A Novel Approach of a Low-Cost UWB Microwave Imaging System with High Resolution Based on SAR and a New Fast Reconstruction Algorithm for Early-Stage Breast Cancer Detection
Abstract
:1. Introduction
- The detection of breast tumors based on (SAR) parameter.
- The development of a modified delay-and-sum (DAS) algorithm to enhance tumor response.
- Combine the modified algorithm and (SAR) parameter to provide high quality image of breast tumor with fast processing.
- Speed up the computing time by employing fewer antennas.
2. Explanation of The Simulation Setup
2.1. Breast-Imaging System
2.2. Proposed Novel Approach for Microwave Imaging System
3. Confocal Algorithm and Image Reconstruction
3.1. The Detailed Process Flow of the New Approach
3.2. Data Acquisition
3.3. Calibration
3.4. Clutter Removal
3.5. Synthetic Focusing
4. Results and Discussion
4.1. Size of Tumor
4.2. Material of Tumor
4.3. Comparison with Existing Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMI | Confocal microwave imaging |
SAR | Specific absorption rate |
DAS | Delay and sum |
CMI | Confocal microwave imaging |
DI | Data-independent |
DA | Data-adaptive |
UWB | Ultra-wide band |
FDTD | Finite-difference time domain |
PC | Personal computer |
CPU | Central processing unite |
References
- AlSawaftah, N.; El-Abed, S.; Dhou, S.; Zakaria, A. Microwave Imaging for Early Breast Cancer Detection: Current State, Challenges, and Future Directions. J. Imaging 2022, 8, 123. [Google Scholar] [CrossRef] [PubMed]
- Amdaouch, I.; Aghzout, O.; Naghar, A.; Alejos, A.V.; Falcone, F.J. Enhanced Accuracy of Breast Cancer Detection Based on UWB Compact Slotted Monopole Antennas. AEM Adv. Electromagn. 2019, 8, 1–4. [Google Scholar] [CrossRef]
- Davis, S.K.; Li, X.; Bond, E.J.; Hagness, S.C.; Van Veen, B.D. Frequency-domain penalized least-squares beamformer design for early detection of breast cancer via microwave imaging. In Proceedings of the Sensor Array and Multichannel Signal Processing Workshop Proceedings, Rosslyn, VA, USA, 6 August 2002; pp. 120–124. [Google Scholar]
- Li, X.; Bond, E.J.; Van Veen, B.D.; Hagness, S.C. An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Antennas Propag. Mag. 2005, 47, 19–34. [Google Scholar]
- Fear, E.; Stuchly, M. Microwave detection of breast cancer. IEEE Trans. Microw. Theory Tech. 2000, 48, 1854–1863. [Google Scholar]
- Ahadi, M.; Isa, M.; Saripan, M.I.; Hasan, W. Three dimensions localization of tumors in confocal microwave imaging for breast cancer detection. Microw. Opt. Technol. Lett. 2015, 57, 2917–2929. [Google Scholar] [CrossRef]
- Klemm, M.; Craddock, I.J.; Leendertz, J.A.; Preece, A.; Benjamin, R. Radar-based breast cancer detection using a hemispherical antenna array—Experimental results. IEEE Trans. Antennas Propag. 2009, 57, 1692–1704. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, B.; Xu, L.; Li, J.; Stoica, P. Multistatic adaptive microwave imaging for early breast cancer detection. IEEE Trans. Biomed. Eng. 2006, 53, 1647–1657. [Google Scholar] [CrossRef]
- Moll, J.; Kexel, C.; Krozer, V. A comparison of beamforming methods for microwave breast cancer detection in homogeneous and heterogeneous tissue. In Proceedings of the 2013 European Microwave Conference, Nuremberg, Germany, 6–10 October 2013; pp. 1839–1842. [Google Scholar]
- Kirshin, E.; Zhu, G.K.; Popovich, M.; Coates, M. Evaluation of the mono-static microwave radar algorithms for breast imaging. In Proceedings of the Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 881–885. [Google Scholar]
- Byrne, D.; O’Halloran, M.; Jones, E.; Glavin, M. Transmitter-grouping robust capon beamforming for breast cancer detection. Prog. Electromagn. Res. 2010, 108, 401–416. [Google Scholar] [CrossRef]
- Byrne, D.; O’Halloran, M.; Jones, E.; Glavin, M. A comparison of data-independent microwave beamforming algorithms for the early detection of breast cancer. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 2731–2734. [Google Scholar]
- O’Halloran, M.; Glavin, M.; Jones, E. Effects of fibroglandular tissue distribution on data-independent beamforming algorithms. Prog. Electromagn. Res. 2009, 97, 141–158. [Google Scholar] [CrossRef]
- O’Halloran, M.; Glavin, M.; Jones, E. Improved Confocal Microwave Imaging of the breast using path-dependent signal weighting. In Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13-20 August 2011; pp. 1–4. [Google Scholar]
- O’Loughlin, D.; Elahi, M.A.; Porter, E.; Shahzad, A.; Oliveira, B.L.; Glavin, M.; Jones, E.; O’Halloran, M. Open-source software for microwave radar-based image reconstruction. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
- Tkachenko, R.; Tkachenko, P.; Izonin, I.; Tsymbal, Y. Learning-Based Image Scaling Using Neural-like Structure of Geometric Transformation Paradigm. In Advances in Soft Computing and Machine Learning in Image Processing; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Izonin, I.; Tkachenko, R.; Peleshko, D.; Rak, T.; Batyuk, D. Learning-based image super-resolution using weight coefficients of synaptic connections. In Proceedings of the 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT), Lviv, Ukraine, 14–17 September 2015; pp. 25–29. [Google Scholar]
- Guo, B.; Wang, Y.; Li, J.; Stoica, P.; Wu, R. Microwave imaging via adaptive beamforming methods for breast cancer detection. J. Electromagn. Waves Appl. 2006, 20, 53–63. [Google Scholar] [CrossRef]
- Reimer, T.; Pistorius, S. An Optimization-Based Approach to Radar Image Reconstruction in Breast Microwave Sensing. Sensors 2014, 21, 8172. [Google Scholar] [CrossRef] [PubMed]
- Tayel, M.B.; Elfaham, H.A. Microwave SAR as a tool for tumor determination. In Proceedings of the 2016 11th International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 20–21 December 2016; pp. 207–211. [Google Scholar]
- Banu, M.S.; Vanaja, S.; Poonguzhali, S. UWB microwave detection of breast cancer using SAR. In Proceedings of the 2013 International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, India, 10–12 April 2013; pp. 113–118. [Google Scholar]
- Bhargava, D.; Rattanadecho, P. Microwave imaging of breast cancer: Simulation analysis of SAR and temperature in tumors for different age and type. Case Stud. Therm. Eng. 2022, 31, 101843. [Google Scholar] [CrossRef]
- Krishnan, R.; MC, J.C. An investigation using specific absorption rate analysis to diagnose early-stage breast tumor using UWB antenna. Curr. Med. Imaging 2021, 17, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Tomovski, B.; Gräbner, F.; Hungsberg, A.; Kallmeyer, C.; Linsel, M. Effects of electromagnetic field over a human body, sar simulation with and without nanotextile in the frequency range 0.9–1.8 ghz. J. Electr. Eng. 2011, 62, 349. [Google Scholar]
- Wang, J.; Lim, E.; Leach, M.; Wang, Z.; Man, K.; Huang, Y. Two methods of SAR measurement for wearable electronic devices. In Proceedings of the Proceedings of the International Multi Conference of Engineers and Computer Scientists, Hong Kong, China, 16–18 March 2016; Volume 2.
- Kim, S.; Sharif, Y.; Nasim, I. Human electromagnetic field exposure in wearable communications: A review. arXiv 2019, arXiv:1912.05282. [Google Scholar]
- Amdaouch, I.; Aghzout, O.; Naghar, A.; Alejos, A.V.; Falcone, F.J. Breast tumor detection system based on a compact UWB antenna design. Prog. Electromagn. Res. M 2018, 64, 123–133. [Google Scholar] [CrossRef]
- Shao, W.; Zhou, B.; Zheng, Z.; Wang, G. UWB microwave imaging for breast tumor detection in inhomogeneous tissue. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 1496–1499. [Google Scholar]
- Burfeindt, M.J.; Colgan, T.J.; Mays, R.O.; Shea, J.D.; Behdad, N.; Van Veen, B.D.; Hagness, S.C. MRI-derived 3-D-printed breast phantom for microwave breast imaging validation. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1610–1613. [Google Scholar] [CrossRef]
- Canadian Cancer Society. Stages of Breast Cancer. Available online: https://cancer.ca/en/cancer-information/cancer-374types/breast/staging (accessed on 20 June 2022).
- Banu, S.A.; Jeyanthi, K.M.A. Textile based antenna design for breast cancer detection. In Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Mehranpour, M.; Jarchi, S.; Ghorbani, A.; Keshtkar, A. A novel approach of high-resolution UWB microwave imaging system based on an improved 3D back-projection method for early-stage breast cancer detection applications. Int. J. Microw. Wirel. Technol. 2021, 13, 344–358. [Google Scholar] [CrossRef]
- Fouad, S.; Ghoname, R.; Elmahdy, A.E.; Zekry, A.E. Enhancing tumor detection in IR-UWB breast cancer system. Int. Sch. Res. Not. 2017, 2017, 606580. [Google Scholar] [CrossRef]
- Fear, E.C.; Li, X.; Hagness, S.C.; Stuchly, M.A. Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions. IEEE Trans. Biomed. Eng. 2002, 49, 812–822. [Google Scholar] [CrossRef]
- Ojaroudi, N.; Ojaroudi, M.; Ebazadeh, Y. UWB/omni-directional microstrip monopole antenna for microwave imaging applications. Prog. Electromagn. Res. C 2014, 47, 139–146. [Google Scholar] [CrossRef]
- Honari, M.M.; Ghaffarian, M.S.; Mirzavand, R. Miniaturized antipodal Vivaldi antenna with improved bandwidth using exponential strip arms. Electronics 2021, 10, 83. [Google Scholar] [CrossRef]
- Yawei, W.; Gao, X.; Jian-gang, L.; Li, Z. Conformal Corrugated Edges for Vivaldi Antenna to Obtain Improved Low-Frequency Characteristics. Prog. Electromagn. Res. C 2015, 60, 75–81. [Google Scholar]
- Godinho, D.M.; Felício, J.M.; Fernandes, C.A.; Conceição, R.C. Evaluation of refraction effects in dry medical microwave imaging setups. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 617–621. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, X.; Wang, L.; Song. UWB Imaging Aids Breast Cancer Detection. Microwaves RF 2014, 9, 710–724. [Google Scholar]
- Abdul-Sattar, Z. Experimental Analysis on Effectiveness of Confocal Algorithm for Radar Based Breast Cancer Detection. Ph.D. Thesis, Durham University, Durham, UK, 2012. [Google Scholar]
- Salvador, S.M.; Vecchi, G. Experimental tests of microwave breast cancer detection on phantoms. IEEE Trans. Antennas Propag. 2009, 57, 1705–1712. [Google Scholar] [CrossRef]
- Khan, M.A.; ul Haq, M.A. A novel antenna array design for breast cancer detection. In Proceedings of the 2016 IEEE Industrial Electronics and Applications Conference (IEACon), Kota Kinabalu, Malaysia, 20–22 November 2016; pp. 354–359. [Google Scholar]
- Chouiti, S.M.; Merad, L.; Meriah, S.M. A microwave imaging technique implementation for early detection of breast tumors. In Proceedings of the 9th International Conference on Circuits, Systems, Signal and Telecommunications (CSST’15), Dubai, United Arab Emirates, 22–24 February 2015; pp. 233–236. [Google Scholar]
Conductivity (S/m) | The Relative Permittivity | |
---|---|---|
Skin | 1.1 | 37 |
tumor | 1.2 | 50 |
Tumor Size (mm) | Max Value of SAR (W/KG) | Max at (x, y, z) |
---|---|---|
5 | 44,367 | (19.05, −13.64, 14.44) |
3 | 22,445 | (21.31, −13.39, 15.76) |
1 | 2139 | (20.19, −11.53, 13.98) |
Permittivity | Conductivity (S/m) | |
---|---|---|
Tumor 1 | 50 | 1.2 |
Tumor 2 | 62.77 | 1.66 |
Tumor 3 | 54 | 0.7 |
Tumor 4 | 55.1 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amdaouch, I.; Saban, M.; El Gueri, J.; Chaari, M.Z.; Alejos, A.V.; Alzola, J.R.; Muñoz, A.R.; Aghzout, O. A Novel Approach of a Low-Cost UWB Microwave Imaging System with High Resolution Based on SAR and a New Fast Reconstruction Algorithm for Early-Stage Breast Cancer Detection. J. Imaging 2022, 8, 264. https://doi.org/10.3390/jimaging8100264
Amdaouch I, Saban M, El Gueri J, Chaari MZ, Alejos AV, Alzola JR, Muñoz AR, Aghzout O. A Novel Approach of a Low-Cost UWB Microwave Imaging System with High Resolution Based on SAR and a New Fast Reconstruction Algorithm for Early-Stage Breast Cancer Detection. Journal of Imaging. 2022; 8(10):264. https://doi.org/10.3390/jimaging8100264
Chicago/Turabian StyleAmdaouch, Ibtisam, Mohamed Saban, Jaouad El Gueri, Mohamed Zied Chaari, Ana Vazquez Alejos, Juan Ruiz Alzola, Alfredo Rosado Muñoz, and Otman Aghzout. 2022. "A Novel Approach of a Low-Cost UWB Microwave Imaging System with High Resolution Based on SAR and a New Fast Reconstruction Algorithm for Early-Stage Breast Cancer Detection" Journal of Imaging 8, no. 10: 264. https://doi.org/10.3390/jimaging8100264
APA StyleAmdaouch, I., Saban, M., El Gueri, J., Chaari, M. Z., Alejos, A. V., Alzola, J. R., Muñoz, A. R., & Aghzout, O. (2022). A Novel Approach of a Low-Cost UWB Microwave Imaging System with High Resolution Based on SAR and a New Fast Reconstruction Algorithm for Early-Stage Breast Cancer Detection. Journal of Imaging, 8(10), 264. https://doi.org/10.3390/jimaging8100264