Bayesian Learning of Shifted-Scaled Dirichlet Mixture Models and Its Application to Early COVID-19 Detection in Chest X-ray Images
Abstract
:1. Introduction and Related Works
2. Motivations
3. Bayesian Framework for the Shifted-Scaled Dirichlet Mixture Model
3.1. Dirichlet and Scaled-Dirichlet Distributions
3.2. Finite Shifted-Scaled Dirichlet Mixture Model
3.3. Fully Bayesian Learning Algotithm
- Initialization
- Step t: For t = 1,…
- (a)
- Generate
- (b)
- Generate from
- (c)
- Generate from
3.3.1. Priors and Posteriors
3.3.2. Complete Bayesian Estimation-Algorithm
- Initialization
- Step t: For t = 1,…
4. Experimental Results
4.1. Data Sets
4.2. Methodology
4.3. Results Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacobi, A.; Chung, M.; Bernheim, A.; Eber, C. Portable chest X-ray in coronavirus disease-19 (COVID-19): A pictorial review. Clin. Imaging 2020, 64, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Sathik, M.M. Detection of pneumonia in chest X-ray images. J. X-ray Sci. Technol. 2011, 19, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Ginneken, B.V.; Stegmann, M.B.; Loog, M. Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database. Med. Image Anal. 2006, 10, 19–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minaee, S.; Kafieh, R.; Sonka, M.; Yazdani, S.; Soufi, G.J. Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning. Med. Image Anal. 2020, 65, 101794. [Google Scholar] [CrossRef] [PubMed]
- Gordienko, Y.; Gang, P.; Hui, J.; Zeng, W.; Kochura, Y.; Alienin, O.; Rokovyi, O.; Stirenko, S. Deep learning with lung segmentation and bone shadow exclusion techniques for chest x-ray analysis of lung cancer. In International Conference on Computer Science, Engineering and Education Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 638–647. [Google Scholar]
- Oliveira, L.L.G.; e Silva, S.A.; Ribeiro, L.H.V.; de Oliveira, R.M.; Coelho, C.J.; Andrade, A.L.S.S. Computer-aided diagnosis in chest radiography for detection of childhood pneumonia. Int. J. Med. Inform. 2008, 77, 555–564. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Greenspan, H.; van Ginneken, B.; Summers, R.M. Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Trans. Med. Imaging 2016, 35, 1153–1159. [Google Scholar] [CrossRef]
- Zhao, B.; Feng, J.; Wu, X.; Yan, S. A survey on deep learning-based fine-grained object classification and semantic segmentation. Int. J. Autom. Comput. 2017, 14, 119–135. [Google Scholar] [CrossRef]
- Novikov, A.A.; Lenis, D.; Major, D.; Hladůvka, J.; Wimmer, M.; Bühler, K. Fully convolutional architectures for multiclass segmentation in chest radiographs. IEEE Trans. Med Imaging 2018, 37, 1865–1876. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Jiang, X.; Ma, C.; Du, P.; Li, X.; Lv, S.; Yu, L.; Chen, Y.; Su, J.; Lang, G.; et al. Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia. Engineering 2020, 6, 1122–1129. [Google Scholar] [CrossRef]
- Da Nóbrega, R.V.M.; Filho, P.P.R.; Rodrigues, M.B.; da Silva, S.P.P.; Júnior, C.M.J.M.D.; de Albuquerque, V.H.C. Lung nodule malignancy classification in chest computed tomography images using transfer learning and convolutional neural networks. Neural Comput. Appl. 2020, 32, 11065–11082. [Google Scholar] [CrossRef]
- Candemir, S.; Jaeger, S.; Palaniappan, K.; Musco, J.P.; Singh, R.K.; Xue, Z.; Karargyris, A.; Antani, S.; Thoma, G.; McDonald, C.J. Lung Segmentation in Chest Radiographs Using Anatomical Atlases With Nonrigid Registration. IEEE Trans. Med. Imaging 2014, 33, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Mandal, M.K.; Long, R.; Cheng, I.; Basu, A. An edge-region force guided active shape approach for automatic lung field detection in chest radiographs. Comput. Med. Imaging Graph. 2012, 36, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Mashrgy, M.A.; Bdiri, T.; Bouguila, N. Robust simultaneous positive data clustering and unsupervised feature selection using generalized inverted Dirichlet mixture models. Knowl. Based Syst. 2014, 59, 182–195. [Google Scholar] [CrossRef]
- Oboh, B.S.; Bouguila, N. Unsupervised learning of finite mixtures using scaled dirichlet distribution and its application to software modules categorization. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017; pp. 1085–1090. [Google Scholar]
- Channoufi, I.; Bourouis, S.; Bouguila, N.; Hamrouni, K. Image and video denoising by combining unsupervised bounded generalized gaussian mixture modeling and spatial information. Multimed. Tools Appl. 2018, 77, 25591–25606. [Google Scholar] [CrossRef]
- Fan, W.; Bouguila, N. Spherical data clustering and feature selection through nonparametric Bayesian mixture models with von Mises distributions. Eng. Appl. Artif. Intell. 2020, 94, 103781. [Google Scholar] [CrossRef]
- Najar, F.; Bourouis, S.; Bouguila, N.; Belghith, S. Unsupervised learning of finite full covariance multivariate generalized Gaussian mixture models for human activity recognition. Multimed. Tools Appl. 2019, 78, 18669–18691. [Google Scholar] [CrossRef]
- Najar, F.; Bourouis, S.; Zaguia, A.; Bouguila, N.; Belghith, S. Unsupervised Human Action Categorization Using a Riemannian Averaged Fixed-Point Learning of Multivariate GGMM. In Proceedings of the Image Analysis and Recognition-15th International Conference, ICIAR, Póvoa de Varzim, Portugal, 27–29 June 2018; pp. 408–415. [Google Scholar]
- Bourouis, S.; Mashrgy, M.A.; Bouguila, N. Bayesian learning of finite generalized inverted Dirichlet mixtures: Application to object classification and forgery detection. Expert Syst. Appl. 2014, 41, 2329–2336. [Google Scholar] [CrossRef]
- Alsuroji, R.; Zamzami, N.; Bouguila, N. Model Selection and Estimation of a Finite Shifted-Scaled Dirichlet Mixture Model. In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications, ICMLA, Orlando, FL, USA, 17–20 December 2018; pp. 707–713. [Google Scholar]
- Alroobaea, R.; Rubaiee, S.; Bourouis, S.; Bouguila, N.; Alsufyani, A. Bayesian inference framework for bounded generalized Gaussian-based mixture model and its application to biomedical images classification. Int. J. Imaging Syst. Technol. 2020, 30, 18–30. [Google Scholar] [CrossRef]
- Kayabol, K.; Kutluk, S. Bayesian classification of hyperspectral images using spatially-varying Gaussian mixture model. Digit. Signal Process. 2016, 59, 106–114. [Google Scholar] [CrossRef]
- Li, Z.; Xia, Y.; Ji, Z.; Zhang, Y. Brain voxel classification in magnetic resonance images using niche differential evolution based Bayesian inference of variational mixture of Gaussians. Neurocomputing 2017, 269, 47–57. [Google Scholar] [CrossRef]
- Li, F.; Perona, P. A Bayesian Hierarchical Model for Learning Natural Scene Categories. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, 20–26 June 2005; pp. 524–531. [Google Scholar]
- Bourouis, S.; Al-Osaimi, F.R.; Bouguila, N.; Sallay, H.; Aldosari, F.M.; Mashrgy, M.A. Bayesian inference by reversible jump MCMC for clustering based on finite generalized inverted Dirichlet mixtures. Soft Comput. 2019, 23, 5799–5813. [Google Scholar] [CrossRef]
- Robert, C. The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Marin, J.M.; Robert, C. Bayesian Core: A Practical Approach to Computational Bayesian Statistics; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Chen, P.; Nelson, J.D.B.; Tourneret, J. Toward a Sparse Bayesian Markov Random Field Approach to Hyperspectral Unmixing and Classification. IEEE Trans. Image Process. 2017, 26, 426–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourouis, S.; Laalaoui, Y.; Bouguila, N. Bayesian frameworks for traffic scenes monitoring via view-based 3D cars models recognition. Multimed. Tools Appl. 2019, 78, 18813–18833. [Google Scholar] [CrossRef]
- Barber, D.; Williams, C.K.I. Gaussian Processes for Bayesian Classification via Hybrid Monte Carlo. In Proceedings of the Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA, 2–5 December 1996; Mozer, M., Jordan, M.I., Petsche, T., Eds.; MIT Press: Cambridge, MA, USA, 1996; pp. 340–346. [Google Scholar]
- Bourouis, S.; Al-Osaimi, F.R.; Bouguila, N.; Sallay, H.; Aldosari, F.M.; Mashrgy, M.A. Video Forgery Detection Using a Bayesian RJMCMC-Based Approach. In Proceedings of the 14th IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2017, Hammamet, Tunisia, 30 October–3 November 2017; pp. 71–75. [Google Scholar]
- Fan, W.; Bouguila, N.; Bourouis, S.; Laalaoui, Y. Entropy-based variational Bayes learning framework for data clustering. IET Image Process. 2018, 12, 1762–1772. [Google Scholar] [CrossRef]
- Bourouis, S.; Zaguia, A.; Bouguila, N. Hybrid Statistical Framework for Diabetic Retinopathy Detection. In Image Analysis and Recognition, Proceedings of the 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, 27–29 June 2018; Lecture Notes in Computer Science; Campilho, A., Karray, F., ter Haar Romeny, B.M., Eds.; Springer: Cham, Switzerland, 2018; Volume 10882, pp. 687–694. [Google Scholar]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39, 1–38. [Google Scholar]
- Bouguila, N. Bayesian hybrid generative discriminative learning based on finite Liouville mixture models. Pattern Recognit. 2011, 44, 1183–1200. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis, 3rd ed.; Chapman and Hall/CRC: New York, NY, USA, 2013. [Google Scholar]
- Geiger, D.; Heckerman, D. Parameter priors for directed acyclic graphical models and the characterization of several probability distributions. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden, 30 July–1 August 1999; pp. 216–225. [Google Scholar]
- Congdon, P. Applied Bayesian Modelling; John Wiley and Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Chib, S.; Greenberg, E. Understanding the Metropolis-Hastings Algorithm. Am. Stat. 1995, 49, 327–335. [Google Scholar]
- Cohen, J.P.; Morrison, P.; Dao, L.; Roth, K.; Duong, T.Q.; Ghassemi, M. COVID-19 Image Data Collection: Prospective Predictions Are the Future. arXiv 2020, arXiv:2006.11988. [Google Scholar]
- Zu, Z.Y.; Jiang, M.D.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology 2020, 296, 200490. [Google Scholar] [CrossRef] [Green Version]
- Alqudah, A.; Qazan, S. Augmented COVID-19 X-ray images dataset. Mendeley Data 2020, 4. [Google Scholar] [CrossRef]
- Mooney, P. Chest X-ray Images (Pneumonia). 2020. Available online: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (accessed on 11 November 2020).
- Xie, J.; Jiang, Y.; Tsui, H. Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans. Med. Imaging 2005, 24, 45–57. [Google Scholar] [PubMed]
- Pourghassem, H.; Ghassemian, H. Content-based medical image classification using a new hierarchical merging scheme. Comput. Med. Imaging Graph. 2008, 32, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Fernando, B.; Fromont, É.; Muselet, D.; Sebban, M. Supervised learning of Gaussian mixture models for visual vocabulary generation. Pattern Recognit. 2012, 45, 897–907. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, M.A.T.; Jain, A.K. Unsupervised Learning of Finite Mixture Models. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Sallay, H.; Bourouis, S.; Bouguila, N. Online Learning of Finite and Infinite Gamma Mixture Models for COVID-19 Detection in Medical Images. Computers 2021, 10, 6. [Google Scholar] [CrossRef]
- Bouguila, N.; Ziou, D. Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications. Pattern Recognit. Lett. 2005, 26, 1916–1925. [Google Scholar] [CrossRef]
- Ma, Z.; Rana, P.K.; Taghia, J.; Flierl, M.; Leijon, A. Bayesian estimation of Dirichlet mixture model with variational inference. Pattern Recognit. 2014, 47, 3143–3157. [Google Scholar] [CrossRef]
- Smith, G.; Burns, I. Measuring texture classification algorithms. Pattern Recognit. Lett. 1997, 18, 1495–1501. [Google Scholar] [CrossRef]
- Melendez, J.; van Ginneken, B.; Maduskar, P.; Philipsen, R.H.H.M.; Reither, K.; Breuninger, M.; Adetifa, I.M.O.; Maane, R.; Ayles, H.; Sánchez, C.I. A Novel Multiple-Instance Learning-Based Approach to Computer-Aided Detection of Tuberculosis on Chest X-Rays. IEEE Trans. Med. Imaging 2015, 34, 179–192. [Google Scholar] [CrossRef]
Dataset | Class | Train | Validation | Test | Total |
---|---|---|---|---|---|
CXR-COVID | Non-COVID-19 | 70 | 20 | 18 | 108 |
COVID-19 | 328 | 80 | 26 | 434 | |
CXR-Augmented-COVID | Non-COVID-19 | 512 | 100 | 300 | 912 |
COVID-19 | 512 | 100 | 300 | 912 | |
CXR-Pneumonia | Normal | 1341 | 8 | 234 | 1583 |
Pneumonia | 3875 | 8 | 390 | 4273 |
Approach/Metrics | ACC(%) | DR(%) | FPR(%) |
---|---|---|---|
GMM-ML [48] | 82.11 | 81.02 | 0.18 |
GMM-B [49] | 83.44 | 82.14 | 0.17 |
MM-ML [50] | 85.22 | 83.76 | 0.16 |
DMM-ML [51] | 87.99 | 87.88 | 0.14 |
DMM-B [52] | 88.04 | 87.78 | 0.13 |
SDMM-ML [16] | 88.08 | 87.84 | 0.13 |
SDMM-B [31] | 88.22 | 88.07 | 0.13 |
SSDMM-ML [22] | 89.13 | 88.24 | 0.12 |
SSDMM-B (our method) | 89.57 | 88.61 | 0.12 |
Approach/Metrics | ACC(%) | DR(%) | FPR(%) |
---|---|---|---|
GMM-ML [48] | 87.66 | 85.80 | 0.13 |
GMM-B [49] | 88.90 | 86.98 | 0.11 |
MM-ML [50] | 90.54 | 88.54 | 0.10 |
DMM-ML [51] | 91.81 | 91.03 | 0.09 |
DMM-B [52] | 92.01 | 91.33 | 0.09 |
SDMM-ML [16] | 92.43 | 91.32 | 0.09 |
SDMM-B [31] | 92.81 | 91.77 | 0.09 |
SSDMM-ML [22] | 92.85 | 92.01 | 0.08 |
SSDMM-B (our method) | 93.03 | 92.90 | 0.08 |
Approach/Metrics | ACC(%) | DR(%) | FPR(%) |
---|---|---|---|
GMM-ML [48] | 85.13 | 83.99 | 0.14 |
GMM-B [49] | 86.77 | 84.08 | 0.13 |
MM-ML [50] | 90.24 | 89.14 | 0.10 |
DMM-ML [51] | 88.01 | 87.57 | 0.12 |
DMM-B [52] | 88.44 | 87.96 | 0.12 |
SDMM-ML [16] | 89.01 | 88.12 | 0.11 |
SDMM-B [31] | 89.88 | 89.12 | 0.10 |
SSDMM-ML [22] | 90.10 | 89.01 | 0.09 |
SSDMM-B (our method) | 90.33 | 89.12 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourouis, S.; Alharbi, A.; Bouguila, N. Bayesian Learning of Shifted-Scaled Dirichlet Mixture Models and Its Application to Early COVID-19 Detection in Chest X-ray Images. J. Imaging 2021, 7, 7. https://doi.org/10.3390/jimaging7010007
Bourouis S, Alharbi A, Bouguila N. Bayesian Learning of Shifted-Scaled Dirichlet Mixture Models and Its Application to Early COVID-19 Detection in Chest X-ray Images. Journal of Imaging. 2021; 7(1):7. https://doi.org/10.3390/jimaging7010007
Chicago/Turabian StyleBourouis, Sami, Abdullah Alharbi, and Nizar Bouguila. 2021. "Bayesian Learning of Shifted-Scaled Dirichlet Mixture Models and Its Application to Early COVID-19 Detection in Chest X-ray Images" Journal of Imaging 7, no. 1: 7. https://doi.org/10.3390/jimaging7010007
APA StyleBourouis, S., Alharbi, A., & Bouguila, N. (2021). Bayesian Learning of Shifted-Scaled Dirichlet Mixture Models and Its Application to Early COVID-19 Detection in Chest X-ray Images. Journal of Imaging, 7(1), 7. https://doi.org/10.3390/jimaging7010007