An Approach toward Automatic Specifics Diagnosis of Breast Cancer Based on an Immunohistochemical Image
Abstract
:1. Introduction
- We developed an algorithm for image preprocessing that was based on adaptive median filtering with experimental determination of the image noise level, and identification of the filter window size, which allowed for a reduction in the impulse noise level on the input image;
- We proposed a combined segmentation algorithm based on the watershed and threshold segmentation algorithms to calculate the area and identify the cell staining intensity. It will allow for the determination of informative indicators for breast cancer subtype identification;
- We developed a method of the automatic statement of specified diagnosis based on the preliminary processing algorithms and histological and immunohistochemical image segmentation using brightness indicators and relative area. This made it possible to determine the breast cancer subtype automatically;
- We developed a software module within the HIAMS software system, implemented in the Java programming language using the OpenCV computer vision library.
2. Literature Review
3. Materials and Methods
- —
- Pr is progesterone;
- —
- Er is estrogen;
- —
- HER2/neu is the oncoprotein;
- —
- Ki-67 is the cell proliferation biomarker;
- —
- Sw is the area of a field of view window;
- —
- Sp is the area of positive cells in the field of view;
- —
- δs is the ratio of the area of positive cells in the field of view to the area of the field of view window;
- —
- KI is the color intensity coefficient;
- —
- is the degree of tumor differentiation based on the histological image analysis;
- —
- is the subtype Luminal A of breast cancer (BC);
- —
- is the BC subtype Luminal B;
- —
- is the BC amplified subtype;
- —
- is the BC subtype basaltic;
- —
- is the relative area of the cell nuclei (estrogen biomarker);
- —
- is the relative area of the cell nuclei (progesterone biomarker);
- —
- is the relative area of the cell nuclei (biomarker oncoprotein);
- —
- is the relative area of the cell nuclei (a biomarker of cell proliferation);
- —
- is the level of color intensity of the cell nuclei (biomarker estrogen);
- —
- is the level of color intensity of the cell nuclei (a biomarker of cell proliferation);
- —
- TL is the lower segmentation threshold (thresholding);
- —
- TH is the upper segmentation threshold (thresholding).
3.1. Method of Diagnostic Statement Based on Immunohistochemical Image Analysis
3.2. Segmentation and Calculation of Cell Staining Intensity Area
3.3. Determination of Breast Cancer Molecular Genetic Subtype
- —a highly differentiated tumor;
- —a moderately differentiated tumor;
- —a low differentiated tumor.
4. Results, Comparison, and Discussion
4.1. Dataset Description
4.2. Software Module Structure
- IF the peak signal-to-noise ratio <= 20, THEN the median filter window = 5 × 5;
- IF the peak signal-to-noise ratio >20, THEN the median filter window = 3 × 3;
- IF Image Type = progesterone THEN thresholds lower = 160 AND thresholds upper = 180;
- IF Image Type = estrogen THEN thresholds lower = 180 AND thresholds upper = 210;
- IF Image Type = oncoprotein THEN thresholds lower = 40 AND thresholds upper = 230;
- IF Image Type = cell proliferation biomarker THEN thresholds lower = 160 AND thresholds upper = 180.
|
|
4.3. Computer Experiments
4.4. Comparison of Results of Automated Microscopy Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, A.; Gamble, P.; Jaroensri, R.; Abdelsamea, M.; Mermel, C.; Chen, P.-H.; Rakha, E. Artificial intelligence in digital breast pathology: Techniques and applications. Breast 2020, 49, 267–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punitha, S.; Al-Turjman, F.; Thompson, S. An automated breast cancer diagnosis using feature selection and parameter optimization in ANN. Comput. Electr. Eng. 2021, 90, 106958. [Google Scholar] [CrossRef]
- Chattoraj, S.; Vishwakarma, K. Classification of histopathological breast cancer images using iterative VMD aided Zernike moments & textural signatures. arXiv 2018, arXiv:1801.04880. Available online: http://arxiv.org/abs/1801.04880 (accessed on 10 May 2022).
- Cordeiro, C.; Ioshii, S.; Alves, J.; Oliveira, L. An Automatic Patch-based Approach for HER-2 Scoring in Immunohistochemical Breast Cancer Images Using Color Features. arXiv 2018, arXiv:1805.05392. Available online: http://arxiv.org/abs/1805.05392 (accessed on 10 May 2022).
- An, Y.; Kim, S.; Kang, B.; Park, C.; Jung, N.; Kim, J. Breast cancer in very young women (<30 years): Correlation of imaging features with clinicopathological features and immunohistochemical subtypes. Eur. J. Radiol. 2015, 84, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wan, J.; Xu, G.; Xiang, L.-H.; Fang, Y.; Ding, S.-S.; Jiang, X.; Sun, L.-P.; Zhang, Y.-F. Conventional US and 2-D Shear Wave Elastography of Virtual Touch Tissue Imaging Quantification: Correlation with Immunohistochemical Subtypes of Breast Cancer. Ultrasound Med. Biol. 2019, 45, 2612–2622. [Google Scholar] [CrossRef]
- Usman, H.; Abidin, F. Digital image analysis of immunohistochemistry KI-67 using QuPath software in breast cancer. JKKI 2021, 12, 34–43. [Google Scholar] [CrossRef]
- Chen, J.-M.; Li, Y.; Xu, J.; Gong, L.; Wang, L.-W.; Liu, W.-L.; Liu, J. Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review. Tumor Biol. 2017, 39, 101042831769455. [Google Scholar] [CrossRef] [Green Version]
- Holten-Rossing, H.; Klingberg, H. AI deep learning tumour detection directly on ER, PR and KI-67 IHC slides yields a single slide automated workflow with high concordance to manual scoring. In Proceedings of the 6th Digital Pathology & AI Congress, London, UK, 5–6 December 2019. [Google Scholar] [CrossRef]
- Jakobsen, M.; Teerapakpinyo, C.; Shuangshoti, S.; Keelawat, S. Comparison between digital image analysis and visual assessment of immunohistochemical HER2 expression in breast cancer. Pathol.-Res. Pract. 2018, 214, 2087–2092. [Google Scholar] [CrossRef]
- Mi, W.; Li, J.; Guo, Y.; Ren, X.; Liang, Z.; Zhang, T.; Zou, H. Deep Learning-Based Multi-Class Classification of Breast Digital Pathology Images. CMAR 2021, 13, 4605–4617. [Google Scholar] [CrossRef]
- Robertson, S.; Azizpour, H.; Smith, K.; Hartman, J. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence. Transl. Res. 2017, 194, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Guo, X.; Tian, F. Application of Artificial Intelligence Technology in Pathological Image Analysis of Breast Tissue. J. Phys. Conf. Ser. 2020, 1642, 012018. [Google Scholar] [CrossRef]
- Gon, C.; Souza, J.; Fernandes, H. CNN architecture optimization using bio-inspired algorithms for breast cancer detection in infrared images. Comput. Biol. Med. 2022, 142, 105205. [Google Scholar] [CrossRef]
- Mouelhi, A.; Rmili, H.; Ali, J.; Sayadi, M.; Doghri, R.; Mrad, K. Fast unsupervised nuclear segmentation and classification scheme for automatic allred cancer scoring in immunohistochemical breast tissue images. Comput. Methods Programs Biomed. 2018, 165, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Ammar, M.B.; Ayachi, F.L.; Ksantini, R.; Mahjoubi, H. Data warehouse for machine learning: Application to breast cancer diagnosis. Procedia Comput. Sci. 2022, 196, 692–698. [Google Scholar] [CrossRef]
- Dumont, L.; Levacher, N.; Schapman, D.; Rives-Feraille, A.; Moutard, L.; Delessard, M.; Saulnier, J.; Rondanino, C.; Rives, N. IHC_Tool: An open-source Fiji procedure for quantitative evaluation of cross sections of testicular explants. Reprod. Biol. 2021, 21, 100507. [Google Scholar] [CrossRef]
- Yoshizawa, K.; Ando, H.; Kimura, Y.; Kawashiri, S.; Moroi, A.; Ueki, K. Automatic Machine-Learning Classification of the Mode of Invasion of Oral Squamous Cell Carcinoma Using Digital Microscopic Images: A Retrospective Study. Review 2020, preprint. [Google Scholar] [CrossRef]
- Evangeline, I.K.; Precious, J.G.; Pazhanivel, N.; Kirubha, S.A. Automatic Detection and Counting of Lymphocytes from Immunohistochemistry Cancer Images Using Deep Learning. J. Med. Biol. Eng. 2020, 40, 735–747. [Google Scholar] [CrossRef]
- Mokni, R.; Gargouri, N.; Damak, A.; Sellami, D.; Feki, W.; Mnif, Z. An automatic Computer-Aided Diagnosis system based on the Multimodal fusion of Breast Cancer (MF-CAD. Biomed. Signal Process. Control. 2021, 69, 102914. [Google Scholar] [CrossRef]
- Shu, J.; Liu, J.; Zhang, Y.; Fu, H.; Ilyas, M.; Faraci, G.; Della Mea, V.; Liu, B.; Qiu, G. Marker controlled superpixel nuclei segmentation and automatic counting on immunohistochemistry staining images. Bioinformatics 2020, 36, 3225–3233. [Google Scholar] [CrossRef]
- Tan, W.; Nerurkar, S.; Cai, H.; Ng, H.; Wu, D.; Wee, Y.; Lim, J.; Yeong, J.; Lim, T. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun. 2020, 40, 135–153. [Google Scholar] [CrossRef] [PubMed]
- Fassler, D.; Abousamra, S.; Gupta, R.; Chen, C.; Zhao, M.; Paredes, D.; Batool, S.; Knudsen, B.; Escobar-Hoyos, L.; Shroyer, K.; et al. Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images. Diagn. Pathol. 2020, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Elazab, N.; Soliman, H.; El-Sappagh, S.; Islam, S.; Elmogy, M. Objective Diagnosis for Histopathological Images Based on Machine Learning Techniques: Classical Approaches and New Trends. Mathematics 2020, 8, 1863. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Che, S.; Huang, J.; Han, X.; Yuan, Y. Diagnose Like A Pathologist: Weakly-Supervised Pathologist-Tree Network for Slide-Level Immunohistochemical Scoring. Proc. Conf. AAAI Artif. Intell. 2021, 35, 47–54. [Google Scholar] [CrossRef]
- Morrison, L.; Lefever, M.; Behman, L.; Leibold, T.; Roberts, E.; Horchner, U.; Bauer, D. Brightfield multiplex immunohistochemistry with multispectral imaging. Lab. Investig. 2020, 100, 1124–1136. [Google Scholar] [CrossRef] [PubMed]
- Priego-Torres, B.; Lobato-Delgado, B.; Atienza-Cuevas, L. Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images. Expert Syst. Appl. 2022, 193, 116471. [Google Scholar] [CrossRef]
- Berezsky, O.; Pitsun, O.; Derysh, B.; Pazdriy, I.; Melnyk, G.; Batko, Y. Automatic Segmentation of Immunohistochemical Images Based on U-net Architecture. In Proceedings of the 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), IEEE, Lviv, Ukraine, 22–25 September 2021; pp. 29–32. [Google Scholar] [CrossRef]
- Li, D.; Chu, X.; Cui, Y.; Zhao, J.; Zhang, K.; Yang, X. Improved U-Net based on contour prediction for efficient segmentation of rectal cancer. Comput. Methods Programs Biomed. 2021, 213, 106493. [Google Scholar] [CrossRef] [PubMed]
- Berezsky, O.; Pitsun, O.; Derish, B.; Berezska, K.; Melnyk, G.; Batko, Y. Adaptive Immunohistochemical Image Pre-processing Method. In Proceedings of the 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), IEEE, Deggendorf, Germany, 16–18 September 2020; pp. 820–823. [Google Scholar] [CrossRef]
- Peleshko, D.; Rak, T.; Izonin, I. Image Superresolution via Divergence Matrix and Automatic Detection of Crossover. Int. J. Intell. Syst. Appl. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Berezsky, O.; Pitsun, O.; Dubchak, L.; Berezka, K.; Dolynyuk, T.; Derish, B. Cytological Images Clustering of Breast Pathologies. In Proceedings of the 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), IEEE, Zbarazh, Ukraine, 23–26 September; pp. 62–65. [CrossRef]
- Berezsky, O.; Dubchak, L.; Batryn, N.; Datsko, T.; Berezska, K.; Pitsun, O.; Batko, Y. Fuzzy System For Breast Disease Diagnosing Based On Image Analysis. Inform. Data-Driven Med. 2019, 2488, 69–83. [Google Scholar]
- Hu, Z.; Mashtalir, S.V.; Tyshchenko, O.K.; Stolbovyi, M.I. Video Shots‘ Matching via Various Length of Multidimensional Time Sequences. Int. J. Intell. Syst. Appl. 2017, 9, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Berezsky, O.; Verbovyy, S.; Datsko, T. The intelligent system for diagnosing breast cancers based on image analysis. In Proceedings of the 2015 Information Technologies in Innovation Business Conference (ITIB), IEEE, Kharkiv, Ukraine, 7–9 October 2015; pp. 27–30. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, IEEE, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar] [CrossRef]
- Vasuki, P.; Kanimozhi, J.; Devi, M. A survey on image preprocessing techniques for diverse fields of medical imagery. In Proceedings of the 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), IEEE, Karur, India, 27–28 April 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Berezsky, O.; Pitsun, O.; Datsko, T.; Derish, B.; Melnyk, G. Breast cancer immunohistological imaging database. Comput. Syst. Inf. Technol. 2022, 1, 75–82. [Google Scholar] [CrossRef]
- Hu, Z.; Bodyanskiy, Y.V.; Kulishova, N.Y.; Tyshchenko, O.K. A Multidimensional Extended Neo-Fuzzy Neuron for Facial Expression Recognition. Int. J. Intell. Syst. Appl. 2017, 9, 29–36. [Google Scholar] [CrossRef]
Image Class | Number of Images | The Ratio of Sides of One Image | Size of One Image |
---|---|---|---|
Estrogen | 20 | 4096 × 3286 pixels | 10 Mb |
Progesterone | 20 | 4096 × 3286 pixels | 10 Mb |
Oncoprotein | 20 | 4096 × 3286 pixels | 10 Mb |
Cell proliferation biomarker | 20 | 4096 × 3286 pixels | 10 Mb |
Parameters | Developed Module | HIAMS | ImageJ | Axio Vision | BioImageXD |
---|---|---|---|---|---|
Segmentation algorithms The k-means method Watershed Smart scissors | + + − | + + − | + + +/− | + + + | + + + |
Automatic calculation of quantitative characteristics | + | + | + | +/− | +/− |
Automatic detection of brightness and relative area | + | − | − | +/− | +/− |
Storage of calculation results in the database | + | +/− | − | + | + |
Diagnosis according to the Nottingham scale | + | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezsky, O.; Pitsun, O.; Melnyk, G.; Datsko, T.; Izonin, I.; Derysh, B. An Approach toward Automatic Specifics Diagnosis of Breast Cancer Based on an Immunohistochemical Image. J. Imaging 2023, 9, 12. https://doi.org/10.3390/jimaging9010012
Berezsky O, Pitsun O, Melnyk G, Datsko T, Izonin I, Derysh B. An Approach toward Automatic Specifics Diagnosis of Breast Cancer Based on an Immunohistochemical Image. Journal of Imaging. 2023; 9(1):12. https://doi.org/10.3390/jimaging9010012
Chicago/Turabian StyleBerezsky, Oleh, Oleh Pitsun, Grygoriy Melnyk, Tamara Datsko, Ivan Izonin, and Bohdan Derysh. 2023. "An Approach toward Automatic Specifics Diagnosis of Breast Cancer Based on an Immunohistochemical Image" Journal of Imaging 9, no. 1: 12. https://doi.org/10.3390/jimaging9010012
APA StyleBerezsky, O., Pitsun, O., Melnyk, G., Datsko, T., Izonin, I., & Derysh, B. (2023). An Approach toward Automatic Specifics Diagnosis of Breast Cancer Based on an Immunohistochemical Image. Journal of Imaging, 9(1), 12. https://doi.org/10.3390/jimaging9010012