Deep Learning in Selected Cancers’ Image Analysis—A Survey
Abstract
:1. Introduction
2. Methods
2.1. Segmentation and Classification Performance Metrics
3. Deep Learning in Tumor Detection, Segmentation and Classification
3.1. Breast Cancer
3.1.1. Screening Methods
3.1.2. Datasets
3.1.3. Deep Learning for Detection of Breast Cancer Through Diagnostic Medical Imaging Techniques
3.1.4. Deep Learning for Breast Histopathology Image Analysis
3.1.5. Summary
3.2. Cervical Cancer
3.2.1. Screening Methods
- Bimanual pelvic examination. This is a visual and physical inspection by the physician. It consists of both visual inspections using a device called a speculum and physical inspection by using fingers. This test is not enough on its own and the Pap test is usually performed next.
- Cervical cytopathology Papanicolaou Smear (Pap smear) or liquid-based cytology is a process of gently scraping cervical cells and inspection of those cells under a microscope. It can also be analyzed digitally using computers.
- HPV typing test. Cervical cancer usually occurs from persistent infection of the cervix with some carcinogenic types of human papillomavirus (HPV) such as HPV16 and HPV18 [38]. It is usually performed along with a Pap test or after Pap test results show abnormal changes to the cervix. The occurrence of HPV does not confirm cancer.
- Colposcopy. Colposcopy is a visual inspection of the cervix using a special instrument called a colposcope. The device magnifies the cervix area under inspection like a microscope. It can be used for pregnant women.
3.2.2. Datasets for Cervical Cancer
3.2.3. Deep Learning for Segmentation of Cervical Cells
3.2.4. Deep Learning for Cervical Cell Classification
3.2.5. Deep Learning for Cervix Classification
3.2.6. Summary
3.3. Brain Tumor
3.3.1. Screening Methods
3.3.2. Datasets
3.3.3. Deep Learning in Brain Tumor Segmentation
3.3.4. Deep Learning in Brain Tumor Classification
3.3.5. Summary
3.4. Colorectal Cancer (CRC)
3.4.1. Screening Methods
3.4.2. Datasets
3.4.3. Deep Learning for Cell Detection and Classification on Histological Slides
3.4.4. Deep Learning for Classification of Polyps on Endoscopic Images
3.4.5. Summary
3.5. Lung Cancer
3.5.1. Screening Methods
3.5.2. Datasets
3.5.3. Deep Learning for Lung Nodules Detection
3.5.4. Summary
3.5.5. Deep Learning for Other Cancer Detection and Segmentation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Afework, Y.K.; Debelee, T.G. Detection of Bacterial Wilt on Enset Crop Using Deep Learning Approach. Int. J. Eng. Res. Afr. 2020, 51, 1–17. [Google Scholar]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K. Survey of Deep Learning Applications to Medical Image Analysis. Med. Imaging Technol. 2017, 35, 212–226. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, D.; Wu, G.; Suk, H.I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K. Overview of deep learning in medical imaging. Radiol. Phys. Technol. 2017, 10, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jun, S.; Cho, Y.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep Learning in Medical Imaging: General Overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debelee, T.G.; Schwenker1, F.; Rahimeto, S.; Yohannes, D. Evaluation of modified adaptive k-means segmentation algorithm. Comput. Vis. Media 2019. [Google Scholar] [CrossRef] [Green Version]
- Kebede, S.R.; Debelee, T.G.; Schwenker, F.; Yohannes, D. Classifier Based Breast Cancer Segmentation. J. Biomim. Biomater. Biomed. Eng. 2020, 47, 1–21. [Google Scholar]
- Rahimeto, S.; Debelee, T.; Yohannes, D.; Schwenker, F. Automatic pectoral muscle removal in mammograms. Evol. Syst. 2019. [Google Scholar] [CrossRef]
- Debelee, T.G.; Schwenker, F.; Ibenthal, A.; Yohannes, D. Survey of deep learning in breast cancer image analysis. Evol. Syst. 2019. [Google Scholar] [CrossRef]
- Debelee, T.G.; Gebreselasie, A.; Schwenker, F.; Amirian, M.; Yohannes, D. Classification of Mammograms Using Texture and CNN Based Extracted Features. J. Biomim. Biomater. Biomed. Eng. 2019, 42, 79–97. [Google Scholar] [CrossRef]
- Debelee, T.G.; Amirian, M.; Ibenthal, A.; Palm, G.; Schwenker, F. Classification of Mammograms Using Convolutional Neural Network Based Feature Extraction. LNICST 2018, 244, 89–98. [Google Scholar]
- Suckling, J.; Parker, J.; Dance, D.; Astley, S.; Hutt, I.; Boggis, C.; Ricketts, I. Mammographic Image Analysis Society (MIAS) Database v1.21 [Dataset]; Dataset; Digital Mammogram Database Exerpta Medica: Dordrecht, The Netherland, 2015. [Google Scholar]
- Scuccimarra, E.A. DDSM Mammography [Dataset]; Dataset; Digital Mammogram Database Exerpta Medica: Dordrecht, The Netherland, 2018. [Google Scholar]
- Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J.S. INbreast. Acad. Radiol. 2012, 19, 236–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dua, D.; Graff, C. UCI Machine Learning Repository; University of California, Irvine, School of Information and Computer Sciences: Newport Beach, CA, USA, 2017. [Google Scholar]
- Bukun. Breast Cancer Histopathological Database (BreakHis); Dataset; P and D Laboratory—Pathological Anatomy and Cytopathology: Parana, Brazil, 2019. [Google Scholar]
- Aresta, G.; Araújo, T.; Kwok, S.; Chennamsetty, S.S.; Safwan, M.; Alex, V.; Marami, B.; Prastawa, M.; Chan, M.; Donovan, M.; et al. BACH: Grand challenge on breast cancer histology images. Med. Image Anal. 2019, 56, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Phang, J.; Park, J.; Shen, Y.; Huang, Z.; Zorin, M.; Jastrzebski, S.; Fevry, T.; Katsnelson, J.; Kim, E.; et al. Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening. IEEE Trans. Med. Imaging 2020, 39, 1184–1194. [Google Scholar] [CrossRef] [Green Version]
- Alzubaidi, L.; Al-Shamma, O.; Fadhel, M.A.; Farhan, L.; Zhang, J.; Duan, Y. Optimizing the Performance of Breast Cancer Classification by Employing the Same Domain Transfer Learning from Hybrid Deep Convolutional Neural Network Model. Electronics 2020, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Harowicz, M.; Zhang, J.; Saha, A.; Grimm, L.J.; Hwang, E.S.; Mazurowski, M.A. Deep learning analysis of breast MRIs for prediction of occult invasive disease in ductal carcinoma in situ. Comput. Biol. Med. 2019, 115, 103498. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Qin, G.; He, Q.; Sun, L.; Zeng, H.; He, Z.; Chen, W.; Zhen, X.; Zhou, L. Digital breast tomosynthesis versus digital mammography: Integration of image modalities enhances deep learning-based breast mass classification. Eur. Radiol. 2019, 30, 778–788. [Google Scholar] [CrossRef]
- Zeiser, F.A.; da Costa, C.A.; Zonta, T.; Marques, N.M.C.; Roehe, A.V.; Moreno, M.; da Rosa Righi, R. Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning. J. Digit. Imaging 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.H.; Chang, K.T.; Park, V.Y.; Kim, M.J.; Chan, S.; Chang, P.; Chow, D.; Luk, A.; Kwong, T.; et al. Automatic Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural Network U-Net. Acad. Radiol. 2019, 26, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Luo, L.Y.; Dou, Q.; Chen, H.; Chen, C.; Li, G.J.; Jiang, Z.F.; Heng, P.A. Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images. J. Magn. Reson. Imaging 2019, 50, 1144–1151. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Saha, A.; Soher, B.J.; Mazurowski, M.A. Automatic deep learning-based normalization of breast dynamic contrast-enhanced magnetic resonance images. arXiv 2018, arXiv:1807.02152v1. [Google Scholar]
- Sheikh, T.S.; Lee, Y.; Cho, M. Histopathological Classification of Breast Cancer Images Using a Multi-Scale Input and Multi-Feature Network. Cancers 2020, 12, 2031. [Google Scholar] [CrossRef]
- Li, X.; Shen, X.; Zhou, Y.; Wang, X.; Li, T.Q. Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet). PLoS ONE 2020, 15, e0232127. [Google Scholar] [CrossRef]
- Yan, R.; Ren, F.; Wang, Z.; Wang, L.; Zhang, T.; Liu, Y.; Rao, X.; Zheng, C.; Zhang, F. Breast cancer histopathological image classification using a hybrid deep neural network. Methods 2020, 173, 52–60. [Google Scholar] [CrossRef]
- Sharma, S.; Mehra, R. Conventional Machine Learning and Deep Learning Approach for Multi-Classification of Breast Cancer Histopathology Images—a Comparative Insight. J. Digit. Imaging 2020, 33, 632–654. [Google Scholar] [CrossRef] [PubMed]
- Vang, Y.S.; Chen, Z.; Xie, X. Deep Learning Framework for Multi-class Breast Cancer Histology Image Classification. In Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 914–922. [Google Scholar] [CrossRef] [Green Version]
- Dembrower, K.; Liu, Y.; Azizpour, H.; Eklund, M.; Smith, K.; Lindholm, P.; Strand, F. Comparison of a Deep Learning Risk Score and Standard Mammographic Density Score for Breast Cancer Risk Prediction. Radiology 2020, 294, 265–272. [Google Scholar] [CrossRef]
- Hagos, Y.B.; Merida, A.G.; Teuwen, J. Improving Breast Cancer Detection using Symmetry Information with Deep Learning. arXiv 2018, arXiv:1808.08273v1. [Google Scholar]
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef]
- Wingo, P.A.; Cardinez, C.J.; Landis, S.H.; Greenlee, R.T.; Ries, L.A.G.; Anderson, R.N.; Thun, M.J. Long-term trends in cancer mortality in the United States, 1930–1998. Cancer 2003, 97, 3133–3275. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, M.; Doorbar, J.; Wentzensen, N.; De Sanjosé, S.; Fakhry, C.; Monk, B.J.; Stanley, M.A.; Franceschi, S. Carcinogenic human papillomavirus infection. Nat. Rev. Dis. Prim. 2016, 2, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Patten, J. (Ed.) Comprehensive Cervical Cancer Control: A Guide to Essential Practice; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- GençTav, A.; Aksoy, S.; ÖNder, S. Unsupervised segmentation andclassification of cervical cell images. Pattern Recognit. 2012, 45, 4151–4168. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.Y.; Parekh, J. Methods of Screening for Cervical Cancer. JAMA 2018, 320, 1938. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Tang, Z.; Yan, M.; Chen, J.; Liu, Q.; Xiang, Y. Comparison-Based Convolutional Neural Networks for Cervical Cell/ClumpsDetection in the Limited Data Scenario. arXiv 2019, arXiv:1810.05952. [Google Scholar]
- Jantzen, J.; Norup, J.; Dounias, G.; Bjerregaard, B. Pap-smear benchmark data for pattern classification. In Proceedings of the Nature Inspired Smart Information Systems (NiSIS 2005), Albufeira, Portugal, 3–5 October 2005. [Google Scholar]
- Hussain, E. Liquid based cytology pap smear images for multi-class diagnosis of cervical cancer. Data Brief 2019. [Google Scholar] [CrossRef]
- Rezende, M.T.; Tobias, A.H.G.; Silva, R.; Oliveira, P.; Medeiros, F.S.D.; Ushizima, D.; Carneiro, C.M.; Bianchi, A.G.C. CRIC Cervix Cell Classification. 2020. Available online: https://figshare.com/collections/CRIC_Cervix_Cell_Classification/4960286 (accessed on 11 August 2020). [CrossRef]
- Franco, R.A.S.; Carvalho, M.A.G.; Coelho, G.P.; Martins, P.; Enciso, J.L. Dataset of Cervical Cell Images for the Study of Changes Associated with Malignancy in Conventional Pap Test. ZENODO 2018. [Google Scholar] [CrossRef]
- Group, A. Human Papillomavirus Testing for Triage of Women With Cytologic Evidence of Low-Grade Squamous Intraepithelial Lesions: Baseline Data From a Randomized Trial. J. Natl. Cancer Inst. 2000, 92, 397–402. [Google Scholar] [CrossRef] [Green Version]
- MobileODT. Intel & Mobile ODT Cervical Cancer Screening. 2017. Available online: https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening (accessed on 14 August 2020).
- Song, Y.; Cheng, J.Z.; Ni, D.; Chen, S.; Lei, B.; Wang, T. Segmenting overlapping cervical cell in Pap smear images. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016. [Google Scholar] [CrossRef]
- Zhao, J.; Dai, L.; Zhang, M.; Yu, F.; Li, M.; Li, H.; Wang, W.; Zhang, L. PGU-net+: Progressive Growing of U-net+ for Automated Cervical Nuclei Segmentation. In Multiscale Multimodal Medical Imaging; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 51–58. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Sompawong, N.; Mopan, J.; Pooprasert, P.; Himakhun, W.; Suwannarurk, K.; Ngamvirojcharoen, J.; Vachiramon, T.; Tantibundhit, C. Automated Pap Smear Cervical Cancer Screening Using Deep Learning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, P.; Song, Q.; Li, A.; Zhang, P.; Gui, Z. Automatic Segmentation of Cervical Nuclei Based on Deep Learning and a Conditional Random Field. IEEE Access 2018, 6, 53709–53721. [Google Scholar] [CrossRef]
- Kurnianingsih, A.K.H.S.; Nugroho, L.E.; Widyawan; Lazuardi, L.; Prabuwono, A.S.; Mantoro, T. Segmentation and Classification of Cervical Cells Using Deep Learning. IEEE Access 2019, 7, 116925–116941. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, L.; Nogues, I.; Summers, R.M.; Liu, S.; Yao, J. DeepPap: Deep Convolutional Networks for Cervical Cell Classification. IEEE J. Biomed. Health Inform. 2017, 21, 1633–1643. [Google Scholar] [CrossRef] [Green Version]
- Hyeon, J.; Choi, H.J.; Lee, K.N.; Lee, B.D. Automating Papanicolaou Test Using Deep Convolutional Activation Feature. In Proceedings of the 2017 18th IEEE International Conference on Mobile Data Management (MDM), Daejeon, Korea, 29 May–1 June 2017. [Google Scholar] [CrossRef]
- Lin, H.; Hu, Y.; Chen, S.; Yao, J.; Zhang, L. Fine-Grained Classification of Cervical Cells Using Morphological and Appearance Based Convolutional Neural Networks. IEEE Access 2019, 7, 71541–71549. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Nayar, R.; Wilbur, D.C. The Pap test and Bethesda 2014. Cancer Cytopathol. 2015, 123, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Ma, X.; Ying, X.; Wang, W.; Yuan, C.; Lu, W.; Chen, D.Z.; Wu, J. Multi-Modal Fusion Learning For Cervical Dysplasia Diagnosis. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019. [Google Scholar] [CrossRef]
- Promworn, Y.; Pattanasak, S.; Pintavirooj, C.; Piyawattanametha, W. Comparisons of PAP-Smear Classification with Deep Learning Models. In Proceedings of the 14th annual IEEE International Conference on Nano/Micro Engineering and Molecular Systems, Bangkok, Thailand, 11–14 April 2019. [Google Scholar]
- Ma, Y.; Xu, T.; Huang, X.; Wang, X.; Li, C.; Jerwick, J.; Ning, Y.; Zeng, X.; Wang, B.; Wang, Y.; et al. Computer-Aided Diagnosis of Label-Free 3-D Optical Coherence Microscopy Images of Human Cervical Tissue. IEEE Trans. Biomed. Eng. 2019, 66, 2447–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoneim, A.; Muhammad, G.; Hossain, M.S. Cervical cancer classification using convolutional neural networks and extreme learning machines. Future Gener. Comput. Syst. 2020, 102, 643–649. [Google Scholar] [CrossRef]
- Dong, N.; Zhao, L.; Wu, C.; Chang, J. Inception v3 based cervical cell classification combined with artificially extracted features. Appl. Soft Comput. 2020, 93, 106311. [Google Scholar] [CrossRef]
- Martínez-Más, J.; Bueno-Crespo, A.; Martínez-España, R.; Remezal-Solano, M.; Ortiz-González, A.; Ortiz-Reina, S.; Martínez-Cendán, J.P. Classifying Papanicolaou cervical smears through a cell merger approach by deep learning technique. Expert Syst. Appl. 2020, 160, 113707. [Google Scholar] [CrossRef]
- Xiang, Y.; Sun, W.; Pan, C.; Yan, M.; Yin, Z.; Liang, Y. A novel automation-assisted cervical cancer reading method based on convolutional neural network. Biocybern. Biomed. Eng. 2020, 40, 611–623. [Google Scholar] [CrossRef] [Green Version]
- Garcia‑Arteaga, J.; Kybic, J.; Li, W. Automatic colposcopyvideo tissue classification using higher order entropy-basedimage registration. Comput. Biol. Med. 2011, 41, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Wimpy, B.; Suyanto, S. Classification of Cervical and Type Image and Using and Capsule Networks. In Proceedings of the 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 5–6 December 2019. [Google Scholar]
- Gorantla, R.; Singh, R.K.; Pandey, R.; Jain, M. Cervical Cancer Diagnosis using CervixNet—A Deep Learning Approach. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019. [Google Scholar] [CrossRef]
- Arora, M.; Dhawan, S.; Singh, K. Deep Neural Network for Transformation Zone Classification. In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 15–17 December 2018. [Google Scholar]
- Tang, J. Intelligent Mobile Projects with TensorFlow: Build 10+ Artificial Intelligence Apps Using TensorFlow Mobile and Lite for iOS, Android, and Raspberry Pi; Packt Publishing: Birmingham, UK, 2018. [Google Scholar]
- Guo, P.; Xue, Z.; Long, L.R.; Antani, S. Cross-Dataset Evaluation of Deep Learning Networks for Uterine Cervix Segmentation. Diagnostics 2020, 10, 44. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Singh, S.; Xue, Z.; Long, R.; Antani, S. Deep Learning for Assessing Image Focus for Automated Cervical Cancer Screening. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 19–22 May 2019. [Google Scholar] [CrossRef]
- Guo, P.; Xue, Z.; Mtema, Z.; Yeates, K.; Ginsburg, O.; Demarco, M.; Long, L.R.; Schiffman, M.; Antani, S. Ensemble Deep Learning for Cervix Image Selection toward Improving Reliability in Automated Cervical Precancer Screening. Diagnostics 2020, 10, 451. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Mukharjee, S. Brain Tumor Segmentation Using Genetic Algorithm and Artificial Neural Network Fuzzy Inference System (ANFIS). In Advances in Computing and Information Technology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 329–339. [Google Scholar] [CrossRef]
- Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, S.U. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac. J. Cancer Prev. APJCP 2017, 18, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.H. Diagnosis and treatment in neuro-oncology: An oncological perspective. Br. J. Radiol. 2011, 84, S82–S89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, B.K.; Hansen, S.; Laursen, R.J.; Kosteljanetz, M.; Schultz, H.; Nørgård, B.M.; Guldberg, R.; Gradel, K.O. Epidemiology of glioma: Clinical characteristics, symptoms, and predictors of glioma patients grade I–IV in the the Danish Neuro-Oncology Registry. J. Neuro Oncol. 2017, 135, 571–579. [Google Scholar] [CrossRef]
- Kalpathy-Cramer, J.; Gerstner, E.R.; Emblem, K.E.; Andronesi, O.; Rosen, B. Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res. 2014, 74, 4622–4637. [Google Scholar] [CrossRef] [Green Version]
- Mohsen, H.; El-Dahshan, E.S.A.; El-Horbaty, E.S.M.; Salem, A.B.M. Classification using deep learning neural networks for brain tumors. Future Comput. Inform. J. 2018, 3, 68–71. [Google Scholar] [CrossRef]
- Bahadure, N.B.; Ray, A.K.; Thethi, H.P. Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM. Int. J. Biomed. Imaging 2017, 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, B.; Rao, G.S. Segmentation of Multi-Modal MRI Brain Tumor Sub-Regions Using Deep Learning. J. Electr. Eng. Technol. 2020, 15, 1899–1909. [Google Scholar] [CrossRef]
- Nadeem, M.W.; Ghamdi, M.A.A.; Hussain, M.; Khan, M.A.; Khan, K.M.; Almotiri, S.H.; Butt, S.A. Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges. Brain Sci. 2020, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J. Digit. Imaging 2017, 30, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Shattuck, D.W.; Prasad, G.; Mirza, M.; Narr, K.L.; Toga, A.W. Online resource for validation of brain segmentation methods. NeuroImage 2009, 45, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef]
- Barboriak, D. Data From RIDER_NEURO_MRI. 2015. Available online: https://wiki.cancerimagingarchive.net/display/Public/RIDER+NEURO+MRI (accessed on 15 August 2020). [CrossRef]
- Fabelo, H.; Ortega, S.; Szolna, A.; Bulters, D.; Pineiro, J.F.; Kabwama, S.; J-O’Shanahan, A.; Bulstrode, H.; Bisshopp, S.; Kiran, B.R.; et al. In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection. IEEE Access 2019, 7, 39098–39116. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, W.; Cao, S.; Yang, R.; Yang, W.; Yun, Z.; Wang, Z.; Feng, Q. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition. PLoS ONE 2015, 10, e0140381. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J. Brain Tumor Dataset. 2017. Available online: https://doi.org/10.6084/m9.figshare.1512427.v5 (accessed on 26 October 2020).
- Alkassar, S.; Abdullah, M.A.M.; Jebur, B.A. Automatic Brain Tumour Segmentation using fully Convolution Network and Transfer Learning. In Proceedings of the 2019 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE), Mosul, Iraq, 13–14 February 2019. [Google Scholar] [CrossRef]
- Amiri, S.; Rekik, I.; Mahjoub, M.A. Deep random forest-based learning transfer to SVM for brain tumor segmentation. In Proceedings of the 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Monastir, Tunisia, 21–23 March 2016. [Google Scholar] [CrossRef]
- Chahal, E.S.; Haritosh, A.; Gupta, A.; Gupta, K.; Sinha, A. Deep Learning Model for Brain Tumor Segmentation & Analysis. In Proceedings of the 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 10–11 October 2019. [Google Scholar] [CrossRef]
- Ding, Y.; Li, C.; Yang, Q.; Qin, Z.; Qin, Z. How to Improve the Deep Residual Network to Segment Multi-Modal Brain Tumor Images. IEEE Access 2019, 7, 152821–152831. [Google Scholar] [CrossRef]
- Mallick, P.K.; Ryu, S.H.; Satapathy, S.K.; Mishra, S.; Nguyen, G.N.; Tiwari, P. Brain MRI Image Classification for Cancer Detection Using Deep Wavelet Autoencoder-Based Deep Neural Network. IEEE Access 2019, 7, 46278–46287. [Google Scholar] [CrossRef]
- Ramirez, I.; Martin, A.; Schiavi, E. Optimization of a variational model using deep learning: An application to brain tumor segmentation. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018. [Google Scholar] [CrossRef]
- Sajid, S.; Hussain, S.; Sarwar, A. Brain Tumor Detection and Segmentation in MR Images Using Deep Learning. Arab. J. Sci. Eng. 2019, 44, 9249–9261. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Zhu, T.; Yu, C. A Deep Learning Algorithm for Fully Automatic Brain Tumor Segmentation. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, Y.; Song, G.; Li, Z.; Zhang, Y.; Fan, Y. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 2018, 43, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Kuzina, A.; Egorov, E.; Burnaev, E. Bayesian Generative Models for Knowledge Transfer in MRI Semantic Segmentation Problems. Front. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeineldin, R.A.; Karar, M.E.; Coburger, J.; Wirtz, C.R.; Burgert, O. DeepSeg: Deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 909–920. [Google Scholar] [CrossRef]
- Fabelo, H.; Halicek, M.; Ortega, S.; Shahedi, M.; Szolna, A.; Piñeiro, J.; Sosa, C.; O’Shanahan, A.; Bisshopp, S.; Espino, C.; et al. Deep Learning-Based Framework for In Vivo Identification of Glioblastoma Tumor using Hyperspectral Images of Human Brain. Sensors 2019, 19, 920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shree, N.V.; Kumar, T.N.R. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Inform. 2018, 5, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandel, G.S.; Biswas, M.; Kakde, O.G.; Tiwari, A.; Suri, H.S.; Turk, M.; Laird, J.; Asare, C.; Ankrah, A.A.; Khanna, N.N.; et al. A Review on a Deep Learning Perspective in Brain Cancer Classification. Cancers 2019, 11, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqudah, A.M. Brain Tumor Classification Using Deep Learning Technique—A Comparison between Cropped, Uncropped, and Segmented Lesion Images with Different Sizes. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8, 3684–3691. [Google Scholar] [CrossRef]
- Ucuzal, H.; Yasar, S.; Colak, C. Classification of brain tumor types by deep learning with convolutional neural network on magnetic resonance images using a developed web-based interface. In Proceedings of the 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara Turkey, 11–13 October 2019. [Google Scholar] [CrossRef]
- Bazin, P. Example MP2RAGEME Data Set. 2019. Available online: https://uvaauas.figshare.com/articles/Example_MP2RAGEME_data_set/7938326 (accessed on 15 August 2020). [CrossRef]
- Tetik, B.; Ucuzal, H.; Yasar, S.; Colak, C. Brain Tumor Classification Software[Web-Based Software]. Available online: http://biostatapps.inonu.edu.tr/BTSY (accessed on 17 August 2020).
- Selvy, P.T.; Dharani, V.P.; Indhuja, A. Brain Tumour Detection Using Deep Learning Techniques. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2019, 169–175. [Google Scholar] [CrossRef]
- Sultan, H.H.; Salem, N.M.; Al-Atabany, W. Multi-Classification of Brain Tumor Images Using Deep Neural Network. IEEE Access 2019, 7, 69215–69225. [Google Scholar] [CrossRef]
- Badža, M.M.; Barjaktarović, M.Č. Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network. Appl. Sci. 2020, 10, 1999. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Cancer Observatory (GCO). 2018. Available online: https://gco.iarc.fr/ (accessed on 1 July 2020).
- Graham, S.; Chen, H.; Gamper, J.; Dou, Q.; Heng, P.A.; Snead, D.; Tsang, Y.W.; Rajpoot, N. MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images. Med. Image Anal. 2018. [Google Scholar] [CrossRef] [Green Version]
- Benson, V.S.; Patnick, J.; Davies, A.K.; Nadel, M.R.; Smith, R.A.; Atkin, W.S. Colorectal cancer screening: A comparison of 35 initiatives in 17 countries. Int. J. Cancer 2007, 122, 1357–1367. [Google Scholar] [CrossRef] [Green Version]
- Rony, J.; Belharbi, S.; Dolz, J.; Ayed, I.B.; McCaffrey, L.; Granger, E. Deep weakly-supervised learning methods for classification and localization in histology images: A survey. arXiv 2019, arXiv:1909.03354v3. [Google Scholar]
- Vázquez, D.; Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; López, A.M.; Romero, A.; Drozdzal, M.; Courville, A. A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images. J. Healthc. Eng. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Bernal, J.; Sánchez, J.; Vilariño, F. Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 2012, 45, 3166–3182. [Google Scholar] [CrossRef]
- Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 2015, 43, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Kather, J.N.; Weis, C.A.; Bianconi, F.; Melchers, S.M.; Schad, L.R.; Gaiser, T.; Marx, A.; Zöllner, F.G. Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Kainz, P.; Pfeiffer, M.; Urschler, M. Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization. PeerJ 2017, 5, e3874. [Google Scholar] [CrossRef] [PubMed]
- Sirinukunwattana, K.; Ahmed Raza, S.E.; Tsang, Y.W.; Snead, D.R.J.; Cree, I.A.; Rajpoot, N.M. Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE Trans. Med. Imaging 2016, 35, 1196–1206. [Google Scholar] [CrossRef] [Green Version]
- Chamanzar, A.; Nie, Y. Weakly Supervised Multi-Task Learning for Cell Detection and Segmentation. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 4 April 2020. [Google Scholar] [CrossRef]
- Sari, C.T.; Gunduz-Demir, C. Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images. IEEE Trans. Med. Imaging 2019, 38, 1139–1149. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, E.; Gunduz-Demir, C. A Hybrid Classification Model for Digital Pathology Using Structural and Statistical Pattern Recognition. IEEE Trans. Med. Imaging 2013, 32, 474–483. [Google Scholar] [CrossRef]
- Shapcott, M.; Hewitt, K.J.; Rajpoot, N. Deep Learning With Sampling in Colon Cancer Histology. Front. Bioeng. Biotechnol. 2019, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Li, J.; Xu, X. Segnet-based gland segmentation from colon cancer histology images. In Proceedings of the 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanjing, China, 18 May 2018. [Google Scholar] [CrossRef]
- Vuong, T.L.T.; Lee, D.; Kwak, J.T.; Kim, K. Multi-task Deep Learning for Colon Cancer Grading. In Proceedings of the 2020 International Conference on Electronics, Information, and Communication (ICEIC), Fukuoka, Kapan, 5–7 September 2020. [Google Scholar] [CrossRef]
- Sabol, P.; Sinčák, P.; Hartono, P.; Kočan, P.; Benetinová, Z.; Blichárová, A.; Verbóová, Ľ.; Štammová, E.; Sabolová-Fabianová, A.; Jašková, A. Explainable classifier for improving the accountability in decision-making for colorectal cancer diagnosis from histopathological images. J. Biomed. Inform. 2020, 109, 103523. [Google Scholar] [CrossRef]
- Suzuki, K.; Yoshida, H.; Näppi, J.; Dachman, A.H. Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes. Med. Phys. 2006, 33, 3814–3824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardhi, O.; Sierra-Sosa, D.; Garcia-Zapirain, B.; Elmaghraby, A. Automatic colon polyp detection using Convolutional encoder-decoder model. In Proceedings of the 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 18–20 December 2017. [Google Scholar] [CrossRef]
- Bour, A.; Castillo-Olea, C.; Garcia-Zapirain, B.; Zahia, S. Automatic colon polyp classification using Convolutional Neural Network: A Case Study at Basque Country. In Proceedings of the 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, UAE, 10–12 December 2019. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Yao, J.; Chen, B.; Song, J.; Yang, X. Classification of Polyps and Adenomas Using Deep Learning Model in Screening Colonoscopy. In Proceedings of the 2019 8th International Symposium on Next Generation Electronics (ISNE), Zhengzhou, China, 9–10 October 2019. [Google Scholar] [CrossRef]
- Ozawa, T.; Ishihara, S.; Fujishiro, M.; Kumagai, Y.; Shichijo, S.; Tada, T. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks. Ther. Adv. Gastroenterol. 2020, 13, 1756284820910659. [Google Scholar] [CrossRef] [Green Version]
- Nadimi, E.S.; Buijs, M.M.; Herp, J.; Kroijer, R.; Kobaek-Larsen, M.; Nielsen, E.; Pedersen, C.D.; Blanes-Vidal, V.; Baatrup, G. Application of deep learning for autonomous detection and localization of colorectal polyps in wireless colon capsule endoscopy. Comput. Electr. Eng. 2020, 81, 106531. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV 2014; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 818–833. [Google Scholar] [CrossRef] [Green Version]
- Lung Cancer Screening (PDQ®): Patient Version. 2020. Available online: https://www.cancer.gov/types/lung/hp/lung-screening-pdq (accessed on 11 October 2020).
- Hong, Z.Q.; Yang, J.Y. Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognit. 1991, 24, 317–324. [Google Scholar] [CrossRef]
- Armato, S.G., III; Hadjiiski, L.; Tourassi, G.D.; Drukker, K.; Giger, M.L.; Li, F.; Redmond, G.; Farahani, K.; Kirby, J.S.; Clarke, L.P.; et al. SPIE-AAPM-NCI Lung Nodule Classification Challenge Dataset. Cancer Imaging Arch. 2015. [Google Scholar] [CrossRef]
- Mader, S. Lung Nodule Malignancy. Data available at Kaggle. 2017. Available online: https://www.kaggle.com/kmader/lungnodemalignancy (accessed on 14 August 2020).
- Suzuki, K.; Armato, S.G.; Li, F.; Sone, S.; Doi, K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med. Phys. 2003, 30, 1602–1617. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Li, F.; Sone, S.; Doi, K. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans. Med. Imaging 2005, 24, 1138–1150. [Google Scholar] [CrossRef]
- Tajbakhsh, N.; Suzuki, K. Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: MTANNs vs. CNNs. Pattern Recognit. 2017, 63, 476–486. [Google Scholar] [CrossRef]
- Gu, Y.; Lu, X.; Yang, L.; Zhang, B.; Yu, D.; Zhao, Y.; Gao, L.; Wu, L.; Zhou, T. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Comput. Biol. Med. 2018, 103, 220–231. [Google Scholar] [CrossRef]
- Sahu, P.; Yu, D.; Dasari, M.; Hou, F.; Qin, H. A Lightweight Multi-Section CNN for Lung Nodule Classification and Malignancy Estimation. IEEE J. Biomed. Health Inform. 2019, 23, 960–968. [Google Scholar] [CrossRef]
- Ozdemir, O.; Russell, R.L.; Berlin, A.A. A 3D Probabilistic Deep Learning System for Detection and Diagnosis of Lung Cancer Using Low-Dose CT Scans. IEEE Trans. Med. Imaging 2020, 39, 1419–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, B.A. Data Science Bowl 2017. Data Available at Kaggle. 2017. Available online: https://www.kaggle.com/c/data-science-bowl-2017 (accessed on 1 August 2020).
- Bansal, G.; Chamola, V.; Narang, P.; Kumar, S.; Raman, S. Deep3DSCan: Deep residual network and morphological descriptor based framework for lung cancer classification and 3D segmentation. IET Image Process. 2020, 14, 1240–1247. [Google Scholar] [CrossRef]
- Adegun, A.A.; Viriri, S. Deep Learning-Based System for Automatic Melanoma Detection. IEEE Access 2020, 8, 7160–7172. [Google Scholar] [CrossRef]
- Azer, S.A. Challenges Facing the Detection of Colonic Polyps: What Can Deep Learning Do? Medicina 2019, 55, 473. [Google Scholar] [CrossRef] [Green Version]
- Hamm, C.A.; Wang, C.J.; Savic, L.J.; Ferrante, M.; Schobert, I.; Schlachter, T.; Lin, M.; Duncan, J.S.; Weinreb, J.C.; Chapiro, J.; et al. Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI. Eur. Radiol. 2019, 29, 3338–3347. [Google Scholar] [CrossRef]
- Yamakawa, M.; Shiina, T.; Nishida, N.; Kudo, M. Computer aided diagnosis system developed for ultrasound diagnosis of liver lesions using deep learning. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 2330–2333. [Google Scholar]
- Kim, G.H.; Liang, P.S.; Bang, S.J.; Hwang, J.H. Screening and surveillance for gastric cancer in the United States: Is it needed? Gastrointest. Endosc. 2016, 84, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kim, Y.J.; Kim, Y.W.; Park, S.; Choi, Y.I.; Kim, Y.J.; Park, D.K.; Kim, K.G.; Chung, J.W. Spotting malignancies from gastric endoscopic images using deep learning. Surg. Endosc. 2019, 33, 3790–3797. [Google Scholar] [CrossRef]
- Cho, B.J.; Bang, C.S.; Park, S.W.; Yang, Y.J.; Seo, S.I.; Lim, H.; Shin, W.G.; Hong, J.T.; Yoo, Y.T.; Hong, S.H.; et al. Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network. Endoscopy 2019, 51, 1121–1129. [Google Scholar] [CrossRef]
Cancer Type | New Cases (%) | Death Rate (%) |
---|---|---|
Breast Cancer | 11.6 | 6.6 |
Colon Cancer | 10.2 | 9.2 |
Brain Tumor | 3.5 | 2.8 |
Cervical Cancer | 3.2 | 2.5 |
Stomach Cancer | 5.7 | 8.2 |
Liver Cancer | 4.7 | 8.2 |
Lung Cancer | 11.6 | 18.4 |
Dataset | Size | #Classes/Targets | Format | Type | Author/Repository, Year |
---|---|---|---|---|---|
MIAS | 322 | 2 | pgm | Mammography | Suckling, J. et al. [14] |
DDSM | 55,890 | npy | Mammography | Scuccimarra [15] | |
InBreast | 410 | XML | Mammography | Moreira et al. [16] | |
Breast Cancer Wisconsin | 568 | 3 | csv | Mammography | Dua, D. and Graff, C. [17] |
BreakHis | 7909 | 2 | png | Histology | Bukun [18] |
BACH/ICIAR2018 | 400 | 4 | tiff | Histology | G.Aresta [19] |
Author and Citation | Dataset | AUC | Sn (%) | Sp (%) | Acc (%) | Target |
Siemens and Hologic | 0.933 | - | - | - | Detection | |
Wu et al. [20] | Personal | 0.895 | - | - | - | Classification/Prediction |
Shen et al. [2] | DDSM | 0.88 | - | - | - | Detection |
(Single-Model) | INbreast | 0.95 | - | - | - | Detection |
Shen et al. [2] | DDSM | 0.91 | 86.1 | 80.1 | - | Detection |
(Four-Models Average) | INbreast | 0.98 | 86.7 | 96.1 | - | Detection |
Zhu et al. [22] (Transfer learning) | - | 0.53 | - | - | - | Prediction |
Zhu et al. [22] (SVM) | - | 0.7 | - | - | - | Prediction |
Li et al. [23] | - | 0.95 | 83 | 93.84 | 92.13 | Classification |
Zeiser et al. [24] | DDSM | 0.86 | 92.32 | 80.47 | 85.95 | Segmentation |
Zhang et al. [28] | - | - | - | - | 97.5 | Detection |
Zhou et al. [26] | - | 0.86 | 90.8 | 69.3 | 83.7 | Classification |
Author and Citation | Dataset | Acc | Sn (%) | Sp (%) |
Siemens and Hologic | 0.933 | - | - | |
Vang et al. [33] | ICIAR2018 | 87.5 | - | - |
(H & E) | ||||
Sharma and Mehra [32] | BreakHis | 93.97 | - | - |
Sheikh et al. [29] | ICIAR2018 | 83 | - | - |
and BreakHis | 98 | |||
Li et al. [30] | ICIAR2018 | 88 | - | - |
Yan et al. [31] | ICIAR2018 | 91 | - | - |
Alzubaidi et al. [21] | ICIAR 2018 | 97.4 | - |
Authors | Network | Pre-Training | Transfer Learning | Environment |
---|---|---|---|---|
Wu et al. [20] | ResNet-22 | Yes | No | TensorFlow |
Shen et al. [2] | ResNet-50, VGGNet-16 | Yes | Yes | - |
Vang et al. [33] | Inception V3 | Yes | No | TensorFlow |
Zhu et al. [22] | GoogleNet | Yes | Yes | Caffe |
Li et al. [23] | VGGNet-16 | Yes | Yes | - |
Sharma and Mehra [32] | VGGNet-16, VGGNet-19, ResNet50 | Yes | Yes | Keras, TensorFlow |
Zeiser et al. [24] | U-net | No | No | - |
Zhang et al. [28] | U-net | No | No | TensorFlow |
Zhou et al. [26] | 3D DensNet | No | No | - |
Sheikh et al. [29] | MSI-MFNet | No | No | Keras |
Li et al. [30] | IDSNet | Yes | Yes | Tensorflow |
Yan et al. [31] | Inception-V3 | Yes | Yes | Tensorflow |
Alzubaidi et al. [21] | ResNet | Yes | Yes | - |
Authors | Publication Year | Journal/Conf. | Impact Factor | Year of Impact Factor |
---|---|---|---|---|
Wu et al. [20] | 2020 | ITMI | 6.85 | 2020 |
Shen et al. [2] | 2019 | Scientific Reports | 3.998 | 2019 |
Vang et al. [33] | 2018 | CBM | 5.4 | 2019 |
Zhu et al. [22] | 2019 | CBM | 3.434 | 2020 |
Li et al. [23] | 2019 | European Radiology | 4.101 | 2019 |
Sharma and Mehra [32] | 2020 | Journal of Digital Imaging | 2.99 | 2018 |
Zeiser et al. [24] | 2020 | Journal of Digital Imaging | 2.99 | 2018 |
Zhang et al. [28] | 2018 | Academic Radiology | 2.50 | 2020 |
Dembrower et al. [34] | 2020 | Radiology | 7.608 | 2018 |
Zhou et al. [26] | 2019 | Journal of Magnetic Resonance Imaging | 2.112 | 2018 |
Sheikh et al. [29] | 2020 | MDPI, Cancers | 6.126 | 2019 |
Li et al. [30] | 2020 | Plos One | 2.74 | 2019 |
Yan et al. [31] | 2020 | Elsevier, Methods | 3.812 | 2019 |
Alzubaidi et al. [21] | 2020 | MDPI, electronics | 2.412 | 2019 |
Author and Citation | Comparison to Specialists | Comparison to Traditional Technique (Yes/No) |
---|---|---|
Hagos et al. [35] | No | No |
Wu et al. [20] | Yes | No |
Shen et al. [2] | No | No |
Vang et al. [33] | No | No |
Zhu et al. [22] | No | No |
Li et al. [23] | No | No |
Sharma and Mehra [32] | No | Yes |
Zeiser et al. [24] | No | Yes |
Zhang et al. [28] | No | No |
Zhou et al. [26] | Yes | Yes |
Sheikh et al. [29] | No | Yes |
Li et al. [30] | No | Yes |
Yan et al. [31] | No | Yes |
Alzubaidi et al. [21] | No | yes |
Dataset | Size | #Classes/Targets | Format | Type | Author, Year |
---|---|---|---|---|---|
Herlev | 917 | 187 | Bit Map(BMP) | Histology | Dr J. Jantzen [43] |
DANS-KNAW | 963 | 4 | jpg | Histology | Hussien [44] |
CRIC | 400 | 6 | png and csv | Histology | M.T. Rezende et al. [45] |
Zenodo | 962 | 4 | jpg | Histology | Franco et al. [46] |
ALTS | 938 | 2 | jpg | Colposcopy | Alts Group [47] |
MobileODT | 1448 | 3 | jpg | Colposcopy | MobileODT [48] |
Authors | Method | Dataset | Acc | P | R | F1 | Sp | Sn | ZSI |
---|---|---|---|---|---|---|---|---|---|
Zhao et al. [50] | Progressive Growing | Herlev | 0.925 | 0.901 | 0.968 | 0.925 | |||
of U-net+(PGU-net+) | |||||||||
Liu et al. [53] | Mask-RCNN with LFCCRF | Herlev | 0.96 | 0.96 | 0.95 | ||||
Sompawong et al. [52] | Mask-RCNN | TU | 89.8% | 94.3% | 72.5% |
Authors | Method | Dataset | Acc | P | R | ZSI | DSC |
---|---|---|---|---|---|---|---|
Kurnianingsih et al. [54] | Mask R-CNN | Herlev | 0.92 | 0.91 | 0.91 | ||
Song et al. [49] | CNN with Shape information | Herlev | 0.92 | ||||
Liang et al. [42] | comparison based Faster R-CNN | local | 26.3 | 35.7 |
Authors | Method | Dataset | Acc(%) | Sn(%) | Sp(%) | AUC | F1 | P | R |
---|---|---|---|---|---|---|---|---|---|
Zhang et al. [55] | DeepPap | Herlev | 98.3 | - | 98.3 | 0.99 | - | - | - |
Hyeon et al. [56] | VGG16 | SVM | local | - | - | - | 0.78 | 0.78 | 0.78 |
Lin et al. [57] | GoogleNet5C | Herlev | 94.5 | - | - | - | - | - | - |
Chen et al. [60] | Mask R-CNN 7 class | local- | 87.4 | 88.6 | 86.1 | - | - | - | - |
Kurnianingsih et al. [54] | Mask R-CNN | Herlev | 98.1 | 96.7 | 98.6 | 96.5 | - | - | - |
Promworn et al. [61] | densenet161 | Herlev | 94.38 | 100 | - | - | - | - | - |
Yutao Ma et al. [62] | CNN and SVM | OCM image | - | 86.7 | 93.5 | 0.96 | - | - | - |
Ahmed et al. [63] | CaffNet+ELM | Herlev | 99.5 | - | - | - | - | - | - |
Dong et al. [64] | Inception-V3 | Herlev | 98.23 | 99.4 | 96.7 | - | - | - | - |
Martinez-Mias et al. [65] | CaffeNet | Local | 88.8 | 92 | 83 | - | - | - | - |
Authors | Method | Dataset | Acc | Sn | Sp | Others |
---|---|---|---|---|---|---|
regressor 7 classes | ||||||
Yutao Ma et al. [62] | CNN and SVM 5 classes | OCM image | 88.3 | |||
Lin et al. [57] | GoogleNet5C 4 classes | Herlev Dataset | 71.3 | |||
Lin et al. [57] | GoogleNet5C seven classes | Herlev Dataset | 64.5 | |||
Kurnianingsih et al. [54] | Mask R-CNN 7 class | Herlev | 95.9 | 96.2 | 99.3 | |
Promworn et al. [61] | densenet161 7 classes | Herlev dataset | 68.54 | 68.18 | 69.57 | |
Ahmed et al. [63] | CaffNet+ELM | Herlev | 91.2 | - | - | - |
Martinez-Mias et al. [65] | CaffeNet | Local | 55.6 | - | - | - |
Xiang et al. [66] | YOLOv3+InceptionV3 | local | 89.3 | 97.5 | 67.8 | - |
Author and Citation | Network | Pre-Training | Transfer Learning | Environment |
---|---|---|---|---|
Zhao et al. [50] | U-Net | No | No | - |
Liu Y. et al. [53] | Mask-RCNN | Yes | No | Tensorflow |
Sompawong et al. [52] | Mask-RCNN | Yes | Yes | - |
Kurnianingsih et al. [54] | Mask-RCNN and VGGNet | Yes | Yes | - |
Song et al. [49] | CNN-Custom | No | No | - |
Lianget al. [42] | ResNet50 | Yes | Yes | Tensorflow |
Zhang et al. [55] | ConvNet | Yes | Yes | Caffe |
Hyeon et al. [56] | CNN | Yes | Yes | - |
Yutao Ma et al. [62] | VGG-16 | Yes | Yes | Tensorflow |
Lin et al. [57] | GoogLeNet | Yes | Yes | Caffe |
Promworn et al. [61] | DenseNet161 | No | No | PytTorch |
Wimpy and Suyanto [68] | Capsule Network | Yes | No | Tensorflow |
Gorantla et al. [69] | ResNet101 | yes | Yes | - |
Arora et al. [70] | CNN-Custom | No | No | - |
Ahmed et al. [63] | CaffeNet | yes | yes | Caffe |
Martinez-Mias et al. [65] | CaffeNet | yes | yes | Caffe |
Author and Citation | Publication Year | Journal/Conference | Impact Factor | Impact Assigned Year |
---|---|---|---|---|
Zhao et al. [50] | 2019 | MMMI 2019 | - | - |
Liu Y. et al. [53] | 2018 | IEEE Access | 4.098 | 2018 |
Sompawong et al. [52] | 2019 | Conference ACEMBS | 0.54 | 2019 |
Kurnianingsih et al. [54] | 2019 | IEEE Access | 4.098 | 2018 |
Song et al. [49] | 2016 | Conference ISBI | 1.51 | 2019 |
Liang et al. [42] | 2019 | Neurocomputing | 3.317 | 2016 |
Zhang et al. [55] | 2017 | JBHI | 5.223 | 2020 |
Hyeon etal. [56] | 2017 | Conference ICMDM | - | - |
Yutao Ma et al. [62] | 2019 | IEEE Transaction on Biomedical Engineering | 4.78 | 2019 |
Lin et al. [57] | 2019 | IEEE Access | 4.098 | 2018 |
Promworn et al. [61] | 2019 | Conference ICNEMS | 0.312 | 2019 |
Wimpy and S. Suyanto [68] | 2019 | Conference ISRITI | - | - |
Gorantla et al. [69] | 2019 | BIBE | 0.392 | 2012 |
Arora et al. [70] | 2018 | Conference ICSCCC | 0.91 | 2019 |
Ahmed et al. [63] | 2019 | Future Generation computer systems | 6.125 | 2019 |
Dong et al. [64] | 2020 | ASCJ | 5.5 | 2020 |
Martinez-Mias et al. [65] | 2020 | ESWA | 5.45 | 2020 |
Author and Citation | Comparison to Specialists | Comparison to Traditional Technique (Yes/No) |
---|---|---|
Zhao et al. [50] | No | Yes |
Liu Y. et al. [53] | No | Yes |
Sompawong et al. [52] | No | Yes |
Kurnianingsih et al. [54] | No | Yes |
Song et al. [49] | No | Yes |
Lianget al. [42] | No | Yes |
Zhang et al. [55] | Yes | No |
Hyeon et al. [56] | No | No |
Yutao Ma et al. [62] | Yes | No |
Lin et al. [57] | No | Yes |
Promworn et al. [61] | No | Yes |
Wimpy and S. Suyanto [68] | No | Yes |
Gorantla et al. [69] | No | Yes |
Arora et al. [70] | No | No |
Ahmed et al. [63] | No | Yes |
Dong et al. [64] | No | Yes |
Martinez-Mias et al. [65] | No | No |
Dataset | Size | #Classes | Format/Targets | Type | Author, Year |
---|---|---|---|---|---|
LBPA40 | 288 | 2 | html | MRI | Shattuck et al. [85] |
BRATS 2015 | 43,708 | 2 | .mha | MRI | Menze et al. [86] |
BRATS2013 | 1799 | 2 | .mha | MRI | Menze et al. [86] |
RIDER_NEURO_MRI | 29 | 2 | .tcia | MRI | Barboriak et al. [87] |
SUH | 49 | 2 | - | MRI | Fabelo et al. [88] |
HMS | 66 | 2 | .gif | MRI | Keith A. Johnson |
FBT | 3064 | 2 | .mat | MRI | C. Jun [89] |
NHTM | 3064 | 2 | .png | MRI | C. Jun [89] |
GCE | 150 | 2 | .png | MRI | Jun Cheng [90] |
Authors | Method Learning | Dataset | Acc. | P | R | F | Sp | Sn | Dice | PPV |
---|---|---|---|---|---|---|---|---|---|---|
Alkassar et al. [91] | DNN+FCN+VGG-16 | BRATS2015 | 0.98 | 0.89 | ||||||
Amiri et al. [92] | RF-SVM | BRATS | 0.72 | |||||||
Chahal et al. [93] | CNN | BRATS2013 | 0.96 | 0.93 | 0.95 | |||||
Ding et al. [94] | RDM-Net | BRATS2015 | 0.86 | |||||||
Mallick et al. [95] | DWA-DNN | RIDER_NEURO_MRI | 0.93 | 0.93 | 0.92 | 0.94 | ||||
Ramirez et al. [96] | CNN+TVS | Flair-MRI Brats2015 | 0.84 | 0.88 | 0.86 | |||||
Sajid et al.[97] | hybrid CNN | BRATS 2013 | 0.91 | 0.86 | 0.86 | |||||
Wang et al. [98] | WRN-PPNet | BRATS2015 | 0.92 | 0.94 | 0.97 | |||||
Zhao et al. [99] | FCNNs and CRF-RNN | BRATS 2013–16 | 0.82 | 0.84 | 0.89 | |||||
Kuzina et al. [100] | UNet-DWP | BRATS2018 | 0.76 | |||||||
Zeineldin et al. [101] | DeepSeg | BRATS 2019 | 0.81–0.84 | |||||||
Fabelo et al. [102] | HSI+2D-CNN | SUH | 80 | 80–100 |
Authors | Method | Dataset | Acc. | P | R | F | Sp | Sn | MCC | G-Mean |
---|---|---|---|---|---|---|---|---|---|---|
Mohsen et al. [80] | DWT-DNN | Harvard | 0.97 | 0.97 | 0.97 | |||||
Alqudah et al. [105] | CNN | Online | 98.40 | 98.19 | 99.19 | 98.18 | ||||
Ucuzal et al. [106] | CNN Multiclass | NHTM | 99.74 | 99.58 | 99.59 | 99.81 | 99.60 | 99.39 | 99.70 | |
Selvy et al. [109] | PNN | GCE | 90 | 100 | 85.75 | |||||
Sultan et al. [110] | CNN | NHTM | 96.13–98.7 | |||||||
Badža and Barjaktarovic [111] | CNN | NHTM | 96.56 |
Author and Citation | Publication Year | Journal | Impact Factor | Impact Assigned Year |
---|---|---|---|---|
Alkassar et al. [91] | 2019 | ICECCPCE19 Conference | 0.627 | 2019 |
Amiri et al. [92] | 2016 | ATSIP 2016 Conference | 0.17 | 2019 |
Chahal et al. [93] | 2019 | RDCAPE Conference | - | - |
Ding et al. [94] | 2019 | IEEE Access | 3.745 | 2019 |
Mallick et al. [95] | 2019 | IEEE Access | 3.745 | 2019 |
Ramirez et al. [96] | 2018 | ISBI Conference | 1.51 | 2019 |
Sajid et al.[97] | 2019 | Arabian Journal for Science and Engineering | 0.33 | 2019 |
Wang et al. [98] | 2019 | IJCNN Conference | 0.37 | 2019 |
Zhao et al. [99] | 2018 | Medical Image Analysis | 3.88 | 2019 |
Kuzina et al. [100] | 2019 | Frontiers in Neuroscince | 3.7 | 2020 |
Mohsen et al. [80] | 2018 | Future Computing and Informatics | 3.88 | 2019 |
Alqudah et al. [105] | 2019 | IJATCSE | 0.2 | 2019 |
Ucuzal et al. [106] | 2019 | ISMSIT | 0.84 | 2019 |
Zeineldin et al. [101] | 2020 | IJCARS | 1.961 | 2017 |
Fabelo et al. [102] | 2019 | MDPI | 3.275 | 2019 |
Selvy et al. [109] | 2019 | IJSRCSEIT | 1.638 | 2016 |
Sultan et al. [110] | 2019 | IEEE Access | 3.745 | 2019 |
Badža and Barjaktarovic [111] | 2020 | MDPI | 2.474 | 2019 |
Author and Citation | Comparison to Specialists (Yes/No) | Comparison to Traditional Technique (Yes/No) |
---|---|---|
Alkassar et al. [91] | Yes | Yes |
Amiri et al. [92] | No | Yes |
Chahal et al. [93] | No | Yes |
Ding et al. [94] | No | Yes |
Mallick et al. [95] | No | Yes |
Ramirez et al. [96] | Yes | Yes |
Sajid et al.[97] | No | Yes |
Wang et al. [98] | Yes | Yes |
Zhao et al. [99] | Yes | Yes |
Kuzina et al. [100] | No | Yes |
Mohsen et al. [80] | No | Yes |
Alqudah et al. [105] | No | Yes |
Ucuzal et al. [106] | Yes | No |
Zeineldin et al. [101] | Yes | Yes |
Fabelo et al. [102] | Yes | Yes |
Selvy et al. [109] | No | No |
Sultan et al. [110] | Yes | Yes |
Badža and Barjaktarovic [111] | No | Yes |
Author and Citation | Network | Pre-Training | Transfer Learning | Environment |
---|---|---|---|---|
Alkassar et al. [91] | VGGNet-16 | Yes | Yes | |
Amiri et al. [92] | RF+SVM | Yes | Yes | |
Chahal et al. [93] | CNN | Yes | Yes | |
Ding et al. [94] | RDM-Net | Yes | Yes | |
Mallick et al. [95] | DWA-DNN | Yes | Yes | Tensor flow |
Ramirez et al. [96] | CNN+TVS | Yes | Yes | Tensor flow |
Sajid et al.[97] | hybrid CNN | Yes | Yes | Tensor Flow |
Wang et al. [98] | WRN-PPNet | Yes | Yes | Tensor flow |
Zhao et al. [99] | FCNNs and CRF-RNN | Yes | Yes | Tensor flow |
Kuzina et al. [100] | UNet-DWP | Yes | Yes | |
Mohsen et al. [80] | DWT-DNN | Yes | Yes | |
Alqudah et al. [105] | VGGNet-19 | Yes | Yes | |
Ucuzal et al. [106] | UNet-DWP | Yes | Yes | Tensor flow and Keras |
Zeineldin et al. [101] | ResNet+DenseNet+NasNet | Yes | Yes | Keras, Tensor Flow |
Fabelo et al. [102] | UNet | Yes | Yes | Tensor Flow |
Selvy et al. [109] | GLCM+PNN | Yes | Yes | |
Sultan et al. [110] | CNN | Yes | Yes | Matlab 2018b and Python |
Badža and Barjaktarovic [111] | CNN | Yes | Yes | Matlab 2018b |
Dataset | Size | #Classes/Targets | Format | Type | Author, Year |
---|---|---|---|---|---|
CVC-EndoSceneStill | 912 | 4 | bmp | Colonoscopy | Vázquez et al. [116], 2017 |
CVC-ColonDB | 300 | 4 | bmp | Colonoscopy | J. Bernal et al. [117], 2012 |
CVC-ClinicDB | 612 | 4 | tiff | Colonoscopy | J. Bernal et al. [118], 2015 |
UMCM | 500 | 8 | mat | histology | Kather et al. [119], 2016 |
Authors | Method | Dataset | Acc | P | R | F1 | DSC | H |
---|---|---|---|---|---|---|---|---|
Kainz et al. [120] | Separator-Net and Object-Net | MICCAI2015 | 96 | 59 | 74 | 62 | - | - |
Graham et al. [113] | MILD-Net | - | - | - | 87 | 88 | 142 | |
Chamanzar et al. [122] | WSMTL | local | 93 | - | - | 79.1 | 78.4 | - |
Sari et al. [123] | DeepFeature | local | - | 82.3 | 89.9 | 85.1 | - | - |
Shapcott et al. [125] | CNNs | local and TCGA | 65 | - | - | - | - | - |
Sirinukunwattana et al. [121] | SC-CNN+NEP & s-CNN | MICCAI2015 | - | - | - | - | 69 | - |
Tang et al. [126] | Segnet | MICCAI2015 | - | - | - | - | 87.2 | 104.61 |
Vuong et al. [127] | Multitask DensNet121 | local | 85.1 | - | - | - | - | - |
Sabol et al. [128] | CFSCMC | UMCM | 92.78 | - | - | - | - | - |
Authors | Method | Dataset | Acc | P | R | F1 | Sp | Sn | PPV |
---|---|---|---|---|---|---|---|---|---|
Ornela Bardhi et al. [130] | SegNet | EITs | 96.7 | - | - | - | - | - | - |
Bour et al. [131] | Resnet50 | local | 87.1 | 87.1 | 87.1 | 87.1 | 93 | - | - |
Liu et al. [132] | faster_rcnn_inception_resnet_v2 | local | 90.6 | - | - | - | - | - | - |
Ozawa et al. [133] | SSD | local | - | - | - | - | - | 92 | 86 |
Nadimi et al. [134] | mZF-net+ResNet | local | 98 | - | - | - | 98.1 | 96 | - |
Author and Citation | Publication Year | Journal/Conference | Impact Factor | Impact Assigned Year |
---|---|---|---|---|
Kainz et al. [120] | 2017 | PeerJ | 2.38 | 2019 |
Graham et al. [113] | 2018 | Medical Image Analysis | 8.79 | 2018 |
Chamanzar et al. [122] | 2020 | ISBI conference | 2.283 | 2019 |
Sari et al. [123] | 2019 | IEEE Transactions on Medical Imaging | 9.71 | 2019 |
Shapcott et al. [125] | 2019 | Frontiers in bioengineering and biotechnology | 3.644 | 2020 |
Sirinukunwattana et al. [121] | 2016 | IEEE transactions on medical imaging | 9.71 | 2019 |
Tang et al. [126] | 2018 | Conference YAC | 1.461 | 2019 |
Vuong et al. [127] | 2020 | Conference ICEIC | 0.76 | 2019 |
Ornela Bardhi et al. [130] | 2017 | Conference ISSPIT | 1.393 | 2019 |
Bour et al. [131] | 2017 | Conference ISSPIT | 1.393 | 2019 |
Liu et al. [132] | 2019 | Conference ISNE | 0.152 | 2019 |
Ozawa et al. [133] | 2020 | Therapeutic advances in gastroenterology | 4.08 | 2020 |
Nadimi et al. [134] | 2020 | CEE | 2.663 | 2020 |
Sabol et al. [128] | 2020 | YJBIN | 3.526 | 2020 |
Author and Citation | Network | Pre-Training | Transfer Learning | Environment |
---|---|---|---|---|
Kainz et al. [120] | Object-Net and SeparatorNet—custom | No | No | Matlab |
Graham et al. [113] | MILD-Net—custom | No | No | Tensorflow |
Chamanzar et al. [122] | U-net and Resnet | Yes | Yes | PyTorch |
Sari et al. [123] | DeepBelief | Yes | Yes | - |
Shapcott et al. [125] | - | No | No | Tensorflow |
Sirinukunwattana et al. [121] | - | No | No | Matlab |
Tang et al. [126] | SegNet | No | No | Caffe |
Vuong et al. [127] | DensNet121 | No | No | PyTorch |
Ornela Bardhi et al. [130] | SegNet | No | No | Tensorflow |
Bour et al. [131] | ResNet50 | Yes | Yes | Tensorflow |
Liu et al. [132] | faster_rcnn_inception_resnet_v2 | No | No | Tensorflow |
Ozawa et al. [133] | Single Shot MultiBox Detector (SSD) | No | No | Caffe |
Nadimi et al. [134] | mZF-Net+ResNet | Yes | Yes | Matlab 2018a |
Sabol et al. [128] | Xception+CFCMC | Yes | Yes | - |
Author and Citation | Comparison to Specialists | Comparison to Traditional Technique (Yes/No) |
---|---|---|
Kainz et al. [120] | No | No |
Graham et al. [113] | No | Yes |
Chamanzar et al. [122] | No | Yes |
Sari et al. [123] | No | No |
Shapcott et al. [125] | No | No |
Sirinukunwattana et al. [121] | No | Yes |
Tang et al. [126] | No | Yes |
Vuong et al. [127] | No | No |
Ornela Bardhi et al. [130] | No | No |
Bour et al. [131] | Yes (Approval) | No |
Liu et al. [132] | No | Yes |
Ozawa et al. [133] | No | No |
Nadimi et al. [134] | No | No |
Sabol et al. [128] | Yes | Yes |
Dataset | Size | #Classes/Targets | Format | Type | Author, Year |
---|---|---|---|---|---|
UCI ML repository | 32 | 3 | CSV | Hong and Yang [137], 1991 | |
SPIE-AAPM-NCI | 22489 | 2 | dicom | CT | Armato et al. [138], 2015 |
Lung Nodule Malignancy | 6690 | 2 | hdf5 | CT | Scott Mader [139], 2017 |
LUNA2016 | 888 | 2 | mhd.zip | CT | Consortium for Open Medical Image Computing [119], 2016 |
Authors | Method | Dataset | Acc | FPR | Sp | Sn | AUC |
---|---|---|---|---|---|---|---|
Tajbakhsh and Suzuki [142] | MTANN, detection | local | - | 2.7 | - | 100 | |
Tajbakhsh and Suzuki [142] | MTANN, classification | local | - | - | - | - | 0.88 |
Gu et al. [143] | 3D-CNN, detection | LUNA16 | - | 2.5 | - | 90 | |
Sahu et al. [144] | multi-section MobileNet | LUNA16 | 93.8 | - | - | 96 | 0.98 |
Ozdemir et al. [145] | V-Net, classification | LUNA16 | - | 19 | - | 96.5 | 0.98 |
Bansal et al. [147] | ResNet | LUNA16 | 88 | - | 89.7 | 87 | 0.88 |
Author and Citation | Publication Year | Journal/Conference | Impact Factor | Impact Assigned Year |
---|---|---|---|---|
Tajbakhsh and Suzuki [142] | 2017 | Pattern Recognition | 7.196 | 2019 |
Gu et al. [143] | 2018 | CBM | 3.43 | 2019 |
Sahu et al. [144] | 2019 | IEEE-JBHI | 5.180 | 2020 |
Ozdemir et al. [145] | 2020 | IEEE Transactions on Medical Imaging | 9.71 | 2020 |
Bansal et al. [147] | 2020 | IET Image Processing | 2.61 | 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debelee, T.G.; Kebede, S.R.; Schwenker, F.; Shewarega, Z.M. Deep Learning in Selected Cancers’ Image Analysis—A Survey. J. Imaging 2020, 6, 121. https://doi.org/10.3390/jimaging6110121
Debelee TG, Kebede SR, Schwenker F, Shewarega ZM. Deep Learning in Selected Cancers’ Image Analysis—A Survey. Journal of Imaging. 2020; 6(11):121. https://doi.org/10.3390/jimaging6110121
Chicago/Turabian StyleDebelee, Taye Girma, Samuel Rahimeto Kebede, Friedhelm Schwenker, and Zemene Matewos Shewarega. 2020. "Deep Learning in Selected Cancers’ Image Analysis—A Survey" Journal of Imaging 6, no. 11: 121. https://doi.org/10.3390/jimaging6110121
APA StyleDebelee, T. G., Kebede, S. R., Schwenker, F., & Shewarega, Z. M. (2020). Deep Learning in Selected Cancers’ Image Analysis—A Survey. Journal of Imaging, 6(11), 121. https://doi.org/10.3390/jimaging6110121