Effects Influencing Pedestrian–Vehicle Crash Frequency by Severity Level: A Case Study of Seoul Metropolitan City, South Korea
Abstract
:1. Introduction
Background
2. Literature Review
2.1. Pedestrian–Vehicle Collisions
2.2. Limitations of Prior Research and Differentiation of Research
3. Methods
3.1. Data
3.2. Data Analysis
4. Results and Discussion
4.1. Spatial Distribution of Pedestrian–Vehicle Collisions
4.2. Spatial Autocorrelation Analysis
4.3. Descriptive Statistics of the Variables
4.4. Regression Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Organisation for Economic Co-operation and Development (OECD). Available online: http://taas.koroad.or.kr/web/bdm/srs/selectStaticalReportsList.do?menuId=WEB_KMP_IDA_SRS_OTC (accessed on 22 May 2018).
- Korea Legislation Research Institute (KLRI). Available online: https://elaw.klri.re.kr/kor_service/lawView.do?hseq=45750&lang=ENG (accessed on 19 April 2018).
- Retting, R.A.; Ferguson, S.A.; McCartt, A.T. A Review of Evidence-Based Traffic Engineering Measures Designed to Reduce Pedestrian–Motor Vehicle Crashes. Am. J. Public Health 2003, 93, 1456–1463. [Google Scholar] [CrossRef]
- Clifton, K.; Burnier, C.V.; Akar, G. Severity of injury resulting from pedestrian–vehicle crashes: What can we learn from examining the built environment? Transp. Res. Part D Transp. Environ. 2009, 14, 425–436. [Google Scholar] [CrossRef]
- Kim, J.-K.; Ulfarsson, G.F.; Shankar, V.; Kim, S. Age and pedestrian injury severity in motor-vehicle crashes: A heteroskedastic logit analysis. Accid. Anal. Prev. 2008, 40, 1695–1702. [Google Scholar] [CrossRef] [PubMed]
- Narayanamoorthy, S.; Paleti, R.; Bhat, C.R. On accommodating spatial dependence in bicycle and pedestrian injury counts by severity level. Transp. Res. Part B Methodol. 2013, 55, 245–264. [Google Scholar] [CrossRef] [Green Version]
- Tay, R.; Choi, J.; Kattan, L.; Khan, A. A Multinomial Logit Model of Pedestrian–Vehicle Crash Severity. Int. J. Sustain. Transp. 2011, 5, 233–249. [Google Scholar] [CrossRef]
- Wier, M.; Weintraub, J.; Humphreys, E.H.; Seto, E.; Bhatia, R. An area-level model of vehicle-pedestrian injury collisions with implications for land use and transportation planning. Accid. Anal. Prev. 2009, 41, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Aziz, H.A.; Ukkusuri, S.; Hasan, S. Exploring the determinants of pedestrian–vehicle crash severity in New York City. Accid. Anal. Prev. 2013, 50, 1298–1309. [Google Scholar] [CrossRef]
- Koopmans, J.M.; Friedman, L.; Kwon, S.; Sheehan, K.M. Urban crash-related child pedestrian injury incidence and characteristics associated with injury severity. Accid. Anal. Prev. 2015, 77, 127–136. [Google Scholar] [CrossRef]
- Yu, C.-Y. Built Environmental Designs in Promoting Pedestrian Safety. Sustaiability 2015, 7, 9444–9460. [Google Scholar] [CrossRef] [Green Version]
- Park, C.Y.; Lee, S.G. An analysis of the characteristics of street environment affecting pedestrian—Applications of street segment analysis unit and spatial statistics. J. Urban Des. Inst. Korea 2016, 17, 105–121. (In Korean) [Google Scholar]
- Ukkusuri, S.; Miranda-Moreno, L.F.; Ramadurai, G.; Isa-Tavarez, J. The role of built environment on pedestrian crash frequency. Saf. Sci. 2012, 50, 1141–1151. [Google Scholar] [CrossRef]
- Park, S.-H. The Effect of the Neighborhood Built Environment on Pedestrian-Vehicle Collisions - Focused on the Cases of the City of Seattle, Washington, US. J. Korea Plan. Assoc. 2014, 49, 143. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, J.S. Neighborhood environmental factors affecting child and old adult pedestrian accident. J. Urban Des. Inst. Korea 2014, 15, 5–15. (In Korean) [Google Scholar]
- Seo, J.; Lee, S. A Study on the Physical Environmental Factors Influencing Pedestrian Traffic Accidents in Seoul, Korea: Focused on the 2014 TAAS Data. J. Korea Plan. Assoc. 2016, 51, 197. [Google Scholar] [CrossRef]
- Kim, J.-K.; Ulfarsson, G.F.; Shankar, V.; Mannering, F. A note on modeling pedestrian-injury severity in motor-vehicle crashes with the mixed logit model. Accid. Anal. Prev. 2010, 42, 1751–1758. [Google Scholar] [CrossRef]
- Moudon, A.V.; Lin, L.; Jiao, J.; Hurvitz, P.; Reeves, P. The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in King County, Washington. Accid. Anal. Prev. 2011, 43, 11–24. [Google Scholar] [CrossRef]
- Zegeer, C.V.; Stutts, J.C.; Huang, H.F.; Zhou, M.; Rodgman, E.A. analysis of elderly pedestrian accidents and recommended countermeasures. J. Saf. Res. 1996, 27, 128. [Google Scholar] [CrossRef]
- Leden, L.; Garder, P.; Johansson, C. Safe pedestrian crossings for children and elderly. Accid. Anal. Prev. 2006, 38, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Sze, N.N.; Wong, S.C. Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes. Accid. Anal. Prev. 2007, 39, 1267–1278. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Chu, X.; Guttenplan, M. Crossing Locations, Light Conditions, and Pedestrian Injury Severity. Transp. Res. Rec. J. Transp. Res. Board 2006, 1982, 141–149. [Google Scholar] [CrossRef]
- Koepsell, T.D.; McCloskey, L.; Wolf, M.; Moudon, A.V.; Buchner, D.; Kraus, J.; Patterson, M. Crosswalk markings and the risk of pedestrian-motor vehicle collisions in older pedestrians. JAMA 2002, 288, 2136–2143. [Google Scholar] [CrossRef] [PubMed]
- Feliciani, C.; Crociani, L.; Gorrini, A.; Vizzari, G.; Bandini, S.; Nishinari, K. A simulation model for non-signalized pedestrian crosswalks based on evidence from on field observation. Intell. Artif. 2017, 11, 117–138. [Google Scholar] [CrossRef] [Green Version]
- Feliciani, C.; Gorrini, A.; Crociani, L.; Vizzari, G.; Nishinari, K.; Bandini, S. Calibration and validation of a simulation model for predicting pedestrian fatalities at unsignalized crosswalks by means of statistical traffic data. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 1–18. [Google Scholar] [CrossRef]
- Gorrini, A.; Crociani, L.; Vizzari, G.; Bandini, S. Observation results on pedestrian-vehicle interactions at non-signalized intersections towards simulation. Transp. Res. Part F Traffic Psychol. Behav. 2018, 59, 269–285. [Google Scholar] [CrossRef]
- Xie, S.Q.; Dong, N.; Wong, S.; Huang, H.; Xu, P. Bayesian approach to model pedestrian crashes at signalized intersections with measurement errors in exposure. Accid. Anal. Prev. 2018, 121, 285–294. [Google Scholar] [CrossRef]
- Lee, C.; Abdel-Aty, M. Comprehensive analysis of vehicle–pedestrian crashes at intersections in Florida. Accid. Anal. Prev. 2005, 37, 775–786. [Google Scholar] [CrossRef]
- Haleem, K.; Alluri, P.; Gan, A. Analyzing pedestrian crash injury severity at signalized and non-signalized locations. Accid. Anal. Prev. 2015, 81, 14–23. [Google Scholar] [CrossRef]
- Murphy, B.; Levinson, D.; Owen, A. Evaluating the Safety in Numbers effect for pedestrians at urban intersections. Accid. Anal. Prev. 2017, 106, 181–190. [Google Scholar] [CrossRef]
- Ossenbruggen, P.J.; Pendharkar, J.; Ivan, J. Roadway safety in rural and small urbanized areas. Accid. Anal. Prev. 2001, 33, 485–498. [Google Scholar] [CrossRef]
- McMahon, P.; Duncan, C.; Stewart, J.; Zegeer, C.; Khattak, A.J. Analysis of Factors Contributing to “Walking Along Roadway” Crashes. Transp. Res. Rec. J. Transp. Res. Board 1999, 1674, 41–48. [Google Scholar] [CrossRef]
- Osama, A.; Sayed, T. Evaluating the impact of connectivity, continuity, and topography of sidewalk network on pedestrian safety. Accid. Anal. Prev. 2017, 107, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Shankar, V.; Ulfarsson, G.F.; Pendyala, R.M.; Nebergall, M.B. Modeling crashes involving pedestrians and motorized traffic. Saf. Sci. 2003, 41, 627–640. [Google Scholar] [CrossRef]
- Amoh-Gyimah, R.; Aidoo, E.N.; Akaateba, M.A.; Appiah, S.K. The effect of natural and built environmental characteristics on pedestrian-vehicle crash severity in Ghana. Int. J. Inj. Control. Saf. Promot. 2016, 24, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Zajac, S.S.; Ivan, J. Factors influencing injury severity of motor vehicle-crossing pedestrian crashes in rural Connecticut. Accid. Anal. Prev. 2003, 35, 369–379. [Google Scholar] [CrossRef]
- Guo, Q.; Xu, P.; Pei, X.; Wong, S.; Yao, D. The effect of road network patterns on pedestrian safety: A zone-based Bayesian spatial modeling approach. Accid. Anal. Prev. 2017, 99, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.J.; Glaister, S. Spatial Variation in Road Pedestrian Casualties: The Role of Urban Scale, Density and Land-use Mix. Urban Stud. 2003, 40, 1591–1607. [Google Scholar] [CrossRef]
- Li, D.; Ranjitkar, P.; Zhao, Y.; Yi, H.; Rashidi, S. Analyzing pedestrian crash injury severity under different weather conditions. Traffic Inj. Prev. 2016, 18, 1–4. [Google Scholar] [CrossRef]
- Lefler, D.E.; Gabler, H. The fatality and injury risk of light truck impacts with pedestrians in the United States. Accid. Anal. Prev. 2004, 36, 295–304. [Google Scholar] [CrossRef]
- Davis, G.A. Relating Severity of Pedestrian Injury to Impact Speed in Vehicle-Pedestrian Crashes: Simple Threshold Model. Transp. Res. Rec. J. Transp. Res. Board 2001, 1773, 108–113. [Google Scholar] [CrossRef]
- Jang, K.; Park, S.H.; Kang, S.; Song, K.H.; Kang, S.; Chung, S. Evaluation of Pedestrian Safety. Transp. Res. Rec. J. Transp. Res. Board 2013, 2393, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Clifton, K.; Kreamer-Fults, K. An examination of the environmental attributes associated with pedestrian–vehicular crashes near public schools. Accid. Anal. Prev. 2007, 39, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Loukaitou-Sideris, A.; Liggett, R.; Sung, H.-G. Death on the Crosswalk. J. Plan. Educ. Res. 2007, 26, 338–351. [Google Scholar] [CrossRef]
- Clifton, K.J.; Burnier, C.V.; Kreamer-Fults, K. Women’s involvement in pedestrian-vehicle crashes: Influence of personal and environmental factors. In Proceedings of the Research on Women’s Issues in Transportation: Report of a Conference, Chicago, IL, USA, 18–20 November 2004; Volume 35, pp. 155–162, ISBN 0309093945. [Google Scholar]
- Al-Ghamdi, A.S. Pedestrian–vehicle crashes and analytical techniques for stratified contingency tables. Accid. Anal. Prev. 2002, 34, 205–214. [Google Scholar] [CrossRef]
- Oxley, J.; Ihsen, E.; Fildes, B.N.; Charlton, J.L.; Day, R.H. Crossing roads safely: An experimental study of age differences in gap selection by pedestrians. Accid. Anal. Prev. 2005, 37, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Lail, P.; McCormack, G.R.; Rock, M.J. Does dog-ownership influence seasonal patterns of neighbourhood-based walking among adults? A longitudinal study. BMC Public Health 2011, 11, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, R.; Crepeau, R. Does neighborhood design influence travel? A behavioral analysis of travel diary and GIS data. Transp. Res. Part D Transp. Environ. 1998, 3, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Mavoa, S.; Witten, K.; McCreanor, T.; O’Sullivan, D. GIS based destination accessibility via public transit and walking in Auckland, New Zealand. J. Transp. Geogr. 2012, 20, 15–22. [Google Scholar] [CrossRef]
- Lachapelle, U.; Noland, R.B. Does the commute mode affect the frequency of walking behavior? The public transit link. Transp. Policy 2012, 21, 26–36. [Google Scholar] [CrossRef]
- Cerin, E.; Lee, K.-Y.; Barnett, A.; Sit, C.H.; Cheung, M.-C.; Chan, W.-M. Objectively-measured neighborhood environments and leisure-time physical activity in Chinese urban elders. Prev. Med. 2013, 56, 86–89. [Google Scholar] [CrossRef]
- Hou, N.; Popkin, B.M.; Jacobs, D.R., Jr.; Song, Y.; Guilkey, D.; Lewis, C.E.; Gordon-Larsen, P. Longitudinal associations between neighborhood-level street network with walking, bicycling, and jogging: The CARDIA study. Health Place 2010, 16, 1206–1215. [Google Scholar] [CrossRef] [Green Version]
- Tester, J.M.; Rutherford, G.W.; Wald, Z.; Rutherford, M.W. A Matched Case–Control Study Evaluating the Effectiveness of Speed Humps in Reducing Child Pedestrian Injuries. Am. J. Public Health 2004, 94, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation (Monographs in Spatial Environmental Systems Analysis), 1st ed.; Pion Limited: London, UK, 1973; ISBN 9780850860368. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science and Business Media LLC: Berlin, Germany, 1988; Volume 4, ISBN 9789048183111. [Google Scholar]
- Dormann, C.F.; McPherson, J.; Araujo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Kissling, W.D.; et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Chen, P.; Jiao, J. Non-linear effects of the built environment on automobile-involved pedestrian crash frequency: A machine learning approach. Accid. Anal. Prev. 2018, 112, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.H.; Perreault, W.D. Collinearity, Power, and Interpretation of Multiple Regression Analysis. J. Mark. Res. 1991, 28, 268. [Google Scholar] [CrossRef]
- Cai, Q.; Abdel-Aty, M.; Lee, J. Macro-level vulnerable road users crash analysis: A Bayesian joint modeling approach of frequency and proportion. Accid. Anal. Prev. 2017, 107, 11–19. [Google Scholar] [CrossRef]
- Tasic, I.; Elvik, R.; Brewer, S. Exploring the safety in numbers effect for vulnerable road users on a macroscopic scale. Accid. Anal. Prev. 2017, 109, 36–46. [Google Scholar] [CrossRef]
- Lee, J.; Abdel-Aty, M.; Choi, K.; Huang, H. Multi-level hot zone identification for pedestrian safety. Accid. Anal. Prev. 2015, 76, 64–73. [Google Scholar] [CrossRef]
- Oikawa, S.; Matsui, Y.; Doi, T.; Sakurai, T. Relation between vehicle travel velocity and pedestrian injury risk in different age groups for the design of a pedestrian detection system. Saf. Sci. 2016, 82, 361–367. [Google Scholar] [CrossRef]
- Arbogast, H.; Patao, M.; Demeter, N.; Bachman, S.L.; Devietti, E.; Upperman, J.S.; Burke, R.V. The effectiveness of installing a speed hump in reducing motor vehicle accidents involving pedestrians under the age of 21. J. Transp. Health 2018, 8, 30–34. [Google Scholar] [CrossRef]
Classification | Korea | OECD Average | Korea’s Ranking Among 32 OECD Countries |
---|---|---|---|
Number of traffic accidents per 100,000 people in 2015 | 458.4 | 222.3 | 31/32 |
Number of fatalities per 100,000 people in 2015 | 9.1 | 5.6 | 31/35 |
Severity | Moran’s Index | p-Value |
---|---|---|
Total pedestrian injury | −0.0157 | 0.8839 |
Fatal injury | −0.2098 | 0.3590 |
Incapacitating injury | 0.0810 | 0.4935 |
Non-incapacitating injury | −0.0377 | 0.9825 |
Possible injury | −0.0643 | 0.8823 |
Variables | Measurements | Mean | S.D. | Min | Max | |
---|---|---|---|---|---|---|
Dependent variable | ||||||
Density of total pedestrian injuries | #/km2 | 59.39 | 19.99 | 32.32 | 113.25 | |
Density of fatal injuries | #/km2 | 1.13 | 0.49 | 0.49 | 2.39 | |
Density of incapacitating injuries | #/km2 | 25.66 | 8.89 | 13.74 | 50.00 | |
Density of non-incapacitating injuries | #/km2 | 27.89 | 9.72 | 15.70 | 55.14 | |
Density of possible injuries | #/km2 | 4.47 | 2.11 | 2.09 | 12.55 | |
Independent variable | ||||||
Controlling variable | Population density | #/km2 | 19,437 | 13,040 | 3694 | 62,770 |
Land use and housing type | Residential area ratio | % | 54.83 | 16.90 | 32.75 | 91.57 |
Commercial area ratio | % | 5.05 | 7.35 | 1.14 | 36.27 | |
Green area ratio | % | 35.64 | 17.31 | 0.25 | 62.61 | |
Single-family housing ratio | % | 14.56 | 6.90 | 4.21 | 30.09 | |
High-rise multi-family housing ratio | % | 56.25 | 13.64 | 28.82 | 86.12 | |
Housing in non-residential building ratio | % | 1.15 | 0.41 | 0.40 | 1.96 | |
Road and traffic characteristic | Subway entrance density | #/km2 | 2.46 | 2.03 | 0.72 | 11.24 |
Bus stop density | #/km2 | 14.65 | 4.48 | 7.55 | 27.95 | |
Secondary arterial road ratio | % | 4.04 | 2.80 | 0.00 | 12.26 | |
Collector road ratio | % | 1.70 | 1.65 | 0.00 | 6.25 | |
Local road ratio | % | 4.36 | 3.21 | 0.66 | 12.19 | |
Density of crosswalks with traffic signals | #/km2 | 17.04 | 5.23 | 9.51 | 27.69 | |
Density of crosswalks without traffic signals | #/km2 | 41.33 | 17.10 | 17.01 | 105.02 | |
Number of crosswalks per road length | #/km | 4.22 | 1.71 | 2.47 | 11.32 | |
Speed hump density | #/km2 | 16.56 | 7.77 | 4.96 | 35.45 |
Classification | Variables | Total Pedestrian Injury | Fatal Injury | Incapacitating Injury | Non-Incapacitating Injury | Possible Injury | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef. | S.E | t-Value | VIF | Coef. | S.E | t-Value | Coef. | S.E | t-value | Coef. | S.E | t-Value | Coef. | S.E | t-value | ||
Constant | −24.698 * | 10.606 | −2.329 | 0.203 | 0.674 | 0.301 | −8.930 | 4.830 | −1.849 | −0.000 * | 6.453 | −2.151 | 0.000 | 2.179 | −0.909 | ||
Controlling variable | Population density | 0.000 | 0.000 | −1.179 | 1.736 | −0.00 | 0.000 | −1.062 | −7.423 | 0.000 | −1.267 | −8.816 | 0.000 | −1.126 | 1.482 | 0.000 | 0.561 |
Land use and housing type | Proportion of residential area | 0.410 ** | 0.107 | 3.825 | 2.018 | −0.001 | 0.007 | −0.160 | 0.169 ** | 0.049 | 3.474 | 0.228 ** | 0.065 | 3.507 | 0.011 | 0.022 | 0.497 |
Proportion of high-rise multi-family housings | −0.087 | 0.131 | −0.665 | 1.973 | −0.004 | 0.008 | −0.538 | −0.057 | 0.060 | −0.947 | −0.016 | 0.080 | −0.198 | −0.010 | 0.027 | −0.380 | |
Proportion of housing in non-residential buildings | 10.748 * | 4.34 | 2.476 | 1.98 | 0.010 | 0.276 | 0.037 | 3.676 | 1.977 | 1.860 | 5.261 * | 2.640 | 1.992 | 1.679 | 0.892 | 1.883 | |
Road and traffic characteristic | Bus stop density | 0.724 | 0.404 | 1.794 | 2.017 | 0.021 | 0.026 | 0.816 | 0.400 * | 0.184 | 2.179 | 0.239 | 0.245 | 0.972 | 0.072 | 0.083 | 0.866 |
Secondary arterial road ratio | 1.187 * | 0.523 | 2.272 | 1.316 | 0.052 | 0.033 | 1.557 | 0.513 * | 0.238 | 2.155 | 0.672 * | 0.318 | 2.115 | −0.048 | 0.107 | −0.447 | |
Collector road ratio | 0.422 | 1.268 | 0.333 | 2.686 | −0.009 | 0.081 | −0.111 | 0.748 | 0.578 | 1.296 | −0.761 | 0.772 | −0.987 | 0.462 | 0.261 | 1.772 | |
Local road ratio | 0.046 | 0.474 | 0.098 | 1.431 | −0.035 | 0.030 | −1.163 | −0.027 | 0.216 | −0.123 | 0.067 | 0.289 | 0.232 | 0.056 | 0.097 | 0.571 | |
Density of crosswalks with traffic signals | 1.878 ** | 0.342 | 5.496 | 1.969 | 0.058 ** | 0.022 | 2.688 | 0.874 ** | 0.156 | 5.616 | 0.997 ** | 0.208 | 4.797 | −0.077 | 0.070 | −1.101 | |
Number of crosswalks per road length | 3.827 ** | 1.047 | 3.656 | 1.978 | 0.013 | 0.066 | 0.197 | 1.178 * | 0.477 | 2.472 | 1.989 ** | 0.637 | 3.123 | 0.667 ** | 0.215 | 3.102 | |
Speed hump density | −0.443* | 0.209 | −2.119 | 1.624 | 0.000 | 0.013 | −0.014 | −0.197 * | 0.095 | −2.067 | −0.289 * | 0.127 | −2.276 | 0.050 | 0.043 | 1.158 | |
Statistics | N | 25 | 25 | 25 | 25 | 25 | |||||||||||
R-Squared | 0.947 | 0.642 | 0.945 | 0.917 | 0.800 | ||||||||||||
Adjusted R-Squared | 0.903 | 0.340 | 0.898 | 0.848 | 0.630 | ||||||||||||
*p < 0.05, **p < 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-H.; Bae, M.-K. Effects Influencing Pedestrian–Vehicle Crash Frequency by Severity Level: A Case Study of Seoul Metropolitan City, South Korea. Safety 2020, 6, 25. https://doi.org/10.3390/safety6020025
Park S-H, Bae M-K. Effects Influencing Pedestrian–Vehicle Crash Frequency by Severity Level: A Case Study of Seoul Metropolitan City, South Korea. Safety. 2020; 6(2):25. https://doi.org/10.3390/safety6020025
Chicago/Turabian StylePark, Seung-Hoon, and Min-Kyung Bae. 2020. "Effects Influencing Pedestrian–Vehicle Crash Frequency by Severity Level: A Case Study of Seoul Metropolitan City, South Korea" Safety 6, no. 2: 25. https://doi.org/10.3390/safety6020025
APA StylePark, S. -H., & Bae, M. -K. (2020). Effects Influencing Pedestrian–Vehicle Crash Frequency by Severity Level: A Case Study of Seoul Metropolitan City, South Korea. Safety, 6(2), 25. https://doi.org/10.3390/safety6020025