Identification of Social-Media Platform of Videos through the Use of Shared Features
Abstract
:1. Introduction
2. Related Work
2.1. Forensic Analysis
2.2. Platform Provenance Analysis
3. Proposed Method
3.1. The Rationale
3.2. Social Media Platform Identification Framework
3.2.1. Method Based on Transfer Learning
3.2.2. Method Based on Multitask Learning
4. Experimental Evaluation
4.1. Dataset and Experimental Setting
4.2. Evaluation of Single-Task Learning
4.3. Evaluation of Transfer Learning
4.4. Evaluation of Multitask Learning
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mayer, O.; Stamm, M.C. Forensic Similarity for Digital Images. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1331–1346. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, D.; Verdoliva, L. Noiseprint: A CNN-Based Camera Model Fingerprint. IEEE Trans. Inf. Forensics Secur. 2020, 15, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Huh, M.; Liu, A.; Owens, A.; Efros, A.A. Fighting Fake News: Image Splice Detection via Learned Self-Consistency. arXiv 2018, arXiv:cs.CV/1805.04096. [Google Scholar]
- Amerini, I.; Li, C.; Caldelli, R. Social Network Identification Through Image Classification With CNN. IEEE Access 2019, 7, 35264–35273. [Google Scholar] [CrossRef]
- Siddiqui, N.; Anjum, A.; Saleem, M.; Islam, S. Social Media Origin Based Image Tracing Using Deep CNN. In Proceedings of the 2019 Fifth International Conference on Image Information Processing (ICIIP), Waknaghat, India, 15–17 November 2019; pp. 97–101. [Google Scholar] [CrossRef]
- Phan, Q.; Boato, G.; Caldelli, R.; Amerini, I. Tracking Multiple Image Sharing on Social Networks. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8266–8270. [Google Scholar] [CrossRef]
- Amerini, I.; Uricchio, T.; Caldelli, R. Tracing images back to their social network of origin: A CNN-based approach. In Proceedings of the 2017 IEEE Workshop on Information Forensics and Security (WIFS), Rennes, France, 4–7 December 2017; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Iuliani, M.; Shullani, D.; Fontani, M.; Meucci, S.; Piva, A. A Video Forensic Framework for the Unsupervised Analysis of MP4-Like File Container. IEEE Trans. Inf. Forensics Secur. 2019, 14, 635–645. [Google Scholar] [CrossRef]
- Iuliani, M.; Fontani, M.; Shullani, D.; Piva, A. Hybrid reference-based Video Source Identification. Sensors 2019, 19, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:cs.LG/1411.1792. [Google Scholar]
- Zhan, Y.; Chen, Y.; Zhang, Q.; Kang, X. Image Forensics Based on Transfer Learning and Convolutional Neural Network. In Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, Philadelphia, PA, USA, 20–22 June 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 165–170. [Google Scholar] [CrossRef]
- Cozzolino, D.; Thies, J.; Rössler, A.; Riess, C.; Nießner, M.; Verdoliva, L. ForensicTransfer: Weakly-supervised Domain Adaptation for Forgery Detection. arXiv 2019, arXiv:cs.CV/1812.02510. [Google Scholar]
- Zhang, Y.; Yang, Q. A Survey on Multi-Task Learning. arXiv 2018, arXiv:cs.LG/1707.08114. [Google Scholar]
- Mayer, O.; Bayar, B.; Stamm, M.C. Learning Unified Deep-Features for Multiple Forensic Tasks. In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, Innsbruck, Austria, 20–22 June 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 79–84. [Google Scholar] [CrossRef]
- Ding, X.; Chen, Y.; Tang, Z.; Huang, Y. Camera Identification Based on Domain Knowledge-Driven Deep Multi-Task Learning. IEEE Access 2019, 7, 25878–25890. [Google Scholar] [CrossRef]
- Moltisanti, M.; Paratore, A.; Battiato, S.; Saravo, L. Image Manipulation on Facebook for Forensics Evidence. In Image Analysis and Processing—ICIAP 2015; Murino, V., Puppo, E., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 506–517. [Google Scholar]
- Shullani, D.; Fontani, M.; Iuliani, M.; Alshaya, O.; Piva, A. VISION: A video and image dataset for source identification. EURASIP J. Inf. Secur. 2017, 2017, 15. [Google Scholar] [CrossRef]
- Caldelli, R.; Amerini, I.; Li, C.T. PRNU-based Image Classification of Origin Social Network with CNN. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1357–1361. [Google Scholar] [CrossRef] [Green Version]
- Amerini, I.; Anagnostopoulos, A.; Maiano, L.; Celsi, L.R. Deep Learning for Multimedia Forensics. Found. Trends Comput. Graph. Vis. 2021. to appear. [Google Scholar]
- Mullan, P.; Riess, C.; Freiling, F. Forensic source identification using JPEG image headers: The case of smartphones. Digit. Investig. 2019, 28, S68–S76. [Google Scholar] [CrossRef]
- Pasquini, C.; Amerini, I.; Boato, G. Media forensics on social media platforms: A survey. EURASIP J. Inf. Secur. 2021, 2021, 4. [Google Scholar] [CrossRef]
- Lukas, J.; Fridrich, J.; Goljan, M. Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 2006, 1, 205–214. [Google Scholar] [CrossRef]
- Van Houten, W.; Geradts, Z. Source Video Camera Identification for Multiply Compressed Videos Originating from YouTube. Digit. Investig. 2009, 6, 48–60. [Google Scholar] [CrossRef]
- Taspinar, S.; Mohanty, M.; Memon, N. Camera Fingerprint Extraction via Spatial Domain Averaged Frames. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3270–3282. [Google Scholar] [CrossRef]
- Kouokam, E.K.; Dirik, A.E. PRNU-based source device attribution for YouTube videos. Digit. Investig. 2019, 29, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Bertini, F.; Sharma, R.; Iannì, A.; Montesi, D. Profile Resolution across Multilayer Networks through Smartphone Camera Fingerprint. In Proceedings of the 19th International Database Engineering and Applications Symposium, Yokohama, Japan, 13–15 July 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 23–32. [Google Scholar] [CrossRef] [Green Version]
- Rafi, A.M.; Kamal, U.; Hoque, R.; Abrar, A.; Das, S.; Laganière, R.; Hasan, M.K. Application of DenseNet in Camera Model Identification and Post-processing Detection. arXiv 2019, arXiv:eess.IV/1809.00576. [Google Scholar]
- Kuzin, A.; Fattakhov, A.; Kibardin, I.; Iglovikov, V.; Dautov, R. Camera Model Identification Using Convolutional Neural Networks. arXiv 2018, arXiv:cs.CV/1810.02981. [Google Scholar]
- Giovanni, C.; Luisa, P.; Verdoliva, D. Extracting camera-based fingerprints for video forensics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Cozzolino, D.; Marra, F.; Gragnaniello, D.; Poggi, G.; Verdoliva, L. Combining PRNU and noiseprint for robust and efficient device source identification. EURASIP J. Inf. Secur. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Yang, P.; Baracchi, D.; Iuliani, M.; Shullani, D.; Ni, R.; Zhao, Y.; Piva, A. Efficient Video Integrity Analysis through Container Characterization. IEEE J. Sel. Top. Signal Process. 2020, 14, 947–954. [Google Scholar] [CrossRef]
- Ramos López, R.; Almaraz Luengo, E.; Sandoval Orozco, A.L.; Villalba, L.J.G. Digital Video Source Identification Based on Container’s Structure Analysis. IEEE Access 2020, 8, 36363–36375. [Google Scholar] [CrossRef]
- Mayer, O.; Hosler, B.; Stamm, M.C. Open Set Video Camera Model Verification. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–9 May 2020; pp. 2962–2966. [Google Scholar] [CrossRef]
- Bondi, L.; Baroffio, L.; Güera, D.; Bestagini, P.; Delp, E.J.; Tubaro, S. First Steps Toward Camera Model Identification with Convolutional Neural Networks. IEEE Signal Process. Lett. 2017, 24, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Marra, F.; Poggi, G.; Sansone, C.; Verdoliva, L. A study of co-occurrence based local features for camera model identification. Multimed. Tools Appl. 2016, 76, 4765–4781. [Google Scholar] [CrossRef]
- Chen, C.; Stamm, M.C. Camera model identification framework using an ensemble of demosaicing features. In Proceedings of the 2015 IEEE International Workshop on Information Forensics and Security (WIFS), Rome, Italy, 16–19 November 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Mayer, O.; Stamm, M.C. Exposing Fake Images with Forensic Similarity Graphs. arXiv 2020, arXiv:eess.IV/1912.02861. [Google Scholar]
- Amerini, I.; Caldelli, R.; Mastio, A.D.; Fuccia, A.D.; Molinari, C.; Rizzo, A.P. Dealing with video source identification in social networks. Signal Process. Image Commun. 2017, 57, 1–7. [Google Scholar] [CrossRef]
- Amerini, I.; Anagnostopoulos, A.; Maiano, L.; Celsi, L.R. Learning Double-Compression Video Fingerprints Left from Social-Media Platforms. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–12 June 2021; pp. 2530–2534. [Google Scholar] [CrossRef]
- Popescu, A.C.; Farid, H. Statistical Tools for Digital Forensics. In Information Hiding; Fridrich, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 128–147. [Google Scholar]
- Wang, W.; Farid, H. Exposing Digital Forgeries in Video by Detecting Double MPEG Compression. In Proceedings of the 8th Workshop on Multimedia and Security, Geneva, Switzerland, 26–27 September 2006; Association for Computing Machinery: New York, NY, USA, 2006; pp. 37–47. [Google Scholar] [CrossRef]
- Mahdian, B.; Saic, S.; Nedbal, R. JPEG Quantization Tables Forensics: A Statistical Approach. In Computational Forensics; Sako, H., Franke, K.Y., Saitoh, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 150–159. [Google Scholar]
- Bayar, B.; Stamm, M.C. Constrained Convolutional Neural Networks: A New Approach Towards General Purpose Image Manipulation Detection. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2691–2706. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
FB | WA | NAT | |
---|---|---|---|
FB | 98.78% | 0.05% | 1.17% |
WA | 0.23% | 98.37% | 1.40% |
NAT | 1.56% | 1.31% | 97.13% |
YT | WA | NAT | |
---|---|---|---|
YT | 85.28% | 8.36% | 6.45% |
WA | 11.56% | 72.35% | 16.09% |
NAT | 2.85% | 11.15% | 86.00% |
Method | Accuracy |
---|---|
[39] | 80.04% |
TL (ours) | 90.39% |
MT (ours) | 81.70% |
(a) Transfer Learning | |||
---|---|---|---|
YT | WA | NAT | |
YT | 91.24% | 1.08% | 7.66% |
WA | 13.33% | 69.50% | 17.15% |
NAT | 6.05% | 1.49% | 92.45% |
(b) Multitask Learning | |||
YT | WA | NAT | |
YT | 83.68% | 6.19% | 10.04% |
WA | 10.04% | 80.24% | 9.72% |
NAT | 10.58% | 10.17% | 79.25% |
(a) Single-Task Learning | ||
---|---|---|
WA | NAT | |
WA | 60.12% | 39.88% |
NAT | 28.07% | 71.93% |
(b) Transfer Learning | ||
WA | NAT | |
WA | 63.08% | 36.92% |
NAT | 23.69% | 76.30% |
(c) Multitask Learning | ||
WA | NAT | |
WA | 71.48% | 28.52% |
NAT | 26.16% | 73.84% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiano, L.; Amerini, I.; Ricciardi Celsi, L.; Anagnostopoulos, A. Identification of Social-Media Platform of Videos through the Use of Shared Features. J. Imaging 2021, 7, 140. https://doi.org/10.3390/jimaging7080140
Maiano L, Amerini I, Ricciardi Celsi L, Anagnostopoulos A. Identification of Social-Media Platform of Videos through the Use of Shared Features. Journal of Imaging. 2021; 7(8):140. https://doi.org/10.3390/jimaging7080140
Chicago/Turabian StyleMaiano, Luca, Irene Amerini, Lorenzo Ricciardi Celsi, and Aris Anagnostopoulos. 2021. "Identification of Social-Media Platform of Videos through the Use of Shared Features" Journal of Imaging 7, no. 8: 140. https://doi.org/10.3390/jimaging7080140
APA StyleMaiano, L., Amerini, I., Ricciardi Celsi, L., & Anagnostopoulos, A. (2021). Identification of Social-Media Platform of Videos through the Use of Shared Features. Journal of Imaging, 7(8), 140. https://doi.org/10.3390/jimaging7080140