Fully 3D Active Surface with Machine Learning for PET Image Segmentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the 3D as Proposed Method and Differences with the Previous 2D AC Method
2.1.1. The 3D Discriminant Analysis
2.1.2. The Active Surface Algorithm
- A new active surface volumetric energy formulation.
- A full 3D development so leveraging cross-slice information.
- Inclusion of 3D tissue information.
- was chosen equal to 0.01, because such value proved to yield the best result;
- and indicate the 3D local mean DA classification within the portions of the local neighborhood inside and outside the surface, respectively (within );
- S is the 3D AS and dS is the surface area measure;
- s is the 3D surface parameter;
- x is a point within the 3D volume and dx the volume measure;
- Rin and Rout are the corresponding 3D regions inside and outside the surface;
- ) is the indicator function around the surface point S(s) of a local neighborhood.
2.2. The Clinical Dataset
2.3. Framework for Performance Evaluation
3. Results
Segmentation Results
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Niyazi, M.; Landrock, S.; Elsner, A.; Manapov, F.; Hacker, M.; Belka, C.; Ganswindt, U. Automated biological target volume delineation for radiotherapy treatment planning using FDG-PET/CT. Radiat. Oncol. 2013, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Borasi, G.; Russo, G.; Alongi, F.; Nahum, A.; Candiano, G.C.; Stefano, A.; Gilardi, M.C.; Messa, C. High-intensity focused ultrasound plus concomitant radiotherapy: A new weapon in oncology? J. Ther. Ultrasound 2013, 1, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Guo, N.; Gong, K.; Zhong, S.; Li, Q. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network. Phys. Med. Biol. 2019, 64, 205015. [Google Scholar] [CrossRef] [PubMed]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009, 50, 122S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cegla, P.; Kazmierska, J.; Gwozdz, S.; Czepczynski, R.; Malicki, J.; Cholewinski, W. Assessment of biological parameters in head and neck cancer based on in vivo distribution of 18F-FDG-FLT-FMISO-PET/CT images. Tumori 2019, 106, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Banna, G.L.; Anile, G.; Russo, G.; Vigneri, P.; Castaing, M.; Nicolosi, M.; Strano, S.; Gieri, S.; Spina, R.; Patanè, D.; et al. Predictive and Prognostic Value of Early Disease Progression by PET Evaluation in Advanced Non-Small Cell Lung Cancer. Oncology 2017, 92, 39–47. [Google Scholar] [CrossRef]
- Stefano, A.; Porcino, N.; Banna, G.; Russoa, G.; Mocciaro, V.; Anile, G.; Gieri, S.; Cosentino, S.; Murè, G.; Baldari, S.; et al. Metabolic response assessment in non-small cell lung cancer patients after platinum-based therapy: A preliminary analysis. Curr. Med. Imaging Rev. 2015, 11, 218–227. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Stefano, A.; Gioè, M.; Russo, G.; Palmucci, S.; Torrisi, S.E.; Bignardi, S.; Basile, A.; Comelli, A.; Benfante, V.; Sambataro, G.; et al. Performance of Radiomics Features in the Quantification of Idiopathic Pulmonary Fibrosis from HRCT. Diagnostics 2020, 10, 306. [Google Scholar] [CrossRef]
- Comelli, A.; Stefano, A.; Coronnello, C.; Russo, G.; Vernuccio, F.; Cannella, R.; Salvaggio, G.; Lagalla, R.; Barone, S. Radiomics: A New Biomedical Workflow to Create a Predictive Model. In Annual Conference on Medical Image Understanding and Analysis; Springer: Cham, Switzerland, 2020; pp. 280–293. [Google Scholar]
- Stefano, A.; Vitabile, S.; Russo, G.; Ippolito, M.; Sabini, M.G.; Sardina, D.; Gambino, O.; Pirrone, R.; Ardizzone, E.; Gilardi, M.C. An enhanced random walk algorithm for delineation of head and neck cancers in PET studies. Med. Biol. Eng. Comput. 2017, 55, 897–908. [Google Scholar] [CrossRef]
- Abdoli, M.; Dierckx, R.A.J.O.; Zaidi, H. Contourlet-based active contour model for PET image segmentation. Med. Phys. 2013, 40, 082507. [Google Scholar] [CrossRef] [Green Version]
- Foster, B.; Bagci, U.; Mansoor, A.; Xu, Z.; Mollura, D.J. A review on segmentation of positron emission tomography images. Comput. Biol. Med. 2014, 50, 76–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Guo, N.; Li, Q.; Gong, K. Automatic multi-modality segmentation of gross tumor volume for head and neck cancer radiotherapy using 3D U-Net. In Medical Imaging 2019: Computer-Aided Diagnosis; San Diego, CA, USA, 16–21 February 2019; International Society for Optics and Photonics: Bellingham, WA, USA, 2009. [Google Scholar]
- Huang, B.; Chen, Z.; Wu, P.M.; Ye, Y.; Feng, S.T.; Wong, C.Y.O.; Zheng, L.; Liu, Y.; Wang, T.; Li, Q.; et al. Fully Automated Delineation of Gross Tumor Volume for Head and Neck Cancer on PET-CT Using Deep Learning: A Dual-Center Study. Contrast Media Mol. Imaging 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comelli, A.; Terranova, M.C.; Scopelliti, L.; Salerno, S.; Midiri, F.; Lo Re, G.; Petrucci, G.; Vitabile, S. A Kernel Support Vector Machine Based Technique for Crohn’s Disease Classification in Human Patients. In Conference on Complex, Intelligent, and Software Intensive Systems; Springer: Cham, Switzerland, 2018; pp. 262–273. [Google Scholar]
- Poudel, P.; Illanes, A.; Sheet, D.; Friebe, M. Evaluation of Commonly Used Algorithms for Thyroid Ultrasound Images Segmentation and Improvement Using Machine Learning Approaches. J. Healthc. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-net: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 25 January 2016; Springer: Cham, Switzerland, 2016; Volume 9901, pp. 424–432. [Google Scholar]
- Hatt, M.; Lee, J.A.; Schmidtlein, C.R.; El Naqa, I.; Caldwell, C.; De Bernardi, E.; Lu, W.; Das, S.; Geets, X.; Gregoire, V.; et al. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211. Med. Phys. 2017, 44, e1–e42. [Google Scholar] [CrossRef]
- Avanzo, M.; Wei, L.; Stancanello, J.; Vallières, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and deep learning methods for radiomics. Med. Phys. 2020, 47, e185–e202. [Google Scholar] [CrossRef] [PubMed]
- Feng-Ping, A.; Zhi-Wen, L. Medical image segmentation algorithm based on feedback mechanism convolutional neural network. Biomed. Signal Process. Control 2019, 53, 101589. [Google Scholar] [CrossRef]
- Comelli, A.; Stefano, A.; Russo, G.; Sabini, M.G.; Ippolito, M.; Bignardi, S.; Petrucci, G.; Yezzi, A. A smart and operator independent system to delineate tumours in Positron Emission Tomography scans. Comput. Biol. Med. 2018, 102, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Comelli, A.; Stefano, A.; Russo, G.; Bignardi, S.; Sabini, M.G.; Petrucci, G.; Ippolito, M.; Yezzi, A. K-nearest neighbor driving active contours to delineate biological tumor volumes. Eng. Appl. Artif. Intell. 2019, 81, 133–144. [Google Scholar] [CrossRef]
- Comelli, A.; Stefano, A.; Bignardi, S.; Russo, G.; Sabini, M.G.; Ippolito, M.; Barone, S.; Yezzi, A. Active contour algorithm with discriminant analysis for delineating tumors in positron emission tomography. Artif. Intell. Med. 2019, 94, 67–78. [Google Scholar] [CrossRef]
- Comelli, A.; Stefano, A.; Bignardi, S.; Coronnello, C.; Russo, G.; Sabini, M.G.; Ippolito, M.; Yezzi, A. Tissue Classification to Support Local Active Delineation of Brain Tumors. In Proceedings of the Communications in Computer and Information Science; Springer: Cham, Switzerland, 2020; Volume 1065, pp. 3–14. [Google Scholar]
- Warfield, S.K.; Zou, K.H.; Wells, W.M. Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 2004, 23, 903–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lankton, S.; Nain, D.; Yezzi, A.; Tannenbaum, A. Hybrid geodesic region-based curve evolutions for image segmentation. In Proceedings of the Medical Imaging 2007: Physics of Medical Imaging; Hsieh, J., Flynn, M.J., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6510, p. 65104U. [Google Scholar]
- Comelli, A.; Bignardi, S.; Stefano, A.; Russo, G.; Sabini, M.G.; Ippolito, M.; Yezzi, A. Development of a new fully three-dimensional methodology for tumours delineation in functional images. Comput. Biol. Med. 2020, 120, 103701. [Google Scholar] [CrossRef] [PubMed]
3D Active Surface with 3D Discriminant Analysis | |||
Lung | Head and Neck | Brain | |
Mean ± std | Mean ± std | Mean ± std | |
Sensitivity | 90.09 ± 6.50% | 86.05 ± 5.70% | 89.61 ± 4.29% |
PPV | 91.36 ± 3.89% | 91.19 ± 5.30% | 91.27 ± 4.52% |
DSC | 90.47 ± 2.36% | 88.30 ± 2.89% | 90.29 ± 2.52% |
HD | 1.40 ± 0.72 | 1.33 ± 0.57 | 1.04 ± 0.49 |
2D Active Contour with 2D Discriminant Analysis | |||
Lung | Head and Neck | Brain | |
Mean ± std | Mean ± std | Mean ± std | |
Sensitivity | 88.00 ± 5.41% | 89.28 ± 5.70% | 89.58 ± 3.40% |
PPV | 88.19 ± 4.73% | 85.53 ± 5.13% | 89.76 ± 3.31% |
DSC | 88.01 ± 4.23% | 87.15 ± 3.23% | 89.58 ± 2.37% |
HD | 1.53 ± 0.54 | 1.18 ± 0.39 | 1.07 ± 0.61 |
Active Surface with Discriminant Analysis | ANOVA p-Value | Mean DSC Difference | PCC | PCC p-Value |
---|---|---|---|---|
2D vs. 3D | 0.046 | 2.45% | 0.53 | 0.000044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comelli, A. Fully 3D Active Surface with Machine Learning for PET Image Segmentation. J. Imaging 2020, 6, 113. https://doi.org/10.3390/jimaging6110113
Comelli A. Fully 3D Active Surface with Machine Learning for PET Image Segmentation. Journal of Imaging. 2020; 6(11):113. https://doi.org/10.3390/jimaging6110113
Chicago/Turabian StyleComelli, Albert. 2020. "Fully 3D Active Surface with Machine Learning for PET Image Segmentation" Journal of Imaging 6, no. 11: 113. https://doi.org/10.3390/jimaging6110113
APA StyleComelli, A. (2020). Fully 3D Active Surface with Machine Learning for PET Image Segmentation. Journal of Imaging, 6(11), 113. https://doi.org/10.3390/jimaging6110113