Data Augmentation Using Adversarial Image-to-Image Translation for the Segmentation of Mobile-Acquired Dermatological Images
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Databases
3.1.1. Segmentation Databases
3.1.2. Macroscopic and Dermoscopic Databases
3.2. Methodology
3.2.1. Generation of Macroscopic Images
3.2.2. Segmentation Network
3.2.3. Evaluation
4. Results and Discussion
4.1. Evaluation of the Generated Images
4.1.1. Visual Inspection
4.1.2. Fréchet Inception Distance Results
4.2. Segmentation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Society, A.C. Cancer Facts and Figures 2019. 2019. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf (accessed on 17 June 2019).
- Perera, E.; Gnaneswaran, N.; Staines, C.; Win, A.K.; Sinclair, R. Incidence and prevalence of non-melanoma skin cancer in Australia: A systematic review. Australas. J. Dermatol. 2015, 56, 258–267. [Google Scholar] [CrossRef]
- De Carvalho, T.M.; Noels, E.; Wakkee, M.; Udrea, A.; Nijsten, T. Development of smartphone apps for skin cancer risk assessment: Progress and promise. JMIR Dermatol. 2019, 2, e13376. [Google Scholar] [CrossRef] [Green Version]
- Xiong, M.; Pfau, J.; Young, A.T.; Wei, M.L. Artificial Intelligence in Teledermatology. Curr. Dermatol. Rep. 2019, 8, 85–90. [Google Scholar] [CrossRef]
- Kittler, H.; Pehamberger, H.; Wolff, K.; Binder, M. Diagnostic accuracy of dermoscopy. Lancet Oncol. 2002, 3, 159–165. [Google Scholar] [CrossRef]
- Carli, P.; Quercioli, E.; Sestini, S.; Stante, M.; Ricci, L.; Brunasso, G.; De Giorgi, V. Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology. Br. J. Dermatol. 2003, 148, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Macaskill, P.; Holt, P.; Menzies, S. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: A meta-analysis of studies performed in a clinical setting. Br. J. Dermatol. 2008, 159, 669–676. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Ge, Z.; Bonnington, C.P.; Zhou, J. Progressive Transfer Learning and Adversarial Domain Adaptation for Cross-Domain Skin Disease Classification. IEEE J. Biomed. Health Inform. 2019, 24, 1379–1393. [Google Scholar] [CrossRef]
- Andrade, C.; Teixeira, L.F.; Vasconcelos, M.J.M.; Rosado, L. Deep Learning Models for Segmentation of Mobile-Acquired Dermatological Images. In International Conference on Image Analysis and Recognition; Springer: Póvoa de Varzim, Portugal, 2020; pp. 228–237. [Google Scholar]
- Korotkov, K.; Garcia, R. Computerized analysis of pigmented skin lesions: A review. Artif. Intell. Med. 2012, 56, 69–90. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Flores, E.; Scharcanski, J. Segmentation of melanocytic skin lesions using feature learning and dictionaries. Expert Syst. Appl. 2016, 56, 300–309. [Google Scholar] [CrossRef]
- Cavalcanti, P.G.; Scharcanski, J. A coarse-to-fine approach for segmenting melanocytic skin lesions in standard camera images. Comput. Methods Programs Biomed. 2013, 112, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.B.; Marranghello, N.; Pereira, A.S.; Tavares, J.M.R. A computational approach for detecting pigmented skin lesions in macroscopic images. Expert Syst. Appl. 2016, 61, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Rosado, L.; Vasconcelos, M. Automatic segmentation methodology for dermatological images acquired via mobile devices. In Proceedings of the 8th International Conference on Health Informatics, Lisbon, Portugal, 12–15 January 2015; pp. 246–251. [Google Scholar]
- Cavalcanti, P.G.; Yari, Y.; Scharcanski, J. Pigmented skin lesion segmentation on macroscopic images. In Proceedings of the 2010 25th International Conference of Image and Vision Computing, Queenstown, New Zealan, 8–9 November 2010; pp. 1–7. [Google Scholar]
- Fernandes, K.; Cruz, R.; Cardoso, J.S. Deep image segmentation by quality inference. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; pp. 117–122. [Google Scholar]
- Baur, C.; Albarqouni, S.; Navab, N. Generating highly realistic images of skin lesions with GANs. In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis; Springer: Granada, Spain, 2018; pp. 260–267. [Google Scholar]
- Ghorbani, A.; Natarajan, V.; Coz, D.; Liu, Y. DermGAN: Synthetic Generation of Clinical Skin Images with Pathology. arXiv 2019, arXiv:1911.08716. [Google Scholar]
- Ali, I.S.; Mohamed, M.F.; Mahdy, Y.B. Data Augmentation for Skin Lesion using Self-Attention based Progressive Generative Adversarial Network. arXiv 2019, arXiv:1910.11960. [Google Scholar]
- Ltd, E.I. Dermofit Image Library—Edinburgh Innovations. 2019. Available online: https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html (accessed on 11 June 2019).
- Vasconcelos, M.J.M.; Rosado, L.; Ferreira, M. Principal axes-based asymmetry assessment methodology for skin lesion image analysis. In International Symposium on Visual Computing; Springer: Las Vegas, NV, USA, 2014; pp. 21–31. [Google Scholar]
- Gutman, D.; Codella, N.C.F.; Celebi, E.; Helba, B.; Marchetti, M.; Mishra, N.; Halpern, A. Skin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). arXiv 2016, arXiv:1605.01397. [Google Scholar]
- Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018. [Google Scholar] [CrossRef] [Green Version]
- Codella, N.; Rotemberg, V.; Tschandl, P.; Celebi, M.E.; Dusza, S.; Gutman, D.; Helba, B.; Kalloo, A.; Liopyris, K.; Marchetti, M.; et al. Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC). arXiv 2019, arXiv:1902.03368. [Google Scholar]
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef]
- Mendonça, T.; Ferreira, P.M.; Marques, J.S.; Marcal, A.R.; Rozeira, J. PH 2-A dermoscopic image database for research and benchmarking. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5437–5440. [Google Scholar]
- Argenziano, G.; Soyer, H.; De Giorgi, V.; Piccolo, D.; Carli, P.; Delfino, M. Interactive Atlas of Dermoscopy (Book and CD-ROM); Edra Medical Publishing & New Media: Milan, Italy, 2000. [Google Scholar]
- ISIC Archive. 2019. Available online: https://www.isic-archive.com/#!/topWithHeader/onlyHeaderTop/gallery (accessed on 11 June 2019).
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision; Springer: Amsterdam, The Netherlands, 2016; pp. 694–711. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. [Google Scholar]
- Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv 2016, arXiv:1701.00160. [Google Scholar]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Klambauer, G.; Hochreiter, S. GANs Trained by a Two Time-Scale Update Rule Converge to a Nash Equilibrium. arXiv 2017, arXiv:1706.08500. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Huang, G.; Yuan, Y.; Guo, C.; Sun, Y.; Wu, F.; Weinberger, K. An empirical study on evaluation metrics of generative adversarial networks. arXiv 2018, arXiv:1806.07755. [Google Scholar]
- Abbas, Q.; Celebi, M.E.; García, I.F. Hair removal methods: A comparative study for dermoscopy images. Biomed. Signal Process. Control 2011, 6, 395–404. [Google Scholar] [CrossRef]
Set | Database | No. Images (Type) | No. Train/Val. | No. Test |
---|---|---|---|---|
set M | Dermofit | 1300 (MD) | 1036 | 264 |
SMARTSKINS | 80 (MP) | 39 | 41 | |
set D | ISIC | 2594 (De) | 1994 | 600 |
PH2 | 200 (De) | 160 | 40 |
Database | Train | Test | ||
---|---|---|---|---|
MD∖MP | De | MD∖MP | De | |
EDRA | 802 | 802 | 209 | 209 |
SMARTSKINS 2014/2015 | 295 | 148 | 56 | 28 |
PH2 (Set D) | - | 160 | - | 40 |
ISIC (Set D) | - | 1994 | - | 600 |
Dermofit (Set M) | 1036 | - | - | - |
SMARTSKINS (Set M) | 39 | - | - | - |
ISIC Archive | 104 | - | - | - |
Total | 2158 | 3057 | 242 | 869 |
Domains | EDRA | SMARTSKINS 2014/2015 | ISIC (Set D) | PH2 (Set D) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Uncropped | Cropped | Cropped | ||||||||
FID | VR | FID | VR | FID | VR | FID | VR | FID | VR | |
Macro/Dermo (reference value) | 167.9 | 331.7 | 294.2 | 180.9 | 292.9 | |||||
Macro/TransMacro | 160.2 | 0.05 | 285.1 | 0.15 | 177.5 | 0.40 | 123.7 | 0.31 | 285.7 | 0.02 |
Dermo/TransDermo | 186.4 | −0.11 | 285.6 | 0.14 | 263.6 | 0.10 | - | - |
Domains | Segmentation Sets | FID | VR |
---|---|---|---|
Macro/Dermo (reference value) | Set M/Set D | 181.1 | |
Macro/TransMacro | Set M/set M | 102.4 | 0.43 |
Method | TJA | JA | DI | AC | SE | SP |
---|---|---|---|---|---|---|
Adaptive Thresholding [16] | - | 81.58 | - | 97.38 | - | - |
Gossip Network [18] | - | - | 83.36 | - | - | - |
Reduce Mobile DeepLab (Macroscopic) [10] | 78.51 | 82.64 | 90.14 | 98.96 | 95.40 | 99.15 |
Reduce Mobile DeepLab (Transfer Learning) [10] | 78.04 | 82.21 | 89.89 | 98.90 | 96.05 | 99.09 |
Our Method (Set M + Set D) | 78.27 | 82.58 | 90.22 | 98.88 | 98.39 | 98.89 |
Our Method (Set M + Set M) | 85.13 | 86.69 | 92.74 | 99.18 | 96.36 | 99.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, C.; Teixeira, L.F.; Vasconcelos, M.J.M.; Rosado, L. Data Augmentation Using Adversarial Image-to-Image Translation for the Segmentation of Mobile-Acquired Dermatological Images. J. Imaging 2021, 7, 2. https://doi.org/10.3390/jimaging7010002
Andrade C, Teixeira LF, Vasconcelos MJM, Rosado L. Data Augmentation Using Adversarial Image-to-Image Translation for the Segmentation of Mobile-Acquired Dermatological Images. Journal of Imaging. 2021; 7(1):2. https://doi.org/10.3390/jimaging7010002
Chicago/Turabian StyleAndrade, Catarina, Luís F. Teixeira, Maria João M. Vasconcelos, and Luís Rosado. 2021. "Data Augmentation Using Adversarial Image-to-Image Translation for the Segmentation of Mobile-Acquired Dermatological Images" Journal of Imaging 7, no. 1: 2. https://doi.org/10.3390/jimaging7010002
APA StyleAndrade, C., Teixeira, L. F., Vasconcelos, M. J. M., & Rosado, L. (2021). Data Augmentation Using Adversarial Image-to-Image Translation for the Segmentation of Mobile-Acquired Dermatological Images. Journal of Imaging, 7(1), 2. https://doi.org/10.3390/jimaging7010002