Understanding Vasomotion of Lung Microcirculation by In Vivo Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Image Analysis
2.2.1. Segmentation of Vessels:
- Distribution vessels; two groups were considered: one with diameter ranging 250–100 μm, the other with diameter ranging 50–100 μm.
- Corner vessels, clearly visible as running along the edges of the alveoli, having a diameter ranging from 10 to 50 μm.
2.2.2. Estimate of interstitial space volume:
2.3. Building a 2D Morpohological Model of the Alveolar Capillary Circulation
2.4. Statistical Analysis
3. Results
3.1. Wet-to-Dry Ratio and Blood Gas
3.2. Imaging Data
4. Discussion
4.1. In Vivo Subpleural Microscopy
4.2. The Current State of Knowledge on Pulmonary Vascular Response to Hypoxia
4.3. Different Behaviour of Alveolar Microvessels in Edemagenic Condition
4.4. Image-Based Modeling
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. ACU Perfusion
References
- Miserocchi, G. Mechanisms controlling the volume of pleural fluid and extravascular lung water. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2009, 18, 244–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, J.C.; Townsley, M.I. Physiological determinants of the pulmonary filtration coefficient. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 295, L235–L237. [Google Scholar] [CrossRef] [Green Version]
- Miserocchi, G.; Passi, A.; Negrini, D.; del Fabbro, M.; de Luca, G. Pulmonary interstitial pressure and tissue matrix structure in acute hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 280, L881–L887. [Google Scholar] [CrossRef] [PubMed]
- Negrini, D. Pulmonary microvascular pressure profile during development of hydrostatic edema. Microcirculation 1995, 2, 173–180. [Google Scholar] [CrossRef]
- Rivolta, I.; Lucchini, V.; Rocchetti, M.; Kolar, F.; Palazzo, F.; Zaza, A.; Miserocchi, G. Interstitial pressure and lung oedema in chronic hypoxia. Eur. Respir. J. 2011, 37, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Salito, C.; Aliverti, A.; Rivolta, I.; Mazzuca, E.; Miserocchi, G. Alveolar mechanics studied by in vivo microscopy imaging through intact pleural space. Respir. Physiol. Neurobiol. 2014, 202, 44–49. [Google Scholar] [CrossRef]
- Mazzuca, E.; Aliverti, A.; Miserocchi, G. Computational micro-scale model of control of extravascular water and capillary perfusion in the air blood barrier. J. Theor. Biol. 2016, 400, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Negrini, D.; Candiani, A.; Boschetti, F.; Crisafulli, B.; Del Fabbro, M.; Bettinelli, D.; Miserocchi, G. Pulmonary microvascular and perivascular interstitial geometry during development of mild hydraulic edema. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 281, L1464–L1471. [Google Scholar] [CrossRef]
- Crisafulli, B.; Boschetti, F.; Venturoli, D.; del Fabbro, M.; Miserocchi, G. A semiautomatic procedure for edge detection of in vivo pulmonary microvessels and interstitial space. Microcirculation 1997, 4, 455–468. [Google Scholar] [CrossRef]
- Conforti, E.; Fenoglio, C.; Bernocchi, G.; Bruschi, O.; Miserocchi, G.A. Morpho-functional analysis of lung tissue in mild interstitial edema. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 282, L766–L774. [Google Scholar] [CrossRef]
- Liu, H.; Runck, H.; Schneider, M.; Tong, X.; Stahl, C.A. Morphometry of subpleural alveoli may be greatly biased by local pressure changes induced by the microscopic device. Respir. Physiol. Neurobiol. 2011, 178, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Schwenninger, D.; Moller, K.; Lui, H.; Stahl, H.R.C.; Schumann, S.; Guttmann, J. Determining Alveolar Dynamics by Automatic Tracing of Area Changes Within Microscopy Videos. In Proceedings of the 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 16–18 May 2008; pp. 2335–2338. [Google Scholar]
- Tabuchi, A.; Mertens, M.; Kuppe, H.; Pries, A.R.; Kuebler, W.M. Intravital microscopy of the murine pulmonary microcirculation. J. Appl. Physiol. 2008, 104, 338–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moudgil, R.; Michelakis, E.D.; Archer, S.L. Hypoxic pulmonary vasoconstriction. J. Appl. Physiol. 2005, 98, 390–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenmark, K.R.; McMurtry, I.F. Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension: A time for reappraisal? Circ. Res. 2005, 97, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Stuber, T.; Sartori, C.; Schwab, M.; Jayet, P.Y.; Rimoldi, S.F.; Garcin, S.; Thalmann, S.; Spielvogel, H.; Salmòn, C.S.; Villena, M.; et al. Exaggerated pulmonary hypertension during mild exercise in chronic mountain sickness. Chest 2010, 137, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Grimminger, J.; Richter, M.; Tello, K.; Sommer, N.; Gall, H.; Ghofrani, H.A. Thin Air Resulting in High Pressure: Mountain Sickness and Hypoxia-Induced Pulmonary Hypertension. Can. Respir. J. 2017, 2017, 8381653. [Google Scholar] [CrossRef] [PubMed]
- Hanaoka, M.; Tanaka, M.; Ge, R.L.; Droma, Y.; Ito, A.; Miyahara, T.; Koizumi, T.; Fujimoto, K.; Fujii, T.; Kobayashi, T.; et al. Hypoxia-induced pulmonary blood redistribution in subjects with a history of high-altitude pulmonary edema. Circulation 2000, 101, 1418–1422. [Google Scholar] [CrossRef] [PubMed]
- Miserocchi, G. Mechanistic Considerations on the Development of Lung Edema: Vascular, Perivascular and Molecular Aspects from Early Stage to Tissue and Vascular Remodeling Stage. Curr. Respir. Med. Rev. 2012, 8, 82–89. [Google Scholar] [CrossRef]
- Kurbel, S.; Kurbel, B.; Belovari, T.; Marić, S.; Steiner, R.; Bozíć, D. Model of interstitial pressure as a result of cyclical changes in the capillary wall fluid transport. Med. Hypotheses 2001, 57, 161–166. [Google Scholar] [CrossRef]
- Wagner, W.W.; Latham, L.P.; Capen, R.L. Capillary recruitment during airway hypoxia: Role of pulmonary artery pressure. J. Appl. Physiol. 1979, 47, 383–387. [Google Scholar] [CrossRef]
- Taylor, B.J.; Kjaergaard, J.; Snyder, E.M.; Olson, T.P.; Johnson, B.D. Pulmonary capillary recruitment in response to hypoxia in healthy humans: A possible role for hypoxic pulmonary venoconstriction? Respir. Physiol. Neurobiol. 2011, 177, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzuca, E.; Salito, C.; Rivolta, I.; Aliverti, A.; Miserocchi, G. From morphological heterogeneity at alveolar level to the overall mechanical lung behavior: An in vivo microscopic imaging study. Physiol. Rep. 2014, 2, e00221. [Google Scholar] [CrossRef] [PubMed]
- Beretta, E.; Lanfranconi, F.; Simone, G.G.; Manuela, B. Air blood barrier phenotype correlates with alveolo-capillary O2 equilibration in hypobaric hypoxia. Respir. Physiol. Neurobiol. 2017, 246, 53–58. [Google Scholar] [CrossRef] [PubMed]
Parameter | Baseline | 30 min | 120 min |
---|---|---|---|
Part | 16 | 16 | 16 |
Pven | 6 | 8 | 8 |
Pi | −10 | −6 | 3 |
Parameter | ACU Network | Baseline | 30 min | 120 min |
---|---|---|---|---|
Mean Corner Length (um) | 1 | 273 ± 76 | ||
2 | 195 ± 58 | |||
ACU Flow (10−12 m3/s) | 1 | 1.92 | 1.26 (−34%) | 1.78 (−7%) |
2 | 1.77 | 1.30 (−27%) | 1.46 (−18%) | |
Septal-to-Corner Flow Ratio | 1 | 3.86 | 3.56 (−8%) | 0.95 (−75%) |
2 | 0.98 | 1.84 (+88%) | 0.86 (−12%) | |
Filtration surface (10−7 m2) | 1 | 7.41 | 7.21 (−3%) | 6.08 (−18%) |
2 | 3.66 | 3.88 (+6%) | 3.29 (−10%) | |
Filtration flow/Filtration Surface (10−10 m/s) | 1 | 3.54 | 3.21 (−9%) | 5.11 (+44%) |
2 | 2.50 | 2.730 (+9%) | 3.26 (+30%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzuca, E.; Aliverti, A.; Miserocchi, G. Understanding Vasomotion of Lung Microcirculation by In Vivo Imaging. J. Imaging 2019, 5, 22. https://doi.org/10.3390/jimaging5020022
Mazzuca E, Aliverti A, Miserocchi G. Understanding Vasomotion of Lung Microcirculation by In Vivo Imaging. Journal of Imaging. 2019; 5(2):22. https://doi.org/10.3390/jimaging5020022
Chicago/Turabian StyleMazzuca, Enrico, Andrea Aliverti, and Giuseppe Miserocchi. 2019. "Understanding Vasomotion of Lung Microcirculation by In Vivo Imaging" Journal of Imaging 5, no. 2: 22. https://doi.org/10.3390/jimaging5020022
APA StyleMazzuca, E., Aliverti, A., & Miserocchi, G. (2019). Understanding Vasomotion of Lung Microcirculation by In Vivo Imaging. Journal of Imaging, 5(2), 22. https://doi.org/10.3390/jimaging5020022