Obscurant Segmentation in Long Wave Infrared Images Using GLCM Textures
Abstract
:1. Introduction
2. Related Work
2.1. Cloud Segmentation
2.2. Texture Analysis
3. GLCM Features
3.1. Regularity Features Group
3.1.1. Angular Second Moment
3.1.2. Entropy
3.2. Pixel Intensity Group
3.2.1. Contrast
3.2.2. Dissimilarity
3.2.3. Homogeneity
3.3. Statistical Description of GLCM
3.3.1. GLCM Mean
3.3.2. Correlation
4. Methods
4.1. GLCM Parameters
4.1.1. Theta
4.1.2. Block Size
4.1.3. Distance d
4.1.4. Used Features
4.2. Window Size and Scale Pyramid
4.3. SVM
4.4. Data Description
4.5. Process
5. Experimental Testing and Evaluation
5.1. Evaluation
5.2. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coicheci, S.; Filip, I. Self-driving vehicles: Current status of development and technical challenges to overcome. In Proceedings of the 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 21–23 May 2020; pp. 255–260. [Google Scholar]
- Martínez-Díaz, M.; Soriguera, F. Autonomous vehicles: Theoretical and practical challenges. Transp. Res. Procedia 2018, 33, 275–282. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Liu, W.; Rabinovich, A.; Berg, A.C. ParseNet: Looking Wider to See Better. arXiv 2015, arXiv:1506.04579. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV 2018), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Zhang, H.; Dana, K.; Shi, J.; Zhang, Z.; Wang, X.; Tyagi, A.; Agrawal, A. Context Encoding for Semantic Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Rodríguez-Rodríguez, J.A.; Molina-Cabello, M.A.; Benítez-Rochel, R.; López-Rubio, E. The effect of image enhancement algorithms on convolutional neural networks. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 3084–3089. [Google Scholar]
- Chaudhuri, D.; Kushwaha, N.K.; Samal, A. Semi-automated road detection from high resolution satellite images by directional morphological enhancement and segmentation techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1538–1544. [Google Scholar] [CrossRef]
- Kong, H.; Audibert, J.Y.; Ponce, J. Vanishing point detection for road detection. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 96–103. [Google Scholar]
- Tulpan, D.; Bouchard, C.; Ellis, K.; Minwalla, C. Detection of clouds in sky/cloud and aerial images using moment based texture segmentation. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Beijing, China, 17–19 August 2017; pp. 1124–1133. [Google Scholar] [CrossRef]
- Dev, S.; Lee, Y.H.; Winkler, S. Systematic Study of Color Spaces and Components for the Segmentation of Sky/Cloud Images. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014. [Google Scholar] [CrossRef]
- Dev, S.; Nautiyal, A.; Lee, Y.H.; Winkler, S. CloudSegNet: A Deep Network for Nychthemeron Cloud Image Segmentation. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1814–1818. [Google Scholar] [CrossRef]
- Rusyn, B.; Korniy, V.; Lutsyk, O.; Kosarevych, R. Deep Learning for Atmospheric Cloud Image Segmentation. In Proceedings of the 2019 XIth International Scientific and Practical Conference on Electronics and Information Technologies (ELIT), Lviv, Ukraine, 16–18 September 2019; pp. 188–191. [Google Scholar] [CrossRef]
- Fabel, Y.; Nouri, B.; Wilbert, S.; Blum, N.; Triebel, R.; Hasenbalg, M.; Kuhn, P.; Zarzalejo, L.F.; Pitz-Paal, R. Applying self-supervised learning for semantic cloud segmentation of all-sky images. Atmos. Meas. Tech. 2022, 15, 797–809. [Google Scholar] [CrossRef]
- Hasenbalg, M.; Kuhn, P.; Wilbert, S.; Nouri, B.; Kazantzidis, A. Benchmarking of six cloud segmentation algorithms for ground-based all-sky imagers. Sol. Energy 2020, 201, 596–614. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Madasu, V.K.; Yarlagadda, P. An in Depth Comparison of Four Texture Segmentation Methods. In Proceedings of the 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (DICTA 2007), Glenelg, SA, Australia, 3–5 December 2007; pp. 366–372. [Google Scholar]
- Reulke, R.; Lippok, A. Markov random fields (MRF)-based texture segmentation for road detection. In Proceedings of the XXI Congress—The International Society for Photogrammetry and Remote Sensing, Beijing, China, 3–11 July 2008. [Google Scholar]
- Zwiggelaar, R.; Denton, E.R.E. Texture Based Segmentation. In Digital Mammography; Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 433–440. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
Occlusion Level | 0 % | 30% | 90% | Run Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods | Precision | Recall | F-Score | M | Precision | Recall | F-Score | M | Precision | Recall | F-Score | M | |
Our approach | 0.88 | 0.59 | 0.70 | 0.21 | 0.93 | 0.62 | 0.72 | 0.2 | 0.9 | 0.79 | 0.80 | 0.07 | 8 s |
Gabor | 0.10 | 0.31 | 0.11 | 0.70 | 0.16 | 0.40 | 0.20 | 0.69 | 0.60 | 0.56 | 0.73 | 0.30 | 138 s |
MRF | 0.28 | 0.46 | 0.34 | 0.72 | 0.29 | 0.47 | 0.34 | 0.71 | 0.35 | 0.49 | 0.50 | 0.69 | 45 |
FCN | 0.65 | 0.50 | 0.59 | 0.30 | 0.61 | 0.44 | 0.51 | 0.62 | 0.62 | 0.49 | 0.47 | 0.55 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuhussein, M.; Robinson, A. Obscurant Segmentation in Long Wave Infrared Images Using GLCM Textures. J. Imaging 2022, 8, 266. https://doi.org/10.3390/jimaging8100266
Abuhussein M, Robinson A. Obscurant Segmentation in Long Wave Infrared Images Using GLCM Textures. Journal of Imaging. 2022; 8(10):266. https://doi.org/10.3390/jimaging8100266
Chicago/Turabian StyleAbuhussein, Mohammed, and Aaron Robinson. 2022. "Obscurant Segmentation in Long Wave Infrared Images Using GLCM Textures" Journal of Imaging 8, no. 10: 266. https://doi.org/10.3390/jimaging8100266
APA StyleAbuhussein, M., & Robinson, A. (2022). Obscurant Segmentation in Long Wave Infrared Images Using GLCM Textures. Journal of Imaging, 8(10), 266. https://doi.org/10.3390/jimaging8100266