
- Poiate, I.A.V.P.; Vasconcellos, A.B.d.; Poiate Junior, E.; Dias, K.R.H.C. Stress distribution in the cervical region of an upper central incisor in a 3D finite element model. Braz. Oral Res. 2009, 23, 161–168. [Google Scholar] [CrossRef]
- Gulec, L.; Ulusoy, N. Effect of endocrown restorations with different CAD/CAM materials: 3D finite element and weibull analyses. BioMed Res. Int. 2017, 2017, 5638683. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, W.J. Dental Materials and Their Selection; Quintessence: Chicago, IL, USA, 2002; Volume 10. [Google Scholar]
- Tang, W.; Wu, Y.; Smales, R.J. Identifying and reducing risks for potential fractures in endodontically treated teeth. J. Endod. 2010, 36, 609–617. [Google Scholar] [CrossRef]
- Bogen, G.; Kuttler, S. Mineral trioxide aggregate obturation: A review and case series. J. Endod. 2009, 35, 777–790. [Google Scholar] [CrossRef]
- Kahvecioğlu, F.; Bilgin, S. Evaluation of Stresses Caused by Traumas from Different Directions Using Finite Element Analysis in Teeth with Open Root Apexes. Selcuk Dent. J. 2020, 7, 318–325. [Google Scholar] [CrossRef]
- Ritthiti, A.; Sattabanasuk, V.; Karunratanakul, K.; Senawongse, P. Effect of Stress Generated by Occlusal Cyclic Force on Class I Bulk-Fill Composite Restoration Microleakage. Eur. J. Dent. 2022, 16, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Shetty, P.; Hegde, A.; Rai, K. Finite element method–an effective research tool for dentistry. J. Clin. Pediatr. Dent. 2010, 34, 281–285. [Google Scholar] [CrossRef]
- Campos, P.; Barceleiro, M.O.; Sampaio-Filho, H.R.; Martins, L.R.M. Evaluation of the cervical integrity during occlusal loading of class II restorations. Oper. Dent. 2008, 33, 59–64. [Google Scholar] [CrossRef]
- Natali, A.N.; Pavan, P.G.; Scarpa, C. Numerical analysis of tooth mobility: Formulation of a non-linear constitutive law for the periodontal ligament. Dent. Mater. 2004, 20, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Chun, M.; Silvestrin, T.; Savignano, R.; Roque-Torres, G.D. Effects of Apical Barriers and Root Filling Materials on Stress Distribution in Immature Teeth: Finite Element Analysis Study. J. Endod. 2023, 49, 575–582. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Duarte Jr, S.; Araujo, C.A.; Abrahão, A. Effect of low-elastic modulus liner and base as stress-absorbing layer in composite resin restorations. Dent. Mater. 2010, 26, e159–e169. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S.; Amin, F.; Fareed, M.A.; Ghabbani, H.; Riaz, S.; Khurshid, Z.; Kumar, N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics 2020, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Linsuwanont, P.; Kulvitit, S.; Santiwong, B. Reinforcement of Simulated Immature Permanent Teeth after Mineral Trioxide Aggregate Apexification. J. Endod. 2018, 44, 163–167. [Google Scholar] [CrossRef]
- Danwittayakorn, S.; Banomyong, D.; Ongchavalit, L.; Ngoenwiwatkul, Y.; Porkaew, P. Comparison of the Effects of Intraradicular Materials on the Incidence of Fatal Root Fracture in Immature Teeth Treated with Mineral Trioxide Aggregate Apexification: A Retrospective Study. J. Endod. 2019, 45, 977–984.e1. [Google Scholar] [CrossRef]
- Gupta, A.; Arora, V.; Jha, P.; Nikhil, V.; Bansal, P. An in vitro comparative evaluation of different intraorifice barriers on the fracture resistance of endodontically treated roots obturated with gutta-percha. J. Conserv. Dent. Endod. 2016, 19, 111–115. [Google Scholar]
- Karimi, A.; Razaghi, R.; Biglari, H.; Rahmati, S.M.; Sandbothe, A.; Hasani, M. Finite element modeling of the periodontal ligament under a realistic kinetic loading of the jaw system. Saudi Dent. J. 2020, 32, 349–356. [Google Scholar] [CrossRef]





| Material | Elastic Modulus [MPa] | Poisson Ratio | Color |
|---|---|---|---|
| Cortical Bone | 13,700 | 0.3 | ![]() |
| Trabecular Bone | 1370 | 0.3 | ![]() |
| Dentin | 18,600 | 0.31 | ![]() |
| Pulp | 3 | 0.45 | ![]() |
| Enamel | 84,100 | 0.3 | ![]() |
| PDL | 68.9 | 0.45 | ![]() |
| MTA | 11,760 | 0.314 | ![]() |
| Gutta-Percha | 140 | 0.45 | ![]() |
| CIS (Fuji IX, GC, Tokyo, Japan) | 12,600 | 0.3 | ![]() |
| Resin Modified CIS (Vitrebond, 3M ESPE, St Paul, MN, USA) | 3700 | 0.36 | ![]() |
| Bulk Fill Cement (SDR, Dentsply, Konstanz, Germany) | 4700 | 0.4 | ![]() |
| Composite Resin Cement (Grandio, Voco, Cuxhaven, Germany) | 20,400 | 0.33 | ![]() |
| Flowable Compozite Resin Cement (Tetric Flow, Ivoclar Vivadent, Schaan, Liechtenstein) | 5300 | 0.28 | ![]() |
| Model | Material | Cervical Stress (MPa) | Stress in Restoration |
|---|---|---|---|
| Model 1 | 38.219 | - | |
| Model 2 | Conventional glass ionomer cement | 39.413 | 6.250 |
| Model 3 | Resin-modified glass ionomer cement | 40.637 | 9.740 |
| Model 4 | Bulk-fill composite resin | 40.452 | 9.050 |
| Model 5 | Composite resin | 38.726 | 5.719 |
| Model 6 | Flowable composite resin | 40.366 | 8.530 |
| Material | Thickness (mm) | −20% E (MPa) | −10% E (MPa) | Baseline (MPa) | +10% E (MPa) | +20% E (MPa) | ANOVA p-Value |
|---|---|---|---|---|---|---|---|
| RMGIC | 1.0 | 42.3 ± 1.8 | 43.5 ± 2.0 | 45.0 ± 2.1 | 46.5 ± 2.2 | 48.0 ± 2.0 | 0.031 |
| RMGIC | 2.0 | 40.1 ± 1.5 | 41.2 ± 1.7 | 42.6 ± 1.6 | 43.9 ± 1.9 | 45.0 ± 2.1 | 0.027 |
| Bulk-fill flowable comp. | 1.0 | 46.0 ± 2.2 | 48.2 ± 2.5 | 50.5 ± 2.4 | 52.8 ± 2.6 | 55.1 ± 2.8 | 0.008 |
| Bulk-fill flowable comp. | 2.0 | 44.8 ± 2.1 | 46.6 ± 2.2 | 48.9 ± 2.3 | 51.0 ± 2.5 | 53.2 ± 2.7 | 0.011 |
| Metric (Unit) | RMGIC 1.0 | RMGIC 2.0 | Bulk-Fill 1.0 | Bulk-Fill 2.0 | p-Value |
|---|---|---|---|---|---|
| Compliance (mm/N) ↓ | 0.0021 ± 0.0002 | 0.0016 ± 0.0002 | 0.0026 ± 0.0003 | 0.0022 ± 0.0002 | 0.004 |
| PDL 95th-percentile strain (%) ↓ | 0.92 ± 0.08 | 0.74 ± 0.07 | 1.10 ± 0.09 | 0.95 ± 0.08 | 0.002 |
| %Area (σ1 > threshold) (%) ↓ | 19.5 ± 3.1 | 12.4 ± 2.7 | 27.8 ± 3.5 | 20.6 ± 3.0 | 0.001 |
| Cervical SED (kJ/m3) ↓ | 0.86 ± 0.11 | 0.68 ± 0.09 | 1.04 ± 0.12 | 0.89 ± 0.10 | 0.006 |
| Smax–disp slope (MPa/mm) ↓ | 155 ± 22 | 128 ± 18 | 198 ± 25 | 176 ± 21 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
İlter Er, Ö.; Çelenk, S. Finite Element Analysis of Stress Distribution in Immature Permanent Incisors Following MTA Apexification with Different Coronal Base Materials. Biomimetics 2025, 10, 746. https://doi.org/10.3390/biomimetics10110746
İlter Er Ö, Çelenk S. Finite Element Analysis of Stress Distribution in Immature Permanent Incisors Following MTA Apexification with Different Coronal Base Materials. Biomimetics. 2025; 10(11):746. https://doi.org/10.3390/biomimetics10110746
Chicago/Turabian Styleİlter Er, Özge, and Sema Çelenk. 2025. "Finite Element Analysis of Stress Distribution in Immature Permanent Incisors Following MTA Apexification with Different Coronal Base Materials" Biomimetics 10, no. 11: 746. https://doi.org/10.3390/biomimetics10110746
APA Styleİlter Er, Ö., & Çelenk, S. (2025). Finite Element Analysis of Stress Distribution in Immature Permanent Incisors Following MTA Apexification with Different Coronal Base Materials. Biomimetics, 10(11), 746. https://doi.org/10.3390/biomimetics10110746













