Are Rhinitis and Asthma Just One Disease Affecting Different Parts of the Respiratory Tract?
Abstract
1. Introduction
2. Epidemiological Data
3. Pathology
4. Clinical Considerations
5. Benefits of Common Treatment
6. Discussions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
QoL | Quality of Life |
Th2 | T helper type 2 lymphocyte |
CRSwNP | Chronic rhino-sinusitis with nasal polyps |
CRSsNP | Chronic rhino-sinusitis without nasal polyps |
COPD | Chronic obstructive pulmonary disease |
NK | Natural killer cell |
RSV | Respiratory syncytial virus |
IL | Interleukin |
T2 | Type 2 |
ENT | Ears, Nose, Throat |
ICS | Inhaled cortico-steroids |
LABA | Long-acting beta agonists |
LAMA | Long-acting muscarinic antagonists |
TSLP | Thymic stromal lymphopoietin |
ILC2s | Type 2 innate lymphoid cells |
MHC | Major histocompatibility complex |
IgE | Immunoglobulin E |
FeNO | Fractional exhaled nitric oxide |
AIT | Allergen immunotherapy |
References
- Bousquet, J.; Melén, E.; Haahtela, T.; Koppelman, G.H.; Togias, A.; Valenta, R.; Akdis, C.A.; Czarlewski, W.; Rothenberg, M.; Valiulis, A.; et al. Rhinitis associated with asthma is distinct from rhinitis alone: The ARIA-MeDALL hypothesis. Allergy 2023, 78, 1169–1203. [Google Scholar] [CrossRef]
- Shin, Y.H.; Hwang, J.; Kwon, R.; Lee, S.W.; Kim, M.S.; GBD 2019 Allergic Disorders Collaborators; Shin, J.I.; Yon, D.K. Global, regional, and national burden of allergic disorders and their risk factors in 204 countries and territories, from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Allergy 2023, 78, 2232–2254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savouré, M.; Bousquet, J.; Jaakkola, J.J.K.; Jaakkola, M.S.; Jacquemin, B.; Nadif, R. Worldwide prevalence of rhinitis in adults: A review of definitions and temporal evolution. Clin. Transl. Allergy 2022, 12, e12130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sampath, V.; Abrams, E.M.; Adlou, B.; Akdis, C.; Akdis, M.; Brough, H.A.; Chan, S.; Chatchatee, P.; Chinthrajah, R.S.; Cocco, R.R.; et al. Food allergy across the globe. J. Allergy Clin. Immunol. 2021, 148, 1347–1364. [Google Scholar] [CrossRef] [PubMed]
- Breiteneder, H.; Peng, Y.-Q.; Agache, I.; Diamant, Z.; Eiwegger, T.; Fokkens, W.J.; Traidl-Hoffmann, C.; Nadeau, K.; O’Hehir, R.E.; O’Mahony, L.; et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020, 75, 3039–3068. [Google Scholar] [CrossRef]
- Lunjani, N.; Walsh, L.J.; Venter, C.; Power, M.; Macsharry, J.; Murphy, D.M.; O’Mahony, L. Environmental influences on childhood asthma-The effect of diet and microbiome on asthma. Pediatr. Allergy Immunol. 2022, 33, e13892. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stein, M.M.; Hrusch, C.L.; Gozdz, J.; Igartua, C.; Pivniouk, V.; Murray, S.E.; Ledford, J.G.; dos Santos, M.M.; Anderson, R.L.; Metwali, N.; et al. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. N. Engl. J. Med. 2016, 375, 411–421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sullivan, P.W.; Kavati, A.; Ghushchyan, V.H.; Lanz, M.J.; Ortiz, B.; Maselli, D.J.; Lecocq, J. Impact of allergies on health-related quality of life in patients with asthma. J. Asthma 2020, 57, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Pourdowlat, G.; Hejrati, R.; Lookzadeh, S. The effectiveness of relaxation training in the quality of life and anxiety of patients with asthma. Adv. Respir. Med. 2019, 87, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Nappi, E.; Paoletti, G.; Malvezzi, L.; Ferri, S.; Racca, F.; Messina, M.R.; Puggioni, F.; Heffler, E.; Canonica, G.W. Comorbid allergic rhinitis and asthma: Important clinical considerations. Expert Rev. Clin. Immunol. 2022, 18, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Van Cauwenberge, P.; Khaltaev, N.; Aria Workshop Group; World Health Organization. Allergic rhinitis and its impact on asthma. J. Allergy Clin. Immunol. 2001, 108 (Suppl. S5), S147–S334. [Google Scholar] [CrossRef] [PubMed]
- Grossman, J. One airway, one disease. Chest 1997, 111 (Suppl. S2), 11S–16S. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Vignola, A.M.; Gevaert, P.; Leynaert, B.; Van Cauwenberge, P.; Bousquet, J. Allergic rhinitis, rhinosinusitis, and asthma: One airway disease. Immunol. Allergy Clin. N. Am. 2004, 24, 19–43. [Google Scholar] [CrossRef] [PubMed]
- Klain, A.; Indolfi, C.; Dinardo, G.; Licari, A.; Cardinale, F.; Caffarelli, C.; Manti, S.; Ricci, G.; Pingitore, G.; Tosca, M.; et al. United airway disease. Acta Biomed. 2021, 92 (Suppl. S7), e2021526. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giavina-Bianchi, P.; Aun, M.V.; Takejima, P.; Kalil, J.; Agondi, R.C. United airway disease: Current perspectives. J. Asthma Allergy 2016, 9, 93–100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, H.J.; Ha, J.G.; Lee, S.N.; Kim, C.H.; Wang, D.Y.; Yoon, J.H. Differences and similarities between the upper and lower airway: Focusing on innate immunity. Rhinology 2021, 59, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ricciardolo, F.L.M.; Carriero, V.; Bertolini, F. Which Therapy for Non-Type(T)2/T2-Low Asthma. J. Pers. Med. 2021, 12, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tohidinik, H.R.; Mallah, N.; Takkouche, B. History of allergic rhinitis and risk of asthma; a systematic review and meta-analysis. World Allergy Organ J. 2019, 12, 100069. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iinuma, T.; Okamoto, Y.; Morimoto, Y.; Arai, T.; Sakurai, T.; Yonekura, S.; Sakurai, D.; Hirahara, K.; Nakayama, T. Pathogenicity of memory Th2 cells is linked to stage of allergic rhinitis. Allergy 2018, 73, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Fahy, J.V. Type 2 inflammation in asthma—Present in most, absent in many. Nat. Rev. Immunol. 2015, 15, 57–65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Breiteneder, H.; Diamant, Z.; Eiwegger, T.; Fokkens, W.J.; Traidl-Hoffmann, C.; Nadeau, K.; O’hehir, R.E.; O’mahony, L.; Pfaar, O.; Torres, M.J.; et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy 2019, 74, 2293–2311. [Google Scholar] [CrossRef]
- Polverino, F.; Sin, D.D. Type 2 airway inflammation in COPD. Eur. Respir. J. 2024, 63, 2400150. [Google Scholar] [CrossRef] [PubMed]
- Oliver, B.G.; Robinson, P.; Peters, M.; Black, J. Viral infections and asthma: An inflammatory interface? Eur. Respir. J. 2014, 44, 1666–1681. [Google Scholar] [CrossRef] [PubMed]
- Arebro, J.; Ekstedt, S.; Hjalmarsson, E.; Winqvist, O.; Kumlien Georén, S.; Cardell, L.O. A possible role for neutrophils in allergic rhinitis revealed after cellular subclassification. Sci. Rep. 2017, 7, 43568. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruokolainen, L.; Fyhrquist, N.; Laatikainen, T.; Auvinen, P.; Fortino, V.; Scala, G.; Jousilahti, P.; Karisola, P.; Vendelin, J.; Karkman, A.; et al. Immune-microbiota interaction in Finnish and Russian Karelia young people with high and low allergy prevalence. Clin. Exp. Allergy 2020, 50, 1148–1158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borgeat Kaeser, A.; Ribi, C. Le syndrome de Widal en pratique clinique. Praxis 2017, 106, 1243–1249. (In French) [Google Scholar] [CrossRef] [PubMed]
- Kim, S.D.; Cho, K.S. Samter’s Triad: State of the Art. Clin. Exp. Otorhinolaryngol. 2018, 11, 71–80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gauthier, M.; Ray, A.; Wenzel, S.E. Evolving Concepts of Asthma. Am. J. Respir. Crit. Care Med. 2015, 192, 660–668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pavord, I.D.; Beasley, R.; Agusti, A.; Anderson, G.P.; Bel, E.; Brusselle, G.; Cullinan Pet, A.L. After asthma: Redefining airways diseases. Lancet 2018, 391, 350–400. [Google Scholar] [CrossRef] [PubMed]
- Caminati, M.; Le Pham, D.; Bagnasco, D.; Canonica, G.W. Type 2 immunity in asthma. World Allergy Organ. J. 2018, 11, 13. [Google Scholar] [CrossRef]
- Pelaia, C.; Pelaia, G.; Crimi, C.; Maglio, A.; Stanziola, A.A.; Calabrese, C.; Terracciano, R.; Longhini, F.; Vatrella, A. Novel Biological Therapies for Severe Asthma Endotypes. Biomedicines 2022, 10, 1064. [Google Scholar] [CrossRef]
- Moffatt, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; Von Mutius, E.; Farrall, M.; Lathrop, M.; Cookson, W.O.; et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 2010, 363, 1211–1221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kai, Y.; Suzuki, K.; Kataoka, R.; Sato, I.; Tamaki, S.; Muro, S. Efficacy of tezepelumab against uncontrolled severe non-type 2 asthma refractory to bronchial thermoplasty, benralizumab, dupilumab and mepolizumab. Respirol. Case Rep. 2024, 12, e1311. [Google Scholar] [CrossRef] [PubMed]
- Menzies-Gow, A.; Colice, G.; Griffiths, J.M.; Almqvist, G.; Ponnarambil, S.; Kaur, P.; Ruberto, G.; Bowen, K.; Hellqvist, Å.; Mo, M.; et al. Navigator: A phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir. Res. 2020, 21, 266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laidlaw, T.M.; Mullol, J.; Woessner, K.M.; Amin, N.; Mannent, L.P. Chronic Rhinosinusitis with Nasal Polyps and Asthma. J. Allergy Clin. Immunol. Pract. 2021, 9, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Dhami, S.; Nurmatov, U.; Arasi, S.; Khan, T.; Asaria, M.; Zaman, H.; Agarwal, A.; Netuveli, G.; Roberts, G.; Pfaar, O.; et al. Allergen immunotherapy for allergic rhinoconjunctivitis: A systematic review and meta-analysis. Allergy 2017, 72, 1597–1631. [Google Scholar] [CrossRef]
- Ciprandi, G.; Melioli, G.; Passalacqua, G.; Canonica, G.W. Immunotherapy in polysensitized patients: New chances for the allergists? Ann. Allergy Asthma Immunol. 2012, 109, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, G.; Roberts, G.; Sayre, P.H.; Bahnson, H.T.; Radulovic, S.; Santos, A.F.; Brough, H.A.; Phippard, D.; Basting, M.; Feeney, M.; et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 2015, 372, 803–813, Erratum in N. Engl. J. Med. 2016, 375, 398. https://doi.org/10.1056/NEJMx150044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nuzzi, G.; Di Cicco, M.E.; Peroni, D.G. Breastfeeding and Allergic Diseases: What’s New? Children 2021, 8, 330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bloomfield, S.F.; Rook, G.A.W.; Scott, E.A.; Shanahan, F.; Stanwell-Smith, R.; Turner, P. Time to abandon the hygiene hypothesis: New perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect. Public Health 2016, 136, 213–224. [Google Scholar] [CrossRef]
- Cergan, R.; Berghi, O.; Dumitru, M.; Vrinceanu, D.; Manole, F.; Musat, G.C.; Oancea, A.L.A.; Serboiu, C. Interleukin 8 Molecular Interplay in Allergic Rhinitis and Chronic Rhinosinusitis with Nasal Polyps: A Scoping Review. Life 2025, 15, 469. [Google Scholar] [CrossRef]
- Cergan, R.; Berghi, O.N.; Dumitru, M.; Vrinceanu, D.; Manole, F.; Serboiu, C.S. Biologics for Chronic Rhinosinusitis—A Modern Option for Therapy. Life 2023, 13, 2165. [Google Scholar] [CrossRef]
Type 2 Inflammation | Non Type 2 Inflammation | |
---|---|---|
Cells involved | Eosinophils, Th2 cells, ILC2s, mast cells, basophils | Neutrophils, Th1 cells, macrophages |
Cytokines involved | IL-4, IL-5, IL-9, IL-13, IL-33 | IL-8, IL-17, Toll-like receptors |
Onset of diseases | Mainly in childhood or early life | Mainly adult-onset related to environmental factors |
Triggers | Allergens, parasites | Pollution, infections, smoke |
IgE levels | High | Normal |
Corticosteroid response | Responsive | Poorly responsive |
Biologic therapy available | Omalizumab, Mepolizumab, Dupilumab, Tezepelumab | Unavailable (Tezepelumab?) |
Clinical Phenotypes | Allergic asthma, allergic rhinitis | Neutrophilic asthma, non-allergic rhinitis |
Common Comorbidities | Atopic dermatitis, food allergies, nasal polyps, eosinophilic esophagitis | Obesity, COPD (related to smoking), psychological factors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandru, V.; Manole, F.; Manole, A. Are Rhinitis and Asthma Just One Disease Affecting Different Parts of the Respiratory Tract? Allergies 2025, 5, 34. https://doi.org/10.3390/allergies5040034
Alexandru V, Manole F, Manole A. Are Rhinitis and Asthma Just One Disease Affecting Different Parts of the Respiratory Tract? Allergies. 2025; 5(4):34. https://doi.org/10.3390/allergies5040034
Chicago/Turabian StyleAlexandru, Victor, Felicia Manole, and Alexia Manole. 2025. "Are Rhinitis and Asthma Just One Disease Affecting Different Parts of the Respiratory Tract?" Allergies 5, no. 4: 34. https://doi.org/10.3390/allergies5040034
APA StyleAlexandru, V., Manole, F., & Manole, A. (2025). Are Rhinitis and Asthma Just One Disease Affecting Different Parts of the Respiratory Tract? Allergies, 5(4), 34. https://doi.org/10.3390/allergies5040034