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Abstract: The greatest challenge when using deep convolutional neural networks (DCNNs) for
automatic segmentation of microstructural X-ray computed tomography (XCT) data is the acquisition
of sufficient and relevant data to train the working network. Traditionally, these have been attained
by manually annotating a few slices for 2D DCNNs. However, complex multiphase microstructures
would presumably be better segmented with 3D networks. However, manual segmentation labeling
for 3D problems is prohibitive. In this work, we introduce a method for generating synthetic
XCT data for a challenging six-phase Al–Si alloy composite reinforced with ceramic fibers and
particles. Moreover, we propose certain data augmentations (brightness, contrast, noise, and blur),
a special in-house designed deep convolutional neural network (Triple UNet), and a multi-view
forwarding strategy to promote generalized learning from synthetic data and therefore achieve
successful segmentations. We obtain an overall Dice score of 0.77. Lastly, we prove the detrimental
effects of artifacts in the XCT data on achieving accurate segmentations when synthetic data are
employed for training the DCNNs. The methods presented in this work are applicable to other
materials and imaging techniques as well. Successful segmentation coupled with neural networks
trained with synthetic data will accelerate scientific output.

Keywords: automatic segmentation; 3D deep convolutional neural network (3D DCNN); Dice score;
metal matrix composite (MMC); modified U-Net architectures; multi-phase materials

1. Introduction
1.1. Related Work

In recent years there has been an upsurge in the use of artificial intelligence (AI) in
material science-related problems. More specifically, the number of studies employing
artificial deep convolutional neural networks (DCNNs) for the qualitative and quantita-
tive analysis of X-ray computed tomography (XCT), magnetic resonance imaging (MRI),
and microscopy data has continuously been increasing. This technology was originally
developed for the automatic analysis and segmentation of various biological organs, cells,
tumors, etc., from biomedical XCT and microscopy data [1–4]. It did not take long for
this method to expand to material science as well. For instance, in [5], 2D DCNNs were
employed for the segmentation and classification of microstructural constituents present
within low-carbon steel from images retrieved with scanning electron microscopy (SEM)
and light optical microscopy (LOM). In [6], 3D DCNNs were used for the semantic seg-
mentation of short glass fibers within a short-fiber-reinforced polymer (SFRP) from XCT
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scans. Automatic segmentation of defects was successfully performed on XCT data of
additively manufactured materials with a 3D DCNN [7] and conventional materials with a
2D DCNN [8]. A similar study was conducted by Strohmann et al. [9]: micro-XCT scans
of the microstructure of a three-phase Al–Si alloy were semantically segmented (phases:
aluminum alloy matrix, silicon, and aluminide intermetallics) with a state-of-the-art 2D
DCNN. Excellent segmentation performance was reported based on manually labeled train-
ing data coupled with a pixel-wise weighted loss function [10] for the working net. Another
important study [11] was carried out by Evsevleev et al., which is relevant for this work
because of the large number of phases present: XCT scans of a five-phase AlSi12CuMgNi
metal matrix composite (MMC) alloy reinforced with short Al2O3 fibers and SiC particles
were semantically segmented with a 2D DCNN, despite the major challenges (lack of
contrast among phases) involved. As in many other studies, manually annotated semantic
labels were used as training data for the working neural network. For 2D networks, the
training data required to obtain accurate results are not vast. Generally, only a few slices
(cross-sections) are required to be manually segmented and labeled to thoroughly train a
2D DCNN [9,12]. If data augmentations are adopted [11], the required number of labeled
data can further be reduced. This is indeed the aim of our work, i.e., to provide a method
for data augmentation for effective neural network training.

1.2. Problem and Motivation

A lot of multiphase composite materials possess complex microstructures, both be-
cause of the different constituents and because of diverse geometrical features such as
the constituents’ shape, size, orientation, etc. A compelling example of such materials is
Al–Si MMCs with multiple reinforcing phases. For such materials, the exact mechanical
and fracture properties have not been extensively studied. Arguably, the best tool for the
visualization and analysis of their microstructure is XCT due to its 3D nature. However,
many challenges exist. It is not uncommon for certain individual microstructural phases to
share similar X-ray attenuation coefficients (similar densities). This consequently leads to
similar grayscales in reconstructed XCT data. Therefore, both simplistic thresholding [13]
and even the more sophisticated Otsu thresholding algorithm [14] are rendered ineffective
as segmentation methods. On the other hand, complete manual segmentation is impractical
due to the enormous effort and time required. Finally, even with an artificial intelligence-
based (AI) approach, this problem can still be challenging as training data must be manually
annotated. Nevertheless, in [9], it was reported that the total time required to fully segment
XCT data with AI was less than 1% compared to a manual approach. However, this did not
include the time needed to manually annotate the required training data. As mentioned
previously, for 2D networks, the training data requirements are not enormous, especially
when the microstructure contains only a limited number of phases. Furthermore, if many
microstructural phases are present, geometrical features become more and more important
for accurate feature recognition. For instance, in [11], it is reported that due to the similar
grayscales of the reinforcing SiC particles and Al2O3 fibers, the in-plane vertical fibers were
wrongly classified as particles with a 2D DCNN. Thus, a 3D network could have potentially
performed better. For 3D DCNNs, the limitation is the vast number of required training
data. Some researchers have overcome similar problems by averaging resulting output seg-
mentation probabilities from multiple plane views with 2D networks [15,16]. Nonetheless,
manually annotated labels are still required for training, with the number of slices needed
depending on the complexity of the problem to be tackled. Reasonably, some researchers
have attempted to train the working neural networks with synthetic or simulated data [6],
apart from the manually annotated training data. The results revealed very close segmen-
tation accuracies between the two approaches. However, Konopczyński et al. [6] studied
a rather straightforward case with only two phases (polymer matrix and glass fibers),
possessing very distinct grayscales. Similarly, in [17], 2D synthetic data were employed to
segment vanadium pentoxide (V2O5) nanowires in transmission X-ray microscopy (STXM)
and scanning electron microscopy (SEM) 2D images. As before, the problem involved only
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two phases (V2O5 wires and background) with very distinct grayscales, hence a simpler
classification task. Other more recent studies incorporating synthetic data training are [18]
and [19], in which grain boundaries in polycrystalline iron and defects (cracks, voids) in
steel workpieces, respectively, were segmented with DCNNs trained with synthetic data. A
segmentation study of a multiphase composite material with a complex microstructure and
similar phase grayscales, such as the Al–Si MMC presented in [11], still remains a major
challenge. In this work, we lay the path to the solution to the problem of a reproducible
and precise segmentation of XCT data. A successful segmentation of XCT data on this
material with a 3D DCNN trained with synthetic data will certainly enable reliable quanti-
tative microstructural analysis (phase fractions, shape, distribution of phases, etc.). Such
a segmentation strategy could be applied to many other equally challenging microstruc-
tures. Furthermore, a segmentation approach based on synthetic microstructures does
not necessarily have to be limited to XCT data but could reasonably be applied to other
imaging techniques, such as microscopy, neutron diffraction, ultrasonics, etc. Additionally,
minimum human intervention (no manual labeling) will accelerate scientific output, reduce
potential human error, and further solidify AI applications in materials research. Lastly,
in [5], it is reported that segmentation performance on smaller objects with the employed
neural network was poor. From our experience, this is not an uncommon occurrence even
with current state-of-the-art neural network architectures (e.g., accurate segmentation of
thin fibers, few pixels/voxels thick). We will show that our novel architecture overcomes
this limitation.

1.3. Research Approach Outline

The research steps undertaken are outlined below:

1. An in-house MATLAB library was coded and used to model/simulate synthetic
Al–Si MMCs microstructures based on the MMC reported in [11]. Such synthetic
microstructures were generated to appear similar to those of an XCT scan in terms of
both structural resemblance and simulated grayscales.

2. The synthetic microstructures were then sliced and augmented, as detailed be-
low, to provide suitable training data for an in-house designed 3D UNet [4,20]
DCNN architecture.

3. After training, the suggested architectures were coupled with several forwarding
strategies to segment the XCT experimental data. The term, forwarding strategy,
refers to the slicing method of the data into smaller batches, the subsequent passage
of these batches through the working networks, and finally, their recombination into
the final semantically segmented XCT data reconstructed volumes.

4. The performance was assessed based on the Dice precision coefficient, a commonly
used segmentation performance metric of DCNNs. The precision was assessed both
on a synthetic XCT volume (used only for testing) and on experimental XCT volumes
from which arbitrary slices were extracted and manually labeled as the ground-
truth benchmark.

2. Material Description

Cast near-eutectic Al–Si alloys are some of the most common materials currently
employed in the automotive industry for engine piston production [21]. Furthermore, there
has been an increased interest in the exploitation of these materials in the aerospace industry,
aiming to substitute the broadly used unreinforced Al and Ti alloys [22]. Examples include
aerials, frames, and joining elements. The addition of the Si phase introduces high fluidity
to the melt. Moreover, transition elements such as Cu, Fe, and Ni promote the formation
of stable aluminides (intermetallics), which along with the eutectic Si phase, assemble a
3D interconnected network within the microstructure of the alloy [23]. To improve certain
mechanical properties, such as creep resistance and strength, MMCs of these materials
are formulated with the addition of reinforcing phases such as ceramic particles and/or
short ceramic fibers [11,21–23]. This is to suppress the over-aging deterioration of the
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aluminum matrix, occurring at extended service at high temperatures, even >300 ◦C. Thus,
the microstructure of such composites typically consists of four or five phases (Al matrix,
eutectic Si, intermetallics (IMs), ceramic short fibers, and ceramic particles), or even six
phases, if voids and cracks are considered. The complex 3D microstructural nature of the
composites justifies the extensive use of XCT for their microstructural analysis. The specific
composition of the material examined in this study is an AlSi12CuMgNi alloy reinforced
with 7%vol Al2O3 short fibers and 15%vol SiC particles produced by squeeze casting. The
hybrid preform, in which the molten alloy was infiltrated, had a priori the reinforcing fibers
planar-randomly orientated (XY-plane) and the reinforcing particles randomly distributed.
Synchrotron XCT (SXCT) data were acquired at the BAMline beamline at the BESSY II
synchrotron in Berlin, Germany. A monochromatic beam with an energy of 25 keV was
used; the pco camera allowed an effective pixel size of (0.44 µm)2; 2400 projections were
acquired with a counting time of 3 s/projection; and the reconstruction of the raw data was
made using Paganin’s phase retrieval method and a filtered back-projection algorithm. The
exact experimental procedure and equipment used for the SXCT imaging and the analysis
of the microstructure are described in detail in [11]. A 512 × 512 (pixels) cross-section
of the XCT reconstruction of the material is shown in Figure 1. We observe that certain
specific phases (particles, fibers, Al matrix, and some intermetallics) share similar X-ray
attenuation coefficients.
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3. Method Development
3.1. Synthetic Al–Si MMC Microstructure Generation
3.1.1. General Strategy

In the next paragraph, we outline the approach; details of each step will be given in
the following sections.

The in-house developed MATLAB library (BAM SynthMAT, MathWorks, Natick, MA,
USA) can model a variety of microstructures, including particles and fibers, in terms of
shape (convex/concave, roundness), aspect ratio, size, etc. These can be positioned within
a user-defined individual volume with various positioning functions, thereby controlling
the orientation and statistical positioning (i.e., Monte Carlo, nearest neighbor distance). If
required, non-overlapping (hardcore) positioning can be imposed within the individual
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single-phase volume during its formulation process (internally self-dependent hardcore
positioning) or in conjunction with other already formulated individual volumes occupying
the same space (externally dependent hardcore positioning), or both. The final assembly
into a global final volume is accomplished by combining all the formulated individual
volumes with a priority function. A user-defined priority number is assigned to each
individual volume. The voxels of certain individual single-phase volumes with higher
priority can cover the voxels of other individual volumes/phases with lower priority
during the final assembly if they occupy the same space. Finally, functions have been
coded to assign grayscales as required and simulate local phase contrast, noise (Poisson,
Gaussian), and blur (Gaussian, mean). The resulting synthetic volumes are extracted/saved
as raw 8-bit binary data with assigned grayscales (range: 0–255) and as raw 8-bit binary
data containing specified labels for the various synthetic phases (range: 0, 1, . . . , [no. of
phases—1]). More specifically, in the case of the Al–Si MMC, there are 6 different phases
present: Al2O3 fibers, SiC particles, IMs, eutectic Si, voids, and Al matrix. Thus, a few
important aspects were considered before building the synthetic microstructures. Simple
observations within the experimental XCT data were sufficient for this task. We are going
to elucidate them, together with our effective procedure for the generation of synthetic
microstructures, in our next section.

3.1.2. Synthesis Preprocessing—Required Information

First, the interactions between the phases must be defined. For instance, fibers can
interpenetrate all the phases apart from the ceramic particles. Self-dependent hardcore
positioning is an obvious requirement for this phase. Similar principles apply to the ceramic
particles and the voids phases as well. On the other hand, the IMs and eutectic Si phases
have lower priorities. Therefore, fibers, particles, and Voids can exist within the latter.
However, no eutectic Si can be enclosed within the IM phase. The Al matrix phase has the
lowest priority of all phases.

Secondly, the geometrical parameters had to be recorded for each individual phase. For
the fibers, the approximate length/thickness range, approximate orientation/inclination
(mostly coplanar with XY-plane, randomly oriented), and distribution were taken into
account, and similarly, for the particles, the approximate aspect ratio, size, and roundness
(convexity) were considered. For instance, particles and voids have approximately an aspect
ratio between 1 and 2, with a rather round or polygonal shape and random orientation.
The eutectic Si phase resembles a network consisting of relatively thin platelet-shaped
interconnected particles [24,25], with an aspect ratio approximately between 1 and 3,
and a random orientation and distribution. The IMs phase is quite concave in nature,
with a structure resembling dendrite and/or cave-like formations, random orientation,
and distribution.

Finally, grayscales of individual phases were sampled from various locations within
the experimental XCT data. A conservative strategy is to generate several average values
for each individual phase and not just a global average. More specifically, each individual
average value should be calculated by averaging samples from different positions (voxels)
within a single object (e.g., the same fiber, the same particle, the same IM, etc.) and
not across the whole XCT reconstructed volume. The next individual average value for
the same phase can be the average grayscales from a similar object located elsewhere.
Furthermore, there can be interfaces where local fluctuations in grayscales are present due
to phase contrast effects. In such cases, it is beneficial to note down the increased/decreased
grayscale values in that region. For instance, this can be observed mostly around thick
fibers, where inner brighter and outer darker grayscales emerge at the interface in a double
shell formation (Figure 2). The sampling of the geometrical parameters and the grayscale
values does not have to be an extremely precise process. The training strategies shown
below would anyway refine the identification process. The meticulous recording of how
the involved individual phases merge/interact with each other (and with themselves) is
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nevertheless imperative. These properties control the assembly hierarchy of the individual
phases during the formulation process of the synthetic microstructures.
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3.1.3. The Synthesis Process

The generation of the synthetic Al–Si MMC microstructures is divided into four major
sequential steps:

1. Fabrication and enrichment of individual particle and fiber repositories.
2. Positioning of individual particles within individual single-phase volumes with the

various positioning functions.
3. Final synthetic volume assembly (by merging individual single-phase volumes with a

priority function).
4. Assignment of grayscales and local phase contrast (where applicable).

3.1.4. Individual Particles and Fibers Fabrication

• Fiber Particle Function (Al2O3 Fibers): For the individual fibers, the only parameters
required are length and diameter (both in terms of the number of voxels). With a coded
function, we designate in a prismatic volume (size: fiber’s length x diameter x diameter),
which voxels occupy the fiber space (i.e., 0: empty, 1: fiber). Such data are saved in binary
form. The information required to properly load the geometry (size: x, y, z) can be stored in
the initial bits of the file in the form of a header with a fixed length. The file name can have
an integrated increasing integer serial number, representing the total number of fabricated
fibers in a repository.

• Convex Particle Function (SiC, Eutectic Si, and Void particles): For the individual
convex particles, a convex hull function can be used [26], which can generate all the
mathematically possible convex hulls based on a number of points. This can randomly be
assigned between a specific user-defined range. Moreover, the points can lie within a prism
of user-defined dimensions, effectively controlling size and aspect ratio. The number of
points controls the particle roundness. In a similar manner to the individual fibers, the data
can be voxelated and saved as binary data (the same principles apply).

• Concave Particles and Cellular Automaton Functions (IMs particles): For the individ-
ual IMs particles, essentially the same procedure as above is followed. However, as concave
particles are required here, an alpha radius parameter is introduced [27], which effectively
controls the concavity of the IM particles. This parameter can be viewed as the diameter
of a small sphere. If the latter can fit through any triangular face of a generated convex
hull, then this hull is excluded/deleted. Thus, the smaller the Alpha-Radius is, the higher
the concavity of the final particle. The dendrite and cave-like structures were introduced
with the intersection of the generated concave particle with a cellular automaton devised
3D mask resembling cave structures (see Figure 3). The 3D cellular automaton rule was
inspired by the Game of Life paradigm [28].
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3.1.5. Positioning Functions

Independently from the function used for data generation, particles/fibers were
loaded from the formulated repositories, resized (if applicable, as required), and rotated (if
applicable, as required) before being positioned into the individual single-phase volumes.
The coded positioning functions that were used for the synthesis of individual volumes are
detailed below.

• Simple Volume Function (SVF): Particles from the repositories are randomly posi-
tioned and rotated as required until a (user-defined) volume fraction is achieved (particles
can overlap). Applications were IM and eutectic Si phases.

• Hardcore Volume Function (HVF): Particles from the repositories are randomly
positioned and rotated as required until a (user-defined) volume fraction is achieved with a
self-hardcore requirement (particles cannot overlap). Application was Al2O3 fibers phase.

• Simple Volume-Dependent Function (SVDF): Particles from the repositories are
randomly positioned and rotated as required until a (user-defined) volume fraction is
achieved with an external hardcore requirement (particles cannot overlap other particles
from an external volume occupying the same space, but they can self-overlap). Application
was the voids phase.

• Hardcore Volume-Dependent Function (HVDF): Particles from the repositories are
randomly positioned and rotated as required until a (user-defined) volume fraction is
achieved, with both internal and external hardcore requirements. Application was the SiC
particles phase.

3.1.6. Generated Synthetic Volumes

Eight 512× 512× 512 synthetic Al–Si MMCs microstructures were generated with var-
ious parameters (different volume fractions, particles, and fibers sizes/lengths, orientations,
grayscales, etc.). Statistics and parameters are included in Appendix A (Tables A1–A3).



J. Imaging 2023, 9, 22 8 of 23

Some cross-sections of these structures are illustrated in Figure 4 (Figure 4D,E). Finally, the
whole synthesis procedure is summarized as a flowchart in Figure 3 (the top line represents
the single objects created according to the procedure outlined in Section 3.1.4).
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3.2. Training Data
3.2.1. Augmentations on Training Data

From the eight synthetic Al–Si MMC volumes formulated, seven were randomly
selected for generating the training and validation data for the neural networks. The
remaining volume was kept as testing data for the final performance assessment. Indepen-
dently from the synthesis of the artificial XCT data for training, the experimental grayscale
distributions cannot be perfectly replicated. In fact, the synthetic data incorporated only a
few grayscales to represent the various microstructural phases. Therefore, a strategy was
devised to ensure generalization during training. Traditionally, researchers have been using
image augmentations (resizing, rotations, distortions, etc.) to increase the number of train-
ing data available when numbers are not sufficient. In our approach, we employ only four
specific augmentations, aiming to render the neural networks more versatile in segmenting
experimental data (with knowledge gained from synthetic data). More specifically, we
applied contrast and brightness augmentations, in random orders and intensity (+/− 10%
for both). We also added moderate Gaussian noise (random standard deviation = 0–8 for
a grayscale range: 0–255) and 3D Gaussian spatial blur (random sigma = 0–1) in both the
training and validation datasets. The generalization expected from the brightness/contrast
augmentations was the ability of the network(s) to comprehend different material interfaces
in experimental datasets based on synthetic training datasets. This forced the DCNN to
consider 3D interface geometry as well (particle shapes and interface grayscale differences).
The purpose of the added noise and blur was to render the training a bit more challenging
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and, thus, further improve generalization. Lastly, experimental XCT data show regions
with densely packed particles and regions where particles are loosely scattered. Such dif-
ferent arrangements were separately reproduced and then combined in the final synthetic
microstructure, which therefore contained inhomogeneous particle spatial distribution and
volume fractions. This feature enhanced the DCNN’s ability to accurately semantically
segment particles both tightly packed and loosely clustered (e.g., to avoid tightly clustered
SiC particles or Al2O3 fibers being mislabeled as the Al-matrix phase and vice versa).
Therefore, a statistical phase distribution generalization was introduced.

3.2.2. Three-Dimensional Training and Validation Data Slicing

Three-dimensional training data were generated from the seven synthetic volumes.
The input size for the 3D network(s) was set as 64 × 64 × 64 voxels (sub-volumes). The
slicing was performed with a stride = 56, consistent in all x, y, and z directions, resulting
in 7 × 93 = 5103 (64 × 64 × 64) 3D pair images (data and respective labels). From these,
4465 random pairs (87.5%) were used as training data and the remaining 638 pairs (12.5%)
as validation data (see Table 1). Lastly, the previously discussed augmentations were
applied in a random fashion to each sub-volume and not to the seven synthetic volumes as
a whole. This strategy increased the number of combinations of the augmentations and,
therefore, improved generalization (random augmentations were applied to more samples.)

Table 1. Training and validation data summary.

Synthetic Al-Si
MMC CT
Volumes

Fabricated

Volumes Used for
Training/Validation

Data (Random
Selection)

Volumes
Reserved for

Testing

Training/Validation
Volumes Slicing

Stride

Total
Sub-Volume

Pairs

Training
Pairs

Validation
Pairs

8 7 1 56 5103 4465 638

3.2.3. Neural Network Architectures and Training Parameters

As stated previously, one of the goals of the DCNNs was to alleviate the complication
of problematic semantic segmentation of small or thin components with current state-of-
the-art architectures. The proposed 3D architectures were inspired by the well-established
U-Net/V-Net architectures [4,20]. We set the input size as 64, 64, 64, 1_channel, and we
used only a few channels in the consecutive convolutions in order to avoid overfitting and
achieve better generalization. The selected non-linear activation function was Swish [29]
(for its continuity and superiority in this context compared to ReLU), and we employed
batch normalization blocks always before the activation functions (except the final one at
the output). Furthermore, the input of each step in the network’s encoding ladder was
added to the output of the equivalent step in the decoding ladder. Then, the output (sum)
of each of these skip connection blocks was concatenated with the output of the equivalent
step from the encoding ladder before being fed into the next step of the decoding ladder.
The final (at the output) activation function was SoftMax, and the chosen loss function
was categorical cross-entropy with 6 classes (voids, fibers, IMs, eutectic Si, SiC particles,
and Al matrix: 0 to 5). Finally, we employed average pooling and un-pooling functions
for the downscaling and upscaling, respectively. We devised two arrangements. In the
first one, we followed the conventional kernels for average pooling and un-pooling: kernel
size = (2, 2, 2). This arrangement will be referred to as <Single_UNet> from this point forth.
In the second arrangement, we structured a composite neural network consisting of three
independent U-Nets, each bearing its own SoftMax and loss function during training. The
kernel sizes for average pooling and un-pooling were (1, 2, 2), (2, 1, 2), and (2, 2, 1) for
each sub-net, respectively. During forward passing, the individual SoftMax functions were
eliminated, and the respective outputs were added together before being fed into a new
SoftMax function. This arrangement will be referred to as <Triple_UNet> from this point
forth. A detailed sketch of the proposed architectures is illustrated in Figure 5.
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The networks described above were designed and trained with Sony’s Neural Network
Libraries [30] on a workstation equipped with a GeForce RTX 3090 (Nvidia, Santa Clara,
CA, USA), an Intel Pentium i7 CPU (Intel, Santa Clara, CA, USA), and 32 GB of memory.
The ADAM algorithm [31] was chosen as the optimizer (parameters: initial learning
rate/alpha = 10−4, beta1 = 0.9, beta2 = 0.999, updated every iteration), and the selected
input batch size was 48. The learning rate was updated exponentially on every epoch
with a learning rate multiplier of LRM = 0.9. Moreover, a random shuffling strategy was
adopted for the training dataset on each epoch. Finally, the maximum number of epochs
was set as 50. Both training and validation errors were recorded, but the final learnable
parameters were taken from the epoch that minimized the validation error.

3.2.4. Forwarding Strategies

The 512 × 512 × 512 testing volumes fed into the networks were sliced with a
stride = 28, consistent in all x, y, and z directions. This was smaller than the stride
used for the training/validation data slicing for increased accuracy. Thus, for 6 classes,
4913× 6 = 29,478 probability maps (per testing volume) were the output from the networks,
which were then reformed with the same stride into 6 probability volumes (one for each
class). For each voxel, a class was assigned (0 to 5) based on the highest probability from
each class volume, resulting in the final segmentation volume. This slicing/reformation
method will be referred to as <SingleView> forwarding strategy from this point forth.
Moreover, a second forwarding strategy was examined. It consisted of essentially the same
strategy as the above, but with the initial volume rotated four times around the z-axis (0◦,
90◦, 180◦, 270◦) before being sliced (in the same manner as before). The resulting 4 × 6 = 24
probability volumes were then rotated back to 0◦ and added together (in class clusters
of 4) before the final classification. This will be referred to as the <MultiView> forwarding
strategy (see Figure 6) from this point forth.
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4. Application: Results and Discussion

Four 512× 512× 512 volumes were randomly cut from a larger 1800× 1800× 800 XCT
reconstructed volume of the AlSi12CuMgNi MMC. Although the XCT volumes were of
rather good quality in terms of reconstruction clarity with only some artifacts, we further
conditioned them (after the reconstruction) with the application of a non-local-means
(NLM) filter [11,32,33], with Sigma = 8 and Smoothing_Factor = 1. This significantly
reduced the image noise. Nevertheless, some blurring still remained in the conditioned
volumes. Furthermore, some image structural loss was observed on the smallest objects
because of the filtering; such loss of details was considered acceptable. In Figure 7, an
XCT reconstruction (with a standard filtered back-projection reconstruction algorithm, see
Ref. [11]) cross-section is shown before and after the application of the filter.
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Figure 7. AlSi12CuMgNi MMC XCT reconstruction cross-sections (512 × 512, XY-plane view) before
(unconditioned) and after (conditioned) the application of an NLM Filter with s = 8 and sf = 1. The
squares show regions where some structural loss (due to filtering) can be observed. (a) without
filtering, (b) with NLM filtering.

For each of the four experimental XCT reconstructed volumes, a random cross-section
normal to the z-axis was selected and cut. Afterward, the resulting four slices were
manually labeled, annotating the existing six microstructural phases. The performance
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was assessed based on both the eighth synthetic MMC volume (reserved for testing) and
on the four experimental XCT volumes (average result of the four labeled slices). More
specifically, based on the proposed neural network architectures and forwarding strategies,
the following cases were examined:

1. No data augmentations + Single_UNet + SingleView;
2. Data augmentations + Single_UNet + SingleView;
3. Data augmentations + Single_UNet + MultiView;
4. Data augmentations + Triple_UNet + MultiView.

The performance of the latter combinations was quantitively assessed with the Dice
coefficient as in [11], commonly employed for segmentation performance assessment of
CNNs in semantic segmentation tasks. Dice is a precision metric that rewards correctly
segmented pixels and penalizes the incorrect ones altogether and is defined as:

Dice = 2TP/(2TP + FP + FN) (1)

where TP, FP, and FN are the numbers of true-positive, false-positive, and false-negative
pixels/voxels, respectively.

As stated in [11], with the current stage of deep learning development, any score
greater than 0.7 is considered an acceptable segmentation result (Dice = 0 indicates no
overlap, Dice = 1 indicates perfect match). The Dice coefficient from the segmentation
of the synthetic volume, of the NLM-conditioned experimental XCT volume, and finally
of the un-conditioned experimental CT volume (for the examined cases) are given in
Table 2. In Figure 8, a slice from the NLM-conditioned XCT data segmentation result is
shown for all examined cases. In Figure 9, the TP, FP, and FN maps are illustrated for all
microstructural phases for the same slice as for Figure 8, but for case four only (i.e., data
augmentations + Triple_UNet + MultiView case). In Figure 10, the FP maps illustrated in
Figure 9 were assigned the correct class based on the manually labeled ground-truth slices.

Table 2. Quantitative assessment of the synthetic XCT segmentation, NLM-filtered segmented
experimental XCT data, and the un-conditioned segmented experimental XCT data for all cases
(voids phase is not included as it was absent in the ground-truth slices).

(Case) Al2O3
Fibers IMs Si SiC

Particles
Al

Matrix Overall

Synthetic Data—DICE
(1) Plain, Single Unet, Single View 0.99 0.99 0.97 0.99 0.99 0.99

(2) Augmentation, Single Unet, Single View 0.97 0.98 0.93 0.96 0.98 0.98
(3) Augmentation, Single Unet, Multi View 0.98 0.99 0.94 0.97 0.99 0.98
(4) Augmentation, Triple Unet, Multi View 0.97 0.98 0.93 0.97 0.98 0.98

NLM8 Conditioned Experimental
Data—DICE

(1) Plain, Single Unet, Single View 0.34 0.53 0.50 0.48 0.76 0.62
(2) Augmentation, Single Unet, Single View 0.45 0.48 0.58 0.54 0.86 0.73
(3) Augmentation, Single Unet, Multi View 0.46 0.48 0.59 0.59 0.87 0.74
(4) Augmentation, Triple Unet, Multi View 0.49 0.55 0.60 0.66 0.87 0.77

Not Conditioned Experimental Data—DICE
(4) Augmentation, Triple Unet, Multi View 0.44 0.42 0.55 0.58 0.84 0.72
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Figure 9. TP, FP, and FN error maps of the segmentation for case 4 (i.e., data augmentations + Tri-
ple_UNet + MultiView) based on NLM-conditioned experimental data. Images  (a) fibers; (b) IMs; 
(c) Si; (d) SiC particles; (e) Al matrix. Labels  red—FP; blue—FN; green—TP. 

Figure 8. Segmentation results of the experimental NLM-conditioned AlSi12CuMgNi MMC XCT
data for all examined cases. Images (a–d): cases 1–4 above, respectively. Images (e,f): manual labels
(ground truth) and the respective slice from the XCT reconstruction volume, respectively. Labels→
blue—fibers; yellow—IMs; green—Si; red—SiC particles; gray—Al matrix. The white and orange
squares are regions of interest described in the text below.
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Figure 9. TP, FP, and FN error maps of the segmentation for case 4 (i.e., data augmenta-
tions + Triple_UNet + MultiView) based on NLM-conditioned experimental data. Images→ (a) fibers;
(b) IMs; (c) Si; (d) SiC particles; (e) Al matrix. Labels→ red—FP; blue—FN; green—TP.
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should have been if they had been correctly segmented.) The white square is a region of interest 
described in the text below. 
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coefficients. Contrarily, a decrease in the Dice coefficient of the IMs phase segmentation 
(yellow) is observed, although this is not visible in the segmentation map of Figure 8b. As 
with the synthetic data segmentation, in case three, the multiple view strategy is beneficial 
to increase the overall Dice coefficient, but the IMs individual Dice coefficient remains 
unchanged. A meaningful increase in precision was observed for the SiC particles. Ac-
cording to the other individual Dice coefficients, this can be attributed to a slightly better 
distinction between alumina fibers and SiC particles, and to a lesser extent, to the better 
geometrical identification of the SiC particles/Al matrix interface. These aspects are not 
easily visible by just examining the segmentation maps in Figure 8b,c. The situation is 
different for the transition between cases three and four. Clearly, in Figure 8d, the classi-
fication between the rival alumina fibers and SiC particles improves considerably, with 
more regions being correctly labeled as SiC particles instead of fibers and vice versa. The 
same happens between the SiC particles and IMs phases: fewer IMs are mislabeled as par-
ticles. This is equally reflected in the increase in the Dice coefficients for the fibers, the SiC 
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Figure 10. FP maps with labels of the segmentation for case 4 (i.e., data augmenta-
tions + Triple_UNet + MultiView) based on NLM-conditioned experimental data. Images→ (a) fibers;
(b) IMs; (c) Si; (d) SiC particles; (e) Al matrix. Labels → blue—fibers; yellow—IMs; green—Si;
red—SiC particles; gray—Al matrix. (The colored labels indicate what the false-positive regions in
each phase should have been if they had been correctly segmented.) The white square is a region of
interest described in the text below.

The purpose of this study was to render a DCNN capable of generalized learning
from synthetic XCT data and to project this knowledge into semantic segmentations ca-
pable of reproducing as correctly as possible experimental XCT data. The sensitivity and
performance of the four examined cases were initially assessed on the segmentation of
a synthetic volume reserved for this purpose. As reported in Table 2, for case one (i.e.,
plain, Single_UNet, SingleView), the Dice coefficient is 0.99, i.e., the segmentation is al-
most perfect. This is consistent across all microstructural phases. These scores validate
the accuracy of the proposed base UNet architecture, despite the relatively small number
of channels employed in the convolutional layers. In case two (i.e., augmentation, Sin-
gle_UNet, SingleView), the introduction of the augmentations has a negative impact on
the accuracy of the synthetic XCT data segmentation, as the drop in the Dice coefficients
indicates. This is reasonable since the initial synthetic data (before the augmentations)
incorporate only a few grayscales. Thus, without any augmentations, the UNet performs
better as fewer patterns have to be learned. Typically, augmentations are employed when
the training data are not sufficient in numbers (to create more). However, when data are
sufficient, no augmentation is required as it would introduce an unnecessary generalization
and therefore decrease the performance. On the other hand, the multiple view approach
in case three (i.e., data augmentations + Single_UNet + MultiView) has a positive impact
on the performance when segmenting the synthetic data. In case four (i.e., data augmen-
tations + Triple_UNet + MultiView), the introduction of the triple UNet arrangement has
an adverse effect with respect to case three, reducing the Dice coefficient again. It is to be
noted that despite the slight decrease, the lowest overall Dice coefficient achieved is 0.98,
and the lowest individual phase Dice coefficient is 0.93. Thus, the validity of the proposed
cases is confirmed.
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Although increasing sophistication of the data treatment (cases one to four) reduces
the performance for the segmentation of synthetic XCT data, in the case of the conditioned
experimental XCT datasets, this path leads to a progressively increasing performance
according to the Dice coefficients in Table 2. The application of the suggested augmenta-
tions during training increases the overall Dice coefficient from 0.62 to 0.73 (cases one to
two, respectively). This is visually reflected when comparing the segmentation maps in
Figure 8a,b with the ground truth (manual segmentation) in Figure 8e. It can clearly be
seen that the large (blue) regions of the Al matrix that were previously misinterpreted as
fibers are correctly segmented in case two. The same applies to the overexpanded (green)
Si phase: much of it was initially wrongly segmented (instead of being correctly labeled
as Al matrix). A better distinction between SiC particles and alumina fibers is visible as
well in case two. All such improvements mean a considerable increase in the individual
phase Dice coefficients. Contrarily, a decrease in the Dice coefficient of the IMs phase
segmentation (yellow) is observed, although this is not visible in the segmentation map
of Figure 8b. As with the synthetic data segmentation, in case three, the multiple view
strategy is beneficial to increase the overall Dice coefficient, but the IMs individual Dice
coefficient remains unchanged. A meaningful increase in precision was observed for the
SiC particles. According to the other individual Dice coefficients, this can be attributed to a
slightly better distinction between alumina fibers and SiC particles, and to a lesser extent,
to the better geometrical identification of the SiC particles/Al matrix interface. These
aspects are not easily visible by just examining the segmentation maps in Figure 8b,c. The
situation is different for the transition between cases three and four. Clearly, in Figure 8d,
the classification between the rival alumina fibers and SiC particles improves considerably,
with more regions being correctly labeled as SiC particles instead of fibers and vice versa.
The same happens between the SiC particles and IMs phases: fewer IMs are mislabeled
as particles. This is equally reflected in the increase in the Dice coefficients for the fibers,
the SiC particles, and the IMs, as shown in Table 2. Furthermore, the clustering of the Si
phase is reduced even further, although this is not immediately visible in the segmentation
images. The IM segmentation, on the other hand, is distinguishably closer to the manually
annotated ground truth in Figure 8e. This is reflected in the increase in its Dice coefficient,
reaching its highest precision. The final overall Dice coefficient of 0.77 in the most complex
case, case four, is above the 0.70 threshold to consider the segmentation successful. Such
overall Dice coefficient is regarded acceptable considering the complexity of the problem,
in spite of the fact that the fiber and IM phases segmentations achieve relatively low Dice
coefficients (0.48 and 0.55, respectively). As the error map of the fibers in Figure 9a unveils,
there are significant FP and FN regions contributing towards this performance. The FP
regions are mostly due to mislabeled fibers (as SiC particles), according to Figure 10a, while
the FN regions (shown in Figure 9a in blue) are mostly scattered in Figure 10d,e (in blue).
Interestingly, the fibers and SiC particle segmentation maps are almost negatives of each
other. The IMs in Figure 9b have no FP regions, and their FN regions are shared between
fibers and SiC particles. The confusion between fibers, SiC particles, and IMs was expected
because of their similar grayscales (and sometimes shapes). For the Si phase, all FP regions
shown in Figure 9c should be Al matrix regions instead, according to Figure 10c. Interest-
ingly, the few FN regions (in Figure 9c) are mislabeled as Al matrix regions, as Figure 10e
indicates. Overall, it can be deduced that the Si phase is “over-segmented”, with the seg-
mented Si boundaries expanding within the Al matrix if we refer to the ground-truth labels
(manually annotated). There is no guarantee that the manual annotations are 100% accurate
as these are prone to human error. In fact, a closer inspection of Figure 8f shows that there
is not always a clear distinction between microstructural phase boundaries (orange square:
blurry Si/Al matrix boundary in Figure 8d–f). The phase boundary uncertainty can be
seen more clearly in Figure 10e for almost every phase/Al matrix boundary. Similarly, the
wrongly mislabeled fiber tips (as Al matrix) can be again attributed to the blurry fibers/Al
matrix interface (white square in Figures 8d–f and 10f).
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We believe that existing artifacts within the XCT experimental data were a major hurdle
for achieving generalized segmentation based on training from synthetic data. With manual
annotation of the training data, these artifacts are included in the training process and
therefore are learned by the DCNN. Ideally, XCT data must be as clean (no noise) and
as sharp (no blur) as possible to achieve even higher segmentation quality with synthetic
data training. The latter requirement becomes important for more complex microstructures
containing phases with similar XCT grayscales, such as the Al–Si MMC presented in this
study. This is clearly demonstrated in Table 2 with the Dice coefficient achieved for the
unconditioned (noisy) data (shown in Figure 7a) and in Figure 11. Despite the unconditioned
XCT data being of good quality by modern standards, the low noise and blur present have an
adverse effect on the Dice coefficients for every phase. The application of the NLM filter to
the reconstructed XCT data improved the segmentation (Dice) score considerably. However,
more sophisticated XCT data conditioning methods, such as in [34–36], could potentially
further improve the result. It should be reported that the equivalent 2D approach results
in worse precision. Moreover, a change from 64 × 64 × 64 input to 96 × 96 × 96 input size
for the 3D case provided no increase in performance. Finally, we report that we attempted
double and quadruple UNet arrangements (the quadruple arrangement was essentially a
combination of the Single_UNet and the Triple_UNet); however, the triple arrangement
achieved the best generalization with synthetic data training.
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perimental data for case 4 (i.e., data augmentations + Triple_UNet + MultiView.) Segmentation maps:
(a) Unconditioned experimental data, (b) NLM-conditioned experimental data, (c) Ground Truth.

5. Conclusions and Outlook

We propose a complete and new strategy to avoid manually annotating training
data for the segmentation of X-ray tomography data and increase the quality of such
segmentation. Our strategy is based on the generation of synthetic training (and validation)
data and special deep convolutional neural networks (DCNNs) for the augmentation of
such data (in particular, the experimental data).

(A) The method developed for generating synthetic XCT data for materials with com-
plex microstructures, (B) the proposed conversion approach of these data into relevant
training data (certain intensity of contrast, brightness, noise, and blur augmentations),
(C) the proposed novel 3D DCNN architecture (Triple_UNet), and (D) the proposed for-
warding strategy (MultiView forwarding strategy), are appropriate to achieve our final
goal, based on the overall Dice coefficient achieved (on both synthetic and experimental test
data). We show that high automatic segmentation precision can be achieved on artifact-free
XCT data, not only overall but also for each individual phase. As work for the future, it is
worth exploring whether more advanced XCT data conditioning methods (compared to
the NLM filter) can enhance the segmentation precision. The significance of this work lies
in the effectiveness of the proposed methods using truly automatic segmentation of XCT
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data with neural networks, i.e., without resorting to time-consuming manual annotation.
This approach will further foster the use of AI in material science analysis and acceler-
ate scientific output since our method should be easily applicable to other materials and
imaging techniques.
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Appendix A

This appendix contains details on the synthetic microstructures’ statistics:
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Table A1. Synthetic Al–Si MMCs 1–4 specifications.

Synthetic AlSi MMC 1

Repository Positioning
Function Size_X Size_Y Size_Z Vol.

Fraction Positioning Rotation
X-Axis

Rotation
Z-Axis Resize_X Resize_Y Resize_Z Gray

Value
Local

Contrast Priority

Fibers (F) FS 1 HVF 512 512 512 5 Random
Normal

with STD
= 6.5

Random - - - 93
+/− 10%,

t = 4
voxels

1

Intermetallics (M) IM SVF 512 512 512 5 Random Random Random 64–128 64–128 64–128 214 - 2
Si (S) CHX 2 SVF 512 512 512 16 Random Random Random 15–45 45,056 15–45 70 - 3

SiC Particles (P) CHX 1 HVDF,
Dep: F 512 512 512 8 Random Random Random 10–35 10–35 10–35 129 - 1

Voids (V) CHX 1 SVDF,
Dep: F,P 512 512 512 0.1 Random Random Random 45,163 45,163 45,163 0 - 4

Al Matrix (A) - - - - - - - - - - - - 91 - 5

Synthetic AlSi MMC 2

Repository Positioning
Function Size_X Size_Y Size_Z Vol.

Fraction Positioning Rotation
X-Axis

Rotation
Z-Axis Resize_X Resize_Y Resize_Z Gray

Value
Local

Contrast Priority

Fibers (F) FS 2 HVF 512 512 512 5 Random
Normal

with STD
= 6.5

Random - - - 98
+/− 10%,

t = 3
voxels

1

Intermetallics (M) IM SVF 512 512 512 5 Random Random Random 64–128 64–128 64–128 214 - 2
Si (S) CHX 2 SVF 512 512 512 14 Random Random Random 15–45 45,056 15–45 72 - 3

SiC Particles (P) CHX 1 HVDF,
Dep: F 512 512 512 8 Random Random Random 10–35 10–35 10–35 136 - 1

Voids (V) CHX 1 SVDF,
Dep: F,P 512 512 512 0.1 Random Random Random 45,163 45,163 45,163 0 - 4

Al Matrix (A) - - - - - - - - - - - - 90 - 5

Synthetic AlSi MMC 3

Repository Positioning
Function Size_X Size_Y Size_Z Vol.

Fraction Positioning Rotation
X-Axis

Rotation
Z-Axis Resize_X Resize_Y Resize_Z Gray

Value
Local

Contrast Priority

Fibers (F) FS 3 HVF 512 512 512 5 Random
Normal

with STD
= 6.5

Random - - - 125 - 1

Intermetallics (M) IM SVF 512 512 512 5 Random Random Random 64–128 64–128 64–128 208 - 2
Si (S) CHX 2 SVF 512 512 512 15 Random Random Random 15–45 45,056 15–45 68 - 3

SiC Particles (P) CHX 1 HVDF,
Dep: F 512 512 512 8 Random Random Random 10–35 10–35 10–35 129 - 1
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Table A1. Cont.

Voids (V) CHX 1 SVDF,
Dep: F,P 512 512 512 0.1 Random Random Random 45,163 45,163 45,163 0 - 4

Al Matrix (A) - - - - - - - - - - - - 88 - 5

Synthetic AlSi MMC 4

Repository Positioning
Function Size_X Size_Y Size_Z Vol.

Fraction Positioning Rotation
X-Axis

Rotation
Z-Axis Resize_X Resize_Y Resize_Z Gray

Value
Local

Contrast Priority

Fibers (F) FS 4 HVF 512 512 512 5 Random
Normal

with STD
= 6.5

Random - - - 139 - 1

Intermetallics (M) IM SVF 512 512 512 5 Random Random Random 64–128 64–128 64–128 212 - 2
Si (S) CHX 2 SVF 512 512 512 15 Random Random Random 15–45 45,056 15–45 70 - 3

SiC Particles (P) CHX 1 HVDF,
Dep: F 512 512 512 8 Random Random Random 10–35 10–35 10–35 137 - 1

Voids (V) CHX 1 SVDF,
Dep: F,P 512 512 512 0.1 Random Random Random 45,163 45,163 45,163 0 - 4

Al Matrix (A) - - - - - - - - - - - - 91 - 5

Table A2. Synthetic Al–Si MMCs 5–8 specifications.

Synthetic AlSi MMC 5

Repository Positioning
Function Size_X Size_Y Size_Z Vol.

Fraction Positioning Rotation
X-Axis

Rotation
Z-Axis Resize_X Resize_Y Resize_Z Gray

Value
Local

Contrast Priority

Fibers (F) FS 5 HVF 512 512 512 5 Random
Normal

with STD
= 6.5

Random - - - 120 - 1

Intermetallics (M) IM SVF 512 512 512 5 Random Random Random 64–128 64–128 64–128 214 - 2
Si (S) CHX 2 SVF 512 512 512 14 Random Random Random 15–45 45,056 15–45 74 - 3

SiC Particles (P) CHX 1 HVDF,
Dep: F 512 512 512 7 Random Random Random 10–35 10–35 10–35 137 - 1

Voids (V) CHX 1 SVDF,
Dep: F,P 512 512 512 0.1 Random Random Random 45,163 45,163 45,163 0 - 4

Al Matrix (A) - - - - - - - - - - - - 95 - 5
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Table A2. Cont.

Synthetic AlSi MMC 6

Repository Positioning
Function Size_X Size_Y Size_Z Vol.

Fraction Positioning Rotation
X-Axis

Rotation
Z-Axis Resize_X Resize_Y Resize_Z Gray

Value
Local

Contrast Priority

Fibers (F) FS 6 HVF 512 512 512 2 Random
Normal

with STD
= 6.5

Random - - - 106
+/− 10%,

t = 2
voxels

1

Intermetallics (M) IM SVF 512 512 512 1 Random Random Random 64–128 64–128 64–128 214 - 2
Si (S) CHX 2 SVF 512 512 512 1 Random Random Random 15–45 45,056 15–45 71 - 3

SiC Particles (P) CHX 1 HVDF,
Dep: F 512 512 512 1 Random Random Random 10–35 10–35 10–35 126 - 1

Voids (V) CHX 1 SVDF,
Dep: F,P 512 512 512 0.3 Random Random Random 45,163 45,163 45,163 0 - 4

Al Matrix (A) - - - - - - - - - - - - 91 - 5

Synthetic AlSi MMC 7

Repository Positioning
Function Size_X Size_Y Size_Z Vol.

Fraction Positioning Rotation
X-Axis

Rotation
Z-Axis Resize_X Resize_Y Resize_Z Gray

Value
Local

Contrast Priority

Fibers (F) FS 7 HVF 512 512 512 3 Random
Normal

with STD
= 8.5

Random - - - 145 - 1

Intermetallics (M) IM SVF 512 512 512 0.5 Random Random Random 64–128 64–128 64–128 208 - 2
Si (S) CHX 2 SVF 512 512 512 0.5 Random Random Random 15–45 45056 15–45 76 - 3

SiC Particles (P) CHX 1 HVDF,
Dep: F 512 512 512 0.5 Random Random Random 10–35 10–35 10–35 131 - 1

Voids (V) CHX 1 SVDF,
Dep: F,P 512 512 512 0.1 Random Random Random 45,163 45,163 45,163 0 - 4

Al Matrix (A) - - - - - - - - - - - - 93 - 5

Synthetic AlSi MMC 8

Repository Positioning
Function Size_X Size_Y Size_Z Vol.

Fraction Positioning Rotation
X-Axis

Rotation
Z-Axis Resize_X Resize_Y Resize_Z Gray

Value
Local

Contrast Priority

Fibers (F) FS 8 HVF 512 512 512 5 Random
Normal

with STD
= 6.5

Random - - - 98
+/− 10%,

t = 3
voxels

1

Intermetallics (M) IM SVF 512 512 512 5 Random Random Random 64–128 64–128 64–128 214 - 2
Si (S) CHX 2 SVF 512 512 512 12 Random Random Random 15–45 45056 15–45 70 - 3

SiC Particles (P) CHX 1 HVDF,
Dep: F 512 512 512 8 Random Random Random 10–35 10–35 10–35 136 - 1

Voids (V) CHX 1 SVDF,
Dep: F,P 512 512 512 0.1 Random Random Random 45,163 45,163 45,163 0 - 4

Al Matrix (A) - - - - - - - - - - - - 91 - 5
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Table A3. Particles and fibers repositories specifications.

No. Size_X Size_Y Size_Z Generation Limit Starvation Limit Iterations Initial Voxels Alive

Cellular
Automata Masks

(CA)
110 128 128 128 14 13 5 50–55%

No. Size_X Size_Y Size_Z No. Points Alpha Rad.

Concave Particles
(CCP) 125 128 128 128 20–50 0.6–0.4

No. Method

Intermetallics
(IM) 190 Random Intersections of CA & CCP

No. Size_X Size_Y Size_Z No. Points

Convex Particles
(CXH 1) 160 64 64 64 45,229

No. Size_X Size_Y Size_Z No. Points

Convex Particles
(CXH 2) 130 64 8 64 10–60

(Y-Axis)

No. Length Rad.

Fibers (FS 1) 150 30–380 20–35
Fibers (FS 2) 150 30–380 45,219
Fibers (FS 3) 150 30–380 45,153
Fibers (FS 4) 150 30–380 45,000
Fibers (FS 5) 150 30–500 45,219
Fibers (FS 6) 150 30–500 45,163
Fibers (FS 7) 150 30–500 44,993
Fibers (FS 8) 150 30–320 45,160
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