Synthetic Data Generation for Automatic Segmentation of X-ray Computed Tomography Reconstructions of Complex Microstructures
Abstract
:1. Introduction
1.1. Related Work
1.2. Problem and Motivation
1.3. Research Approach Outline
- An in-house MATLAB library was coded and used to model/simulate synthetic Al–Si MMCs microstructures based on the MMC reported in [11]. Such synthetic microstructures were generated to appear similar to those of an XCT scan in terms of both structural resemblance and simulated grayscales.
- After training, the suggested architectures were coupled with several forwarding strategies to segment the XCT experimental data. The term, forwarding strategy, refers to the slicing method of the data into smaller batches, the subsequent passage of these batches through the working networks, and finally, their recombination into the final semantically segmented XCT data reconstructed volumes.
- The performance was assessed based on the Dice precision coefficient, a commonly used segmentation performance metric of DCNNs. The precision was assessed both on a synthetic XCT volume (used only for testing) and on experimental XCT volumes from which arbitrary slices were extracted and manually labeled as the ground-truth benchmark.
2. Material Description
3. Method Development
3.1. Synthetic Al–Si MMC Microstructure Generation
3.1.1. General Strategy
3.1.2. Synthesis Preprocessing—Required Information
3.1.3. The Synthesis Process
- Fabrication and enrichment of individual particle and fiber repositories.
- Positioning of individual particles within individual single-phase volumes with the various positioning functions.
- Final synthetic volume assembly (by merging individual single-phase volumes with a priority function).
- Assignment of grayscales and local phase contrast (where applicable).
3.1.4. Individual Particles and Fibers Fabrication
3.1.5. Positioning Functions
3.1.6. Generated Synthetic Volumes
3.2. Training Data
3.2.1. Augmentations on Training Data
3.2.2. Three-Dimensional Training and Validation Data Slicing
3.2.3. Neural Network Architectures and Training Parameters
3.2.4. Forwarding Strategies
4. Application: Results and Discussion
- No data augmentations + Single_UNet + SingleView;
- Data augmentations + Single_UNet + SingleView;
- Data augmentations + Single_UNet + MultiView;
- Data augmentations + Triple_UNet + MultiView.
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Synthetic AlSi MMC 1 | |||||||||||||||
Repository | Positioning Function | Size_X | Size_Y | Size_Z | Vol. Fraction | Positioning | Rotation X-Axis | Rotation Z-Axis | Resize_X | Resize_Y | Resize_Z | Gray Value | Local Contrast | Priority | |
Fibers (F) | FS 1 | HVF | 512 | 512 | 512 | 5 | Random | Normal with STD = 6.5 | Random | - | - | - | 93 | +/− 10%, t = 4 voxels | 1 |
Intermetallics (M) | IM | SVF | 512 | 512 | 512 | 5 | Random | Random | Random | 64–128 | 64–128 | 64–128 | 214 | - | 2 |
Si (S) | CHX 2 | SVF | 512 | 512 | 512 | 16 | Random | Random | Random | 15–45 | 45,056 | 15–45 | 70 | - | 3 |
SiC Particles (P) | CHX 1 | HVDF, Dep: F | 512 | 512 | 512 | 8 | Random | Random | Random | 10–35 | 10–35 | 10–35 | 129 | - | 1 |
Voids (V) | CHX 1 | SVDF, Dep: F,P | 512 | 512 | 512 | 0.1 | Random | Random | Random | 45,163 | 45,163 | 45,163 | 0 | - | 4 |
Al Matrix (A) | - | - | - | - | - | - | - | - | - | - | - | - | 91 | - | 5 |
Synthetic AlSi MMC 2 | |||||||||||||||
Repository | Positioning Function | Size_X | Size_Y | Size_Z | Vol. Fraction | Positioning | Rotation X-Axis | Rotation Z-Axis | Resize_X | Resize_Y | Resize_Z | Gray Value | Local Contrast | Priority | |
Fibers (F) | FS 2 | HVF | 512 | 512 | 512 | 5 | Random | Normal with STD = 6.5 | Random | - | - | - | 98 | +/− 10%, t = 3 voxels | 1 |
Intermetallics (M) | IM | SVF | 512 | 512 | 512 | 5 | Random | Random | Random | 64–128 | 64–128 | 64–128 | 214 | - | 2 |
Si (S) | CHX 2 | SVF | 512 | 512 | 512 | 14 | Random | Random | Random | 15–45 | 45,056 | 15–45 | 72 | - | 3 |
SiC Particles (P) | CHX 1 | HVDF, Dep: F | 512 | 512 | 512 | 8 | Random | Random | Random | 10–35 | 10–35 | 10–35 | 136 | - | 1 |
Voids (V) | CHX 1 | SVDF, Dep: F,P | 512 | 512 | 512 | 0.1 | Random | Random | Random | 45,163 | 45,163 | 45,163 | 0 | - | 4 |
Al Matrix (A) | - | - | - | - | - | - | - | - | - | - | - | - | 90 | - | 5 |
Synthetic AlSi MMC 3 | |||||||||||||||
Repository | Positioning Function | Size_X | Size_Y | Size_Z | Vol. Fraction | Positioning | Rotation X-Axis | Rotation Z-Axis | Resize_X | Resize_Y | Resize_Z | Gray Value | Local Contrast | Priority | |
Fibers (F) | FS 3 | HVF | 512 | 512 | 512 | 5 | Random | Normal with STD = 6.5 | Random | - | - | - | 125 | - | 1 |
Intermetallics (M) | IM | SVF | 512 | 512 | 512 | 5 | Random | Random | Random | 64–128 | 64–128 | 64–128 | 208 | - | 2 |
Si (S) | CHX 2 | SVF | 512 | 512 | 512 | 15 | Random | Random | Random | 15–45 | 45,056 | 15–45 | 68 | - | 3 |
SiC Particles (P) | CHX 1 | HVDF, Dep: F | 512 | 512 | 512 | 8 | Random | Random | Random | 10–35 | 10–35 | 10–35 | 129 | - | 1 |
Voids (V) | CHX 1 | SVDF, Dep: F,P | 512 | 512 | 512 | 0.1 | Random | Random | Random | 45,163 | 45,163 | 45,163 | 0 | - | 4 |
Al Matrix (A) | - | - | - | - | - | - | - | - | - | - | - | - | 88 | - | 5 |
Synthetic AlSi MMC 4 | |||||||||||||||
Repository | Positioning Function | Size_X | Size_Y | Size_Z | Vol. Fraction | Positioning | Rotation X-Axis | Rotation Z-Axis | Resize_X | Resize_Y | Resize_Z | Gray Value | Local Contrast | Priority | |
Fibers (F) | FS 4 | HVF | 512 | 512 | 512 | 5 | Random | Normal with STD = 6.5 | Random | - | - | - | 139 | - | 1 |
Intermetallics (M) | IM | SVF | 512 | 512 | 512 | 5 | Random | Random | Random | 64–128 | 64–128 | 64–128 | 212 | - | 2 |
Si (S) | CHX 2 | SVF | 512 | 512 | 512 | 15 | Random | Random | Random | 15–45 | 45,056 | 15–45 | 70 | - | 3 |
SiC Particles (P) | CHX 1 | HVDF, Dep: F | 512 | 512 | 512 | 8 | Random | Random | Random | 10–35 | 10–35 | 10–35 | 137 | - | 1 |
Voids (V) | CHX 1 | SVDF, Dep: F,P | 512 | 512 | 512 | 0.1 | Random | Random | Random | 45,163 | 45,163 | 45,163 | 0 | - | 4 |
Al Matrix (A) | - | - | - | - | - | - | - | - | - | - | - | - | 91 | - | 5 |
Synthetic AlSi MMC 5 | |||||||||||||||
Repository | Positioning Function | Size_X | Size_Y | Size_Z | Vol. Fraction | Positioning | Rotation X-Axis | Rotation Z-Axis | Resize_X | Resize_Y | Resize_Z | Gray Value | Local Contrast | Priority | |
Fibers (F) | FS 5 | HVF | 512 | 512 | 512 | 5 | Random | Normal with STD = 6.5 | Random | - | - | - | 120 | - | 1 |
Intermetallics (M) | IM | SVF | 512 | 512 | 512 | 5 | Random | Random | Random | 64–128 | 64–128 | 64–128 | 214 | - | 2 |
Si (S) | CHX 2 | SVF | 512 | 512 | 512 | 14 | Random | Random | Random | 15–45 | 45,056 | 15–45 | 74 | - | 3 |
SiC Particles (P) | CHX 1 | HVDF, Dep: F | 512 | 512 | 512 | 7 | Random | Random | Random | 10–35 | 10–35 | 10–35 | 137 | - | 1 |
Voids (V) | CHX 1 | SVDF, Dep: F,P | 512 | 512 | 512 | 0.1 | Random | Random | Random | 45,163 | 45,163 | 45,163 | 0 | - | 4 |
Al Matrix (A) | - | - | - | - | - | - | - | - | - | - | - | - | 95 | - | 5 |
Synthetic AlSi MMC 6 | |||||||||||||||
Repository | Positioning Function | Size_X | Size_Y | Size_Z | Vol. Fraction | Positioning | Rotation X-Axis | Rotation Z-Axis | Resize_X | Resize_Y | Resize_Z | Gray Value | Local Contrast | Priority | |
Fibers (F) | FS 6 | HVF | 512 | 512 | 512 | 2 | Random | Normal with STD = 6.5 | Random | - | - | - | 106 | +/− 10%, t = 2 voxels | 1 |
Intermetallics (M) | IM | SVF | 512 | 512 | 512 | 1 | Random | Random | Random | 64–128 | 64–128 | 64–128 | 214 | - | 2 |
Si (S) | CHX 2 | SVF | 512 | 512 | 512 | 1 | Random | Random | Random | 15–45 | 45,056 | 15–45 | 71 | - | 3 |
SiC Particles (P) | CHX 1 | HVDF, Dep: F | 512 | 512 | 512 | 1 | Random | Random | Random | 10–35 | 10–35 | 10–35 | 126 | - | 1 |
Voids (V) | CHX 1 | SVDF, Dep: F,P | 512 | 512 | 512 | 0.3 | Random | Random | Random | 45,163 | 45,163 | 45,163 | 0 | - | 4 |
Al Matrix (A) | - | - | - | - | - | - | - | - | - | - | - | - | 91 | - | 5 |
Synthetic AlSi MMC 7 | |||||||||||||||
Repository | Positioning Function | Size_X | Size_Y | Size_Z | Vol. Fraction | Positioning | Rotation X-Axis | Rotation Z-Axis | Resize_X | Resize_Y | Resize_Z | Gray Value | Local Contrast | Priority | |
Fibers (F) | FS 7 | HVF | 512 | 512 | 512 | 3 | Random | Normal with STD = 8.5 | Random | - | - | - | 145 | - | 1 |
Intermetallics (M) | IM | SVF | 512 | 512 | 512 | 0.5 | Random | Random | Random | 64–128 | 64–128 | 64–128 | 208 | - | 2 |
Si (S) | CHX 2 | SVF | 512 | 512 | 512 | 0.5 | Random | Random | Random | 15–45 | 45056 | 15–45 | 76 | - | 3 |
SiC Particles (P) | CHX 1 | HVDF, Dep: F | 512 | 512 | 512 | 0.5 | Random | Random | Random | 10–35 | 10–35 | 10–35 | 131 | - | 1 |
Voids (V) | CHX 1 | SVDF, Dep: F,P | 512 | 512 | 512 | 0.1 | Random | Random | Random | 45,163 | 45,163 | 45,163 | 0 | - | 4 |
Al Matrix (A) | - | - | - | - | - | - | - | - | - | - | - | - | 93 | - | 5 |
Synthetic AlSi MMC 8 | |||||||||||||||
Repository | Positioning Function | Size_X | Size_Y | Size_Z | Vol. Fraction | Positioning | Rotation X-Axis | Rotation Z-Axis | Resize_X | Resize_Y | Resize_Z | Gray Value | Local Contrast | Priority | |
Fibers (F) | FS 8 | HVF | 512 | 512 | 512 | 5 | Random | Normal with STD = 6.5 | Random | - | - | - | 98 | +/− 10%, t = 3 voxels | 1 |
Intermetallics (M) | IM | SVF | 512 | 512 | 512 | 5 | Random | Random | Random | 64–128 | 64–128 | 64–128 | 214 | - | 2 |
Si (S) | CHX 2 | SVF | 512 | 512 | 512 | 12 | Random | Random | Random | 15–45 | 45056 | 15–45 | 70 | - | 3 |
SiC Particles (P) | CHX 1 | HVDF, Dep: F | 512 | 512 | 512 | 8 | Random | Random | Random | 10–35 | 10–35 | 10–35 | 136 | - | 1 |
Voids (V) | CHX 1 | SVDF, Dep: F,P | 512 | 512 | 512 | 0.1 | Random | Random | Random | 45,163 | 45,163 | 45,163 | 0 | - | 4 |
Al Matrix (A) | - | - | - | - | - | - | - | - | - | - | - | - | 91 | - | 5 |
No. | Size_X | Size_Y | Size_Z | Generation Limit | Starvation Limit | Iterations | Initial Voxels Alive | |
Cellular Automata Masks (CA) | 110 | 128 | 128 | 128 | 14 | 13 | 5 | 50–55% |
No. | Size_X | Size_Y | Size_Z | No. Points | Alpha Rad. | |||
Concave Particles (CCP) | 125 | 128 | 128 | 128 | 20–50 | 0.6–0.4 | ||
No. | Method | |||||||
Intermetallics (IM) | 190 | Random Intersections of CA & CCP | ||||||
No. | Size_X | Size_Y | Size_Z | No. Points | ||||
Convex Particles (CXH 1) | 160 | 64 | 64 | 64 | 45,229 | |||
No. | Size_X | Size_Y | Size_Z | No. Points | ||||
Convex Particles (CXH 2) | 130 | 64 | 8 | 64 | 10–60 | |||
(Y-Axis) | ||||||||
No. | Length | Rad. | ||||||
Fibers (FS 1) | 150 | 30–380 | 20–35 | |||||
Fibers (FS 2) | 150 | 30–380 | 45,219 | |||||
Fibers (FS 3) | 150 | 30–380 | 45,153 | |||||
Fibers (FS 4) | 150 | 30–380 | 45,000 | |||||
Fibers (FS 5) | 150 | 30–500 | 45,219 | |||||
Fibers (FS 6) | 150 | 30–500 | 45,163 | |||||
Fibers (FS 7) | 150 | 30–500 | 44,993 | |||||
Fibers (FS 8) | 150 | 30–320 | 45,160 |
References
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Athens, Greece, 17–21 October 2016; Springer: Cham, Switzerland, 2016; pp. 424–432. [Google Scholar] [CrossRef] [Green Version]
- Oktay, O.; Ferrante, E.; Kamnitsas, K.; Heinrich, M.; Bai, W.; Caballero, J.; Cook, S.A.; De Marvao, A.; Dawes, T.; O’Regan, D.P.; et al. Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation. IEEE Trans. Med. Imaging 2018, 37, 384–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvikvåg Lundervold, A.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2018, 29, 102–127. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Mücklich, F. Advanced Steel Microstructural Classification by Deep Learning Methods. Sci. Rep. 2018, 8, 2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konopczyński, T.; Rathore, D.; Rathore, J.; Kröger, T.; Zheng, L.; Garbe, C.S.; Carmignato, S.; Hesser, J. Fully Convolutional Deep Network Architectures for Automatic Short Glass Fiber Semantic Segmentation from CT scans. arXiv 2019, arXiv:1901.01211. [Google Scholar]
- Wong, V.W.H.; Ferguson, M.; Law, K.H.; Lee, Y.-T.T.; Witherell, P. Automatic Volumetric Segmentation of Additive Manufacturing Defects with 3D U-Net. arXiv 2021, arXiv:2101.08993. [Google Scholar]
- Du, W.; Shen, H.; Fu, J. Automatic Defect Segmentation in X-Ray Images Based on Deep Learning. IEEE Trans. Ind. Electron. 2021, 68, 12912–12920. [Google Scholar] [CrossRef]
- Strohmann, T.; Bugelnig, K.; Breitbarth, E.; Wilde, F.; Steffens, T.; Germann, H.; Requena, G. Semantic segmentation of synchrotron tomography of multiphase Al-Si alloys using a convolutional neural network with a pixel-wise weighted loss function. Sci. Rep. 2019, 9, 19611. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Evsevleev, S.; Paciornik, S.; Bruno, G. Advanced Deep Learning-Based 3D Microstructural Characterization of Multiphase Metal Matrix Composites. Adv. Eng. Mater. 2020, 22, 1901197. [Google Scholar] [CrossRef]
- Kaira, C.S.; Yang, X.; De Andrade, V.; De Carlo, F.; Scullin, W.; Gursoy, D.; Chawla, N. Automated correlative segmentation of large Transmission X-ray Microscopy (TXM) tomograms using deep learning. Mater. Charact. 2018, 142, 203–210. [Google Scholar] [CrossRef]
- Cabeza, S.; Mishurova, T.; Garcés, G.; Sevostianov, I.; Requena, G.; Bruno, G. Stress-induced damage evolution in cast AlSi12CuMgNi alloy with one- and two-ceramic reinforcements. J. Mater. Sci. 2017, 52, 10198–10216. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Sundgaard, J.V.; Juhl, K.A.; Kofoed, K.F.; Paulsen, R.R. Multi-planar whole heart segmentation of 3D CT images using 2D spatial propagation CNN. In Proceedings of the Medical Imaging 2020: Image Processing, Houston, TX, USA, 15–20 February 2020; Volume 11313. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Song, H.; Chen, L.; Li, Q.; Yang, J.; Hu, X.T.; Zhang, L. Automatic Liver Segmentation Using Multi-Plane Integrated Fully Convolutional Neural Networks. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Lin, B.; Emami, N.; Santos, D.A.; Luo, Y.; Banerjee, S.; Xu, B.-X. A deep learned nanowire segmentation model using synthetic data augmentation. arXiv 2021, arXiv:2109.04429. [Google Scholar] [CrossRef]
- Ma, B.; Wei, X.; Liu, C.; Ban, X.; Huang, H.; Wang, H.; Xue, W.; Wu, S.; Gao, M.; Shen, Q.; et al. Data augmentation in microscopic images for material data mining. npj Comput. Mater. 2020, 6, 125. [Google Scholar] [CrossRef]
- Boikov, A.; Payor, V.; Savelev, R.; Kolesnikov, A. Synthetic Data Generation for Steel Defect Detection and Classification Using Deep Learning. Symmetry 2021, 13, 1176. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016. [Google Scholar] [CrossRef] [Green Version]
- Requena, G.; Degischer, H.P. Creep behaviour of unreinforced and short fibre reinforced AlSi12CuMgNi piston alloy. Mater. Sci. Eng. A 2006, 1, 265–275. [Google Scholar] [CrossRef]
- Kainer, K.U. Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering; Wiley-Vch: Weinheim, Germany, 2006. [Google Scholar]
- Evsevleev, S.; Mishurova, T.; Cabeza, S.; Koos, R.; Sevostianov, I.; Garcés, G.; Requena, G.; Fernández, R.; Bruno, G. The role of intermetallics in stress partitioning and damage evolution of AlSi12CuMgNi alloy. Mater. Sci. Eng. A 2018, 736, 453–464. [Google Scholar] [CrossRef]
- Evsevleev, S.; Sevostianov, I.; Mishurova, T.; Hofmann, M.; Garcés, G.; Bruno, G. Explaining Deviatoric Residual Stresses in Aluminum Matrix Composites with Complex Microstructure. Metall. Mater. Trans. A 2020, 51, 3104–3113. [Google Scholar] [CrossRef] [Green Version]
- Evsevleev, S.; Cabeza, S.; Mishurova, T.; Garcés, G.; Sevostianov, I.; Requena, G.; Boin, M.; Hofmann, M.; Bruno, G. Stress-induced damage evolution in cast AlSi12CuMgNi alloy with one and two-ceramic reinforcements. Part II: Effect of reinforcement orientation. J. Mater. Sci. 2020, 55, 1049–1068. [Google Scholar] [CrossRef]
- Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 1996, 22, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Hemmer, M.; Portaneri, C.; Alliez, P. Alpha Hulls. hal.inria.fr. 2020. Available online: https://hal.inria.fr/hal-03036810 (accessed on 1 January 2021).
- Gardner, M. Mathematical Games: The Fantastic Combinations of John Conway’s New Solitaire Game “Life”. Sci. Am. 1970, 223, 120–123. [Google Scholar] [CrossRef]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Neural Network Libraries. An Open-Source Software to Make Research, Development and Implementation of Neural Network More Efficient. Sony Corp. Available online: https://nnabla.org/ (accessed on 1 April 2021).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.-M. A Non-Local Algorithm for Image Denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, D.; Zhang, H.; Wang, J.; Liang, Z.; Ma, J. Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: A review. Med. Phys. 2017, 44, 1168–1185. [Google Scholar] [CrossRef]
- Niu, C.; Li, M.; Fan, F.; Wu, W.; Guo, X.; Lyu, Q.; Wang, G. Suppression of Correlated Noise with Similarity-based Unsupervised Deep Learning. arXiv 2020, arXiv:2011.03384. [Google Scholar]
- Krull, A.; Buchholz, T.O.; Jug, F. Noise2Void—Learning Denoising from Single Noisy Images. arXiv 2018, arXiv:1811.10980. [Google Scholar]
- Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning Image Restoration without Clean Data. arXiv 2018, arXiv:1803.04189. [Google Scholar]
Synthetic Al-Si MMC CT Volumes Fabricated | Volumes Used for Training/Validation Data (Random Selection) | Volumes Reserved for Testing | Training/Validation Volumes Slicing Stride | Total Sub-Volume Pairs | Training Pairs | Validation Pairs |
---|---|---|---|---|---|---|
8 | 7 | 1 | 56 | 5103 | 4465 | 638 |
(Case) | Al2O3 Fibers | IMs | Si | SiC Particles | Al Matrix | Overall | |
---|---|---|---|---|---|---|---|
Synthetic Data—DICE | |||||||
(1) Plain, Single Unet, Single View | 0.99 | 0.99 | 0.97 | 0.99 | 0.99 | 0.99 | |
(2) Augmentation, Single Unet, Single View | 0.97 | 0.98 | 0.93 | 0.96 | 0.98 | 0.98 | |
(3) Augmentation, Single Unet, Multi View | 0.98 | 0.99 | 0.94 | 0.97 | 0.99 | 0.98 | |
(4) Augmentation, Triple Unet, Multi View | 0.97 | 0.98 | 0.93 | 0.97 | 0.98 | 0.98 | |
NLM8 Conditioned Experimental Data—DICE | |||||||
(1) Plain, Single Unet, Single View | 0.34 | 0.53 | 0.50 | 0.48 | 0.76 | 0.62 | |
(2) Augmentation, Single Unet, Single View | 0.45 | 0.48 | 0.58 | 0.54 | 0.86 | 0.73 | |
(3) Augmentation, Single Unet, Multi View | 0.46 | 0.48 | 0.59 | 0.59 | 0.87 | 0.74 | |
(4) Augmentation, Triple Unet, Multi View | 0.49 | 0.55 | 0.60 | 0.66 | 0.87 | 0.77 | |
Not Conditioned Experimental Data—DICE | |||||||
(4) Augmentation, Triple Unet, Multi View | 0.44 | 0.42 | 0.55 | 0.58 | 0.84 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsamos, A.; Evsevleev, S.; Fioresi, R.; Faglioni, F.; Bruno, G. Synthetic Data Generation for Automatic Segmentation of X-ray Computed Tomography Reconstructions of Complex Microstructures. J. Imaging 2023, 9, 22. https://doi.org/10.3390/jimaging9020022
Tsamos A, Evsevleev S, Fioresi R, Faglioni F, Bruno G. Synthetic Data Generation for Automatic Segmentation of X-ray Computed Tomography Reconstructions of Complex Microstructures. Journal of Imaging. 2023; 9(2):22. https://doi.org/10.3390/jimaging9020022
Chicago/Turabian StyleTsamos, Athanasios, Sergei Evsevleev, Rita Fioresi, Francesco Faglioni, and Giovanni Bruno. 2023. "Synthetic Data Generation for Automatic Segmentation of X-ray Computed Tomography Reconstructions of Complex Microstructures" Journal of Imaging 9, no. 2: 22. https://doi.org/10.3390/jimaging9020022
APA StyleTsamos, A., Evsevleev, S., Fioresi, R., Faglioni, F., & Bruno, G. (2023). Synthetic Data Generation for Automatic Segmentation of X-ray Computed Tomography Reconstructions of Complex Microstructures. Journal of Imaging, 9(2), 22. https://doi.org/10.3390/jimaging9020022