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Abstract: The classification of brain tumors is performed by biopsy, which is not usually conducted
before definitive brain surgery. The improvement of technology and machine learning can help
radiologists in tumor diagnostics without invasive measures. A machine-learning algorithm that
has achieved substantial results in image segmentation and classification is the convolutional neural
network (CNN). We present a new CNN architecture for brain tumor classification of three tumor
types. The developed network is simpler than already-existing pre-trained networks, and it was tested
on T1-weighted contrast-enhanced magnetic resonance images. The performance of the network was
evaluated using four approaches: combinations of two 10-fold cross-validation methods and two
databases. The generalization capability of the network was tested with one of the 10-fold methods,
subject-wise cross-validation, and the improvement was tested by using an augmented image
database. The best result for the 10-fold cross-validation method was obtained for the record-wise
cross-validation for the augmented data set, and, in that case, the accuracy was 96.56%. With good
generalization capability and good execution speed, the new developed CNN architecture could be
used as an effective decision-support tool for radiologists in medical diagnostics.

Keywords: brain tumor classification; convolutional neural network; image classification; magnetic
resonance imaging; machine learning; medical imaging; neural networks

1. Introduction

Cancer is the second leading cause of death globally, according to the World Health Organization
(WHO) [1]. Early detection of cancer can prevent death, but this is not always possible. Unlike cancer,
a tumor could be benign, pre-carcinoma, or malign. Benign tumors differ from malign in that benign
generally do not spread to other organs and tissues and can be surgically removed [2].

Some of the primary brain tumors are gliomas, meningiomas, and pituitary tumors. Gliomas are
a general term for tumors that arise from brain tissues other than nerve cells and blood vessels. On the
other hand, meningiomas arise from the membranes that cover the brain and surround the central
nervous system, whereas pituitary tumors are lumps that sit inside the skull [3–6]. The most important
difference between these three types of tumors is that meningiomas are typically benign, and gliomas
are most commonly malignant. Pituitary tumors, even if benign, can cause other medical damage,
unlike meningiomas, which are slow-growing tumors [5,6]. Because of the information mentioned
above, the precise differentiation between these three types of tumors represents a very important step
of the clinical diagnostic process and later effective assessment of patients.

The most common method for differential diagnostics of tumor type is magnetic resonance
imaging (MRI). However, it is susceptible to human subjectivity, and a large amount of data is
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difficult for human observation. Early brain–tumor detection mostly depends on the experience of
the radiologist [7]. The diagnostics of the tumor could not be complete before establishing whether it
is benign or malignant. In order to examine whether the tissue is benign or malignant, a biopsy is
usually performed. Unlike tumors elsewhere in the body, the biopsy of the brain tumor is not usually
obtained before definitive brain surgery [8]. In order to obtain precise diagnostics, and to avoid surgery
and subjectivity, it is important to develop an effective diagnostics tool for tumor segmentation and
classification from MRI images [7].

The development of new technologies, especially artificial intelligence and machine learning,
has had a significant impact on medical field, providing an important support tool for many medical
branches, including imaging. Different machine-learning methods for image segmentation and
classification are applied in MRI image processing to provide radiologists with a second opinion.

Since 2012, the Perelman School of Medicine at the University of Pennsylvania, Center for
Biomedical Image Computing & Analytics (CBICA) has been running an online competition,
the Multimodal Brain Tumor Segmentation Challenge (BRATS) [9]. The image databases used
in BRATS are made publicly available after the competition is finished. Different classification
algorithms designed using these image databases can be found in many papers [10–14]. However, the
databases are usually small, on average about 285 images, and they often contain images showing two
tumor levels, low and high level of glioma tumor, acquired in the axial plane [10].

In addition, classification has been carried out on other image databases, which are also quite
small [15–18]. Mohsen et al. used 66 images to classify four types of images showing brain tumors:
tumor-free, glioblastoma, sarcoma, and metastasis. By using a deep neural network (DNN), they
obtained an accuracy of 96.97% [17].

In the literature, there are other algorithms and different modifications of the pre-trained networks
that are used for image analysis, classification, and segmentation. Different approaches have been
tested on other medical databases, both on MRI images of brain tumors and on tumors from different
parts of the human body [19,20]. These papers were not considered further, as the focus was on the
papers using the same MRI image database that we used.

Cheng et al., who were the first to present the image database used in this paper, classified the
tumor types using augmented tumor region of interest, image dilatation, and ring-form partition.
They extracted features using intensity histogram, gray level co-occurrence matrix, and bag-of-words
models, and achieved an accuracy of 91.28% [21]. More papers that used the same database are
discussed in Section 3. There, we discuss different types of networks, pre-trained ones, capsule net
networks, other architectures of convolutional networks, and combinations with neural networks for
feature extraction and classifiers for the output result. The discussion also concerns approaches using
different modifications of the database, as well as the original one. The papers that used the original or
augmented database are listed in the tables for better comparison.

The biggest problem with classifying and segmenting the MRI images with some neural networks
lies in the number of images in the database. In addition, MRI images are acquired in different planes,
so the option of using all the available planes could enlarge the database. As this could generally affect
the classification output by overfitting, pre-processing is required before feeding the images into the
neural network. However, one of the known advantages of convolutional neural networks (CNN) is
that the pre-processing and the feature engineering do not have to be performed.

The aim of this research is firstly to examine the classification of three tumor types from an
imbalanced database with a CNN. Although considered large compared to other available MRI image
databases, this database is still far smaller than databases generally used in the field of artificial
intelligence. We wanted to show that the performance of the small architecture could compare
favorably with the performance of the more complex ones. Using a simpler network requires fewer
resources for training and implementation. This is a crucial problem to address because limited
available resources make it difficult to use the system in clinical diagnostics and on mobile platforms.
If the system is needed to be used in everyday clinical diagnostics, it should be generally applicable.
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We wanted to examine the network’s generalization capability for clinical studies and to show how the
subject-wise cross-validation approach gives more realistic results for further implementation.

In this paper, we present a new CNN architecture for brain tumor classification of three tumor
types: meningioma, glioma, and pituitary tumor from T1-weighted contrast-enhanced magnetic
resonance images. The network performance was tested using four approaches: combinations of
two 10-fold cross-validation methods (record-wise and subject-wise) and two databases (original and
augmented). The results are presented using the confusion matrices and accuracy metric. A comparison
with the comparable state-of-the-art methods is also presented.

2. Methodology

2.1. Image Database

The image database, provided as a set of slices, used in this paper contains 3064 T1-weighted
contrast-enhanced MRI images acquired from Nanfang Hospital and General Hospital, Tianjin Medical
University, China from 2005 to 2010. It was first published online in 2015, and the last modified
version was realized in 2017 [22]. There are three types of tumors: meningioma (708 images), glioma
(1426 images), and pituitary tumor (930 images). All images were acquired from 233 patients in three
planes: sagittal (1025 images), axial (994 images), and coronal (1045 images) plane. The examples of
different types of tumors, as well as different planes, are shown in Figure 1. The tumors are marked
with a red outline. The number of images is different for each patient.
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Figure 1. Representation of normalized magnetic resonance imaging (MRI) images showing different
types of tumors in different planes. In the images, the tumor is marked with a red outline. The example
is given for each tumor type in each of the planes.

2.2. Image Pre-Processing and Data Augmentation

Magnetic resonance images from the database were of different sizes and were provided in int16
format. These images represent the input layer of the network, so they were normalized and resized to
256 × 256 pixels.

In order to augment the dataset, we transformed each image in two ways. The first transformation
was image rotation by 90 degrees. The second transformation was flipping images vertically [23].
In this way, we augmented our dataset three times, resulting in 9192 images.

2.3. Network Architecture

Tumor classification was performed using a CNN developed in Matlab R2018a (The MathWorks,
Natick, MA, USA). The network architecture consists of input, two main blocks, classification block,
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and output, as shown in Figure 2. The first main block, Block A, consists of a convolutional layer
which as an output gives an image two times smaller than the provided input. The convolutional
layer is followed by the rectified linear unit (ReLU) activation layer and the dropout layer. In this
block, there is also the max pooling layer which gives an output two times smaller than the input.
The second block, Block B, is different from the first only in the convolution layer, which retains the
same output size as the input size of that layer. The classification block consists of two fully connected
(FC) layers, of which the first one represents the flattened output of the last max pooling layer, whereas,
in the second FC layer, the number of hidden units is equal to the number of the classes of tumor.
The whole network architecture consists of the input layer, two Blocks A, two Blocks B, classification
block, and output layer; altogether, there are 22 layers, as shown in Table 1.
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Figure 2. Schematic representation of convolutional neural network (CNN) architecture containing the
input layer, two Blocks A, two Blocks B, classification block and output. Block A and Block B differ
only in the convolution layer. Convolution layer in Block A gives an output two times smaller than the
input, whereas the convolutional layer in Block B gives the same size output as input.

Table 1. New CNN architecture. All network layers are listed with their properties.

Layer No. Layer Name Layer Properties

1 Image Input 256 × 256 × 1 images
2 Convolutional 16 5 × 5 × 1 convolutions with stride [2 2] and padding ‘same’
3 Rectified Linear Unit Rectified Linear Unit
4 Dropout 50% dropout
5 Max Pooling 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0]
6 Convolutional 32 3 × 3 × 16 convolutions with stride [2 2] and padding ‘same’
7 Rectified Linear Unit Rectified Linear Unit
8 Dropout 50% dropout
9 Max Pooling 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0]
10 Convolutional 64 3 × 3 × 32 convolutions with stride [1 1] and padding ‘same’
11 Rectified Linear Unit Rectified Linear Unit
12 Dropout 50% dropout
13 Max Pooling 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0]

14 Convolutional 128 3 × 3 × 64 convolutions with stride [1 1] and padding
‘same’

15 Rectified Linear Unit Rectified Linear Unit
16 Dropout 50% dropout
17 Max Pooling 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0]
18 Fully Connected 1024 hidden neurons in fully connected (FC) layer
19 Rectified Linear Unit Rectified Linear Unit
20 Fully Connected 3 hidden neurons in fully connected layer
21 Softmax softmax

22 Classification Output 3 output classes, “1” for meningioma, “2” for glioma, and “3”
for a pituitary tumor

2.4. Training Network

We used a k-fold cross-validation method to test the network performance [24]. Two different
approaches were implemented, and both consisted of 10-fold cross-validation. The first approach was
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to randomly divide the data into 10 approximately equal portions so that each tumor category was
equally present in each portion, referred to as record-wise cross-validation. The second approach
was to randomly divide the data into 10 approximately equal portions where the data from a single
subject could only be found in one of the sets. Each set, therefore, contained data from a couple of
subjects regardless of the tumor class, referred to as subject-wise cross-validation. The second approach
was implemented to test the generalization capability of the network in medical diagnostics [25].
The generalization capability in clinical practice represents the ability to predict the diagnosis based
on the data obtained from subjects from which there are no observations in the training process.
Therefore, observations from individuals in the training set must not appear in the test set. If this
is not the case, complex predictors can pick up a confounding relationship between identity and
diagnostic status and so produce unrealistically high prediction accuracy [26]. In order to compare the
performance of our network with other state-of-the-art methods, we also tested our network without
k-fold cross-validation (one test). In all the above-mentioned methods, two data portions were used for
the test, two for validation, and six for training. Both datasets, normal and augmented, were tested
using all the methods.

The network was trained using an Adam optimizer, with a mini-batch size equal to 16 and data
shuffling in every iteration. The early-stop condition that affects when the process of network training
will stop corresponds to one epoch. More specifically, it was tuned to finish the training process after
the one epoch, when the loss starts to increase. The regularization factor was set to 0.004, and the
initial learning rate to 0.0004. The weights of the convolutional layers were initialized using a Glorot
initializer, also known as Xavier initializer [27].

The training process was stopped when the loss on the validation set got larger than or was equal
to the previous lowest loss for 11 times. The network was trained and tested on a single graphical
processing unit (GPU), CUDA device, GeForce GTX 1050 Ti.

3. Results and Discussion

Results of the developed CNN are shown in Table 2 and visualized using the confusion matrices,
as shown in Figures 3 and 5–7. In confusion matrices, non-white rows represent network output classes,
and non-white columns correspond to real classes in Figures 3 and 5–7. The numbers/percentages of
correctly classified images are shown on the diagonal. The last row represents the sensitivity, whereas
the last column corresponds to the specificity. Overall accuracy is shown in the bottom-right field.
The upper number in the non-white boxes corresponds to the number of images, and the lower number
represents the percentage of the whole class database in the training or test set. In order to neglect the
imbalance of classes of tumors in the database, we have also shown mean average precision, recall,
and F1-score in Table 2.

Table 2. Results from testing the network with 10-fold cross-validation and one test, with two different
cross-validation methods and different datasets.

Division/Dataset Testing
Approach

Test Accuracy
[%]

Average
Precision [%]

Average Recall
[%]

Average
F1-Score [%]

record-wise/the
original dataset

10-fold 95.40 94.81 95.07 94.93
One test 97.39 95.44 96.94 96.11

record-wise/the
augmented dataset

10-fold 96.56 95.79 96.51 96.11
One test 97.28 97.15 97.82 97.47

subject-wise/the
original dataset

10-fold 84.45 81.40 82.72 81.86
One test 90.39 85.99 85.84 85.91

subject-wise/the
augmented dataset

10-fold 88.48 86.48 87.82 86.97
One test 91.84 83.94 82.18 81.78
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Figure 3 shows confusion matrices for the record-wise 10-fold cross-validation approach for testing
data obtained from the original dataset. The classification error for the testing set after cross-validation
is equal to 4.6%.
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Figure 3. Confusion matrices for the original dataset with record-wise 10-fold cross-validation for
testing data.

Examples of classified images from the original dataset with record-wise 10-fold cross-validation
are shown in Figure 4, with the tumors outlined in red. Figure 4 comprises confusion matrices, where
the rows show examples of images for the outputs, and columns emphasize what the intended target
was, illustrating correctly and wrongly classified images.
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Confusion matrices for the record-wise 10-fold cross-validation method for testing data from the
augmented dataset are shown in Figure 5. The classification error for the testing data is 3.4%.
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Confusion matrices for the subject-wise 10-fold cross-validation approach for testing data from
the augmented dataset are shown in Figure 7. The classification error for the testing data is 11.5%.

The proposed architecture of the CNN had only 4.3 million weights, and it obtained better results
with augmented data, which was expected because the data set is not especially extensive. Even
with the augmented data set, the subject-wise accuracy is lower than the accuracy obtained with the
record-wise cross-validation because, with the augmentation, we only increased the number of images
for individual patients, not the number of patients. As a consequence of splitting the data with the
subject-wise method, increasing the number of patients was more important. The first class of tumors,
meningioma, had the lowest sensitivity and specificity for all four testing methods. This is easily
explained given that meningioma is the hardest to discern from the other two types of tumors based
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on the place of origin and overall features. The execution speed was quite good with an average of less
than 15 ms per image.
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Comparison with State-of-the-Art-Methods

There are several papers that use the same database for brain tumor classification. In order to
compare our results with those of previous studies, we selected only those papers which had designed
neural networks, used whole images as input for classification, and tested their networks with a k-fold
cross-validation method, as shown in Table 3. We also compared our results with those of researchers
who had not tested the network with k-fold cross-validation, as shown in Table 4. A comparison with
the studies that used designed neural networks and an augmented dataset, but did not test it by k-fold
cross-validation, is presented in Table 5.

Table 3. Comparison of results of different network architectures, trained and tested on the original
dataset, which use whole images as input and are tested using the k-fold cross-validation method.

Reference k-Fold Cross-Validation
Method/Data Division

Accuracy
[%]

Average
Precision [%]

Average
Recall [%]

Average
F1-Score [%]

Phaye et al.
[28] 8-fold; data division not stated 95.03 X X X

Pashaei et al.
[29]

5-fold; 80% data in training set,
20% in test 93.68 X X X

Gumaei et al.
[30]

5-fold; 80% data in training set,
20% in test 92.61 X X X

Pashaei et al.
[31]

10-fold; 70% data in training set,
30% in test. 93.68 94.60 91.43 93.00

Proposed 10-fold; 60% data in training set,
20% in validation, 20% in test. 95.40 1 94.81 1 95.07 1 94.94 1

1 The best obtained result.
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Table 4. Comparison of results of different network architectures, trained, and tested on the original
dataset, which use whole images as input and are not tested using the k-fold cross-validation method.

Reference Data Division Accuracy
[%]

Average
Precision [%]

Average
Recall [%]

Average
F1-Score [%]

Afshar et al. [32] data division not stated 86.56 X X X
Vimal Kurup et al.

[33]
80% data in training set, 20%

in test 92.60 92.67 94.67 93.33

Srinivasan et al.
[34]

75% data in training set, 25%
in test 93.30 X 91.00 72.00

Proposed 60% data in training set, 20%
in validation, 20% in test 97.39 1 95.44 1 96.94 1 96.11

1 The best obtained result.

Table 5. Comparison of results of different network architectures, trained and tested on the augmented
dataset, which use whole images as input and are not tested using the k-fold cross-validation method.

Reference Data Division Accuracy
[%]

Average
Precision [%]

Average
Recall [%]

Average
F1-Score [%]

Sultan et al.
[35]

68% data in training set, 32% in
validation and test 96.13 96.06 94.43 X

Proposed 60% data in training set, 20% in
validation, 20% in test 97.28 1 97.15 1 97.82 1 97.47 1

1 The best obtained result.

In the literature, there are also studies that used the same database for classification with pre-trained
networks [23,35–40] or, as input, they use only tumor region or some features that are extracted from
the tumor region [7,21,23,41,42]. Similarly, in several papers, researchers have modified this database
prior to classification [36,43–47]. The designed networks are usually simpler than already-existing
pre-trained networks and have faster execution speed. To our knowledge, the best results using the
pre-trained network are 98.69% [40] and 98.66% accuracy [36]. Rehman et al. [40] preprocessed images
with contrast enhancement and augmented the dataset. The augmentation was fivefold, with rotations
of 90, 180, and 270 degrees and horizontal and vertical flipping. The best result was obtained with a
fine-tuned VGG16 trained using stochastic gradient descent with momentum. Although our approach
has a 1.41% higher classification error, it has 4.3 million weights as opposed to the VGG16, which is a
very deep network with 138 million weights. Very deep networks such as VGG16 and AlexNet require
dedicated hardware for real-time performance. Kutlu and Avcı [36] also modified the database, using
only those images that were taken in the axial plane, and used only 100 images of each tumor type.
For feature extraction, they used the pre-trained AlexNet, and, for testing, they performed a 5-fold
cross-validation method. It is unclear how the algorithm will perform on the whole dataset and what
its generalization capabilities are.

Developing the network which uses only the region of the tumor or some other segmented part
as input is better in terms of speed of execution, but also requires methods for segmentation or a
dedicated expert who would mark those parts.

To our knowledge, the best result in the literature using the segmented image parts as inputs are
presented by Tripathi and Bag [41], with 94.64% accuracy. For input to the classifiers, they use features
that are extracted from the segmented brain from the image. They tested their approach using a 5-fold
cross-validation method.

4. Conclusions

A new CNN architecture for brain tumor classification was presented in this study.
The classification was performed using a T1-weighted contrast-enhanced MRI image database which
contains three tumor types. As input, we used whole images, so it was not necessary to perform
any preprocessing or segmentation of the tumors. Our designed neural network is simpler than
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pre-trained networks, and it is possible to run it on conventional modern personal computers. This is
possible because the algorithm requires many less resources for both training and implementation.
The importance of developing smaller networks is also linked to the possibility of deploying the
algorithm on mobile platforms, which is significant for diagnostics in developing countries [48].
In addition, the network has a very good execution speed of 15 ms per image. In order to test the
network, we used record-wise and subject-wise 10-fold cross-validation on both the original and
augmented image database. In clinical diagnostics, the generalization capability implies predictions
for subjects from whom we have no observations. With this in mind, the observations from individuals
in the training set must not appear in the test set. If this condition is not met, complex predictors
can have unrealistically high prediction accuracy due to the confounding dependency between the
identity and the diagnosis of a patient [26]. In relation to that knowledge, we have committed
subject-wise cross-validation.

A comparison with the comparable state-of-the-art methods shows that our network obtained
better results. The best result for 10-fold cross-validation was achieved for the record-wise method
and, for the augmented dataset, and the accuracy was 96.56%. To our knowledge, in the literature,
there is no paper that shows tested generalization, through subject-wise k-fold method, for this image
database. For the subject-wise approach, we obtained an accuracy of 88.48% for the augmented dataset.
The average test execution was less than 15 ms per image. These results show that our network
has a good generalization capability and good execution speed, so it could be used as an effective
decision-support tool for radiologists in medical diagnostics.

Regarding further work, we will consider other approaches to database augmentation
(e.g., increasing number of subjects) in order to improve the generalization capability of the network.
One of the main improvements will be adjusting the architecture so that it could be used during brain
surgery, classifying and accurately locating the tumor [49]. Detecting the tumors in the operating room
should be performed in real-time and real-world conditions; thus, in that case, the improvement would
also involve adapting the network to a 3D system [50]. By keeping the network architecture simple,
detection in real time could be possible. In future, we will examine the performance of our designed
neural network, as well as improved ones, on other medical images.
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