Hyperspectral Imaging as Powerful Technique for Investigating the Stability of Painting Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Ageing
2.2. Hyperspectral Imaging (HSI)
2.3. Spectral Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Polak, A.; Kelman, T.; Murray, P.; Marshall, S.; Stothard, D.J.M.; Eastaugh, N.; Eastaugh, F. Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication. J. Cult. Herit. 2017, 26, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zucco, M.; Pisani, M.; Cavaleri, T. Fourier transform hyperspectral imaging for cultural heritage. In Fourier Transforms–High-Tech Application and Current Trends; INTECH: London, UK, 2017; pp. 215–234. [Google Scholar]
- Bonifazi, G.; Serranti, S.; Capobianco, G.; Agresti, G.; Calienno, L.; Picchio, R.; Lo Monaco, A.; Santamaria, U.; Pelosi, C. Hyperspectral imaging as a technique for investigating the effect of consolidating materials on wood. J. Electron. Imaging 2016, 26, 011003. [Google Scholar] [CrossRef]
- Capobianco, G.; Bonifazi, G.; Prestileo, F.; Serranti, S. Pigment identification in pictorial layers by Hyper-spectral Imaging. Proc. SPIE 2014, 9106, 91060B. [Google Scholar] [CrossRef]
- Capobianco, G.; Bracciale, M.P.; Sali, D.; Sbardella, F.; Belloni, P.; Bonifazi, G.; Serranti, S.; Santarelli, M.L.; Cestelli Guidi, M. Chemometrics approach to FT-IR hyperspectral imaging analysis of degradation products in artwork cross-section. Microchem. J. 2017, 132, 69–76. [Google Scholar] [CrossRef]
- Fischer, C.; Kakoulli, I. Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications. Stud. Conserv. 2006, 51, 3–16. [Google Scholar] [CrossRef]
- Catelli, E.; Randeberg, L.L.; Alsberg, B.K.; Gebremariam, K.F.; Bracci, S. An explorative chemometric approach applied to hyperspectral images for the study of illuminated manuscripts. Spectrochim. Acta A 2017, 177, 69–78. [Google Scholar] [CrossRef]
- Agresti, G.; Bonifazi, G.; Calienno, L.; Capobianco, G.; Lo Monaco, A.; Pelosi, C.; Picchio, R.; Serranti, S. Surface investigation of photo-degraded wood by colour monitoring, infrared spectroscopy and hyperspectral imaging. J. Spectrosc. 2013, 1, 380536. [Google Scholar] [CrossRef]
- Bonifazi, G.; Calienno, L.; Capobianco, G.; Lo Monaco, A.; Pelosi, C.; Picchio, R.; Serranti, S. Modelling color and chemical changes on normal and red heart beech wood by reflectance spectrophotometry, Fourier Transform infrared spectroscopy and hyperspectral imaging. Polym. Degrad. Stab. 2015, 113, 10–21. [Google Scholar] [CrossRef]
- Westad, F.; Marini, F. Validation of chemometric models—A tutorial. Anal. Chim. Acta 2015, 893, 14–24. [Google Scholar] [CrossRef]
- De la Ossa, M.Á.; García-Ruiz, C.; Amigo, J.M. Near infrared spectral imaging for the analysis of dynamite residues on human handprints. Talanta 2014, 130, 315–321. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S. Asbestos containing materials detection and classification by the use of hyperspectral imaging. J. Hazard. Mater. 2017, 344, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Geladi, P. Hyperspectral NIR image regression part II: Dataset preprocessing diagnostics. J. Chemometr. 2006, 20, 106–119. [Google Scholar] [CrossRef]
- Van Ruth, S.M.; Villegas, B.; Akkermans, W.; Rozijn, M.; van der Kamp, H.; Koot, A. Prediction of the identity of fats and oils by their fatty acid, triacylglycerol and volatile compositions using PLS-DA. Food Chem. 2010, 118, 948–955. [Google Scholar] [CrossRef]
- Basri, K.N.; Hussain, M.N.; Bakar, J.; Sharif, Z.; Khir, M.F.A.; Zoolfakar, A.S. Classification and quantification of palm oil adulteration via portable NIR spectroscopy. Spectrochim. Acta A 2017, 173, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J. Two aboriginal rock art pigments from western Australia: Their properties, use, and durability. Stud. Conserv. 1976, 21, 134–142. [Google Scholar] [CrossRef]
- Levison, H.W. Artists’ Pigments: Lightfastness Tests and Ratings: The Permanency of Artists’ Colors and an Evaluation of Modern Pigments; Colorlab: Hallandale, FL, USA, 1976; p. 107. [Google Scholar]
- Rossi, S. Studio Della Stabilità di Acquerelli Commerciali e Pigmenti Naturali per la Reintegrazione dei Beni Culturali. Bachelor’s Thesis, University of Tuscia, Viterbo, Italy, 2016. [Google Scholar]
- Lo Monaco, A.; Marabelli, M.; Pelosi, C.; Picchio, R. Colour measurements of surfaces to evaluate the restoration materials. Proc. SPIE 2011, 8084, 1–14. [Google Scholar]
- Di Marcello, S.; Notarstefano, C. La verifica della durabilità dei colori ad acquerello impiegati nella reitegrazione pittorica dei dipinti murali. In A Scuola di Restauro; Bonelli, M., D’Agostino, L., Mercalli, M., Eds.; Gangemi Editore: Roma, Italy, 2011; pp. 71–81. ISBN 978-88-492-2111-4. [Google Scholar]
- Stoner, J.H.; Rischfield, R. Conservation of Easel Paintings (Routledge Series in Conservation and Museology), 1st ed.; Taylor & Francis: London, UK, 2012; ISBN 9780750681995. [Google Scholar]
- Rebecca, E.; Smithen, P.; Turnbull, R. (Eds.) Mixing and Matching. Approaches to Retouching Paintings; Archetype Publications in Association with the Icon Paintings Group and the British Association of Paintings Conservators-Restorers (BAPCR): London, UK, 2010; ISBN 9781904982500. [Google Scholar]
- Größl, M.; Harrison, S.; Kaml, I.; Kenndler, E. Characterisation of natural polysaccharides (plant gums) used as binding media for artistic and historic works by capillary zone electrophoresis. J. Chromatogr. A 2005, 1077, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Ormsby, B.A.; Townsend, J.H.; Singer, B.W.; Dean, J.R. British watercolour cakes from the eighteenth to the early twentieth century. Stud. Conserv. 2005, 50, 45–66. [Google Scholar] [CrossRef]
- Caruso, S. Caratterizzazione e Invecchiamento di Leganti Pittorici a Base di Gomme Vegetali. Ph.D. Thesis, University of Torino, Torino, Italy, 2006. [Google Scholar]
- Bonaduce, I.; Brecoulaki, H.; Colombini, M.P.; Lluveras, A.; Restivo, V.; Ribechini, E. Gas chromatographic-mass spectrometric characterisation of plant gums in samples from painted works of art. J. Chromatogr. A 2007, 1175, 275–282. [Google Scholar] [CrossRef]
- Kokla, V.; Psarrou, A.; Konstantinou, V. Watercolour identification based on machine vision analysis. e-Preserv. Sci. 2010, 7, 22–28. [Google Scholar]
- Riedo, C.; Scalarone, D.; Chiantore, O. Advances in identification of plant gums in cultural heritage by thermally assisted hydrolysis and methylation. Anal. Bioanal. Chem. 2010, 396, 1159–1569. [Google Scholar] [CrossRef]
- Russell, W.; de Abney, W. Report on the Action of Light on Watercolours to the Science and Art Department of the Committee of Council on Education; HMSO: London, UK, 1888.
- Brommelle, N.S. The Russell and Abney report on the action of light on watercolours. Stud. Conserv. 1964, 9. [Google Scholar] [CrossRef]
- Whitmore, P.M.; Bailie, C. Studies on the photochemical stability of synthetic resin-based retouching paints: The effect of white pigments and extenders. Stud. Conserv. 1990, 35, 144–149. [Google Scholar] [CrossRef]
- Digney-Peer, S.; Thomas, K.; Perry, R.; Townsend, J.; Gritt, S. The imitative retouching of easel paintings. In Conservation of Easel Paintings (Routledge Series in Conservation and Museology), 1st ed.; Routledge: Abingdon-on-Thames, UK, 2012; pp. 607–634. ISBN 9780750681995. [Google Scholar]
- Lerwill, A.; Townsend, J.H.; Thomas, J.; Hackney, S.; Caspers, C.; Liang, H. Photochemical colour change for traditional watercolour pigments in low oxygen levels. Stud. Conserv. 2015, 60, 15–32. [Google Scholar] [CrossRef]
- Lewill, A. Micro-Fading Spectrometry: An Investigation into the Display of Traditional Watercolour Pigments in Anoxia. Ph.D. Thesis, Nottingham Trent University, Nottingham, UK, 2011. [Google Scholar]
- Callede, B. Stabilité des Couleurs Utilisées en Restauration, Pigments Bleus; Comité pour la Conservation de l’ICOM 4éme Reunion Triennale, ICOM: Venise, Italy, 1975. [Google Scholar]
- De La Rie, E.R.; Lomax, S.Q.; Palmer, M.; Deming Glinsman, L.; Maines, C.A. An investigation of the photochemical stability of urea-aldehyde resin retouching paints: Removability tests and colour spectroscopy. Stud. Conserv. 2000, 45, 51–59. [Google Scholar] [CrossRef]
- Korenberg, C. The photo-ageing behaviour of selected watercolour paints under anoxic conditions. Br. Mus. Tech. Res. Bull. 2008, 2, 49–57. [Google Scholar]
- Dellaportas, P.; Papageorgiou, E.; Panagiaris, G. Museum factors affecting the ageing process of organic materials: Review on experimental designs and the INVENVORG project as a pilot study. Herit. Sci. 2014, 2, 1–11. [Google Scholar] [CrossRef]
- Bailão San Andrés, A.; Calvo, A. Colorimetric analysis of two watercolours used in retouching. Int. J. Conserv. Sci. 2014, 5, 329–342. [Google Scholar]
- Ropret, P.; Zoubek, R.; Sever Škapin, A.; Bukovec, P. Effects of ageing on different binders for retouching and on some binder–pigment combinations used for restoration of wall paintings. Mater. Charact. 2007, 58, 1148–1159. [Google Scholar] [CrossRef]
- Pelosi, C.; Marabelli, M.; Patrizi, F.; Ortenzi, F.; Giurlanda, F.; Falcucci, C. Valutazione della Stabilità degli Acquerelli nel Restauro Attraverso Misure di Colore; Atti della V Conferenza Nazionale del Gruppo Colore, StarryLink Editrice: Brescia, Italy, 2009; pp. 141–149. [Google Scholar]
- Kubik, M. Hyperspectral imaging: A new technique for the non-invasive study of artworks. Phys. Tech. Study Art Archaeol. Cult. Herit. 2007, 2, 199–259. [Google Scholar] [CrossRef]
- Aceto, M.; Agostino, A.; Fenoglio, G.; Idone, A.; Gulmini, M.; Picollo, M.; Ricciardi, P.; Delaney, J.K. Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Anal. Methods 2014, 6, 1488–1500. [Google Scholar] [CrossRef]
- Delaney, J.K.; Zeibel, J.G.; Thoury, M.; Littleton, R.; Palmer, M.; Morales, K.M.; De la Rie, E.R.; Hoenigswald, A. Visible and infrared imaging spectroscopy of Picasso’s Harlequin musician: Mapping and identification of artist materials in situ. Appl. Spectrosc. 2010, 64, 584–594. [Google Scholar] [CrossRef]
- Rosi, F.; Grazia, C.; Gabrieli, F.; Romani, A.; Paolantoni, M.; Vivani, R.; Brunetti, B.G.; Colomban, P.; Miliani, C. UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd1-xZnxS solid solutions in cadmium yellow pigments. Microchem. J. 2016, 124, 856–867. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Brunetti, B.G.; Sgamellotti, A. In situ noninvasive study of artworks: The MOLAB multitechnique approach. Acc. Chem. Res. 2010, 43, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Balas, C.; Papadakis, V.; Papadakis, N.; Papadakis, A.; Vazgiouraki, E.; Themelis, G. A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value. J. Cult. Herit. 2003, 4, 330–337. [Google Scholar] [CrossRef]
- Rusu, R.D.; Simionescu, B.; Oancea, A.V.; Geba, M.; Stratulat, L.; Salajan, D.; Ursu, L.E.; Popescu, M.C.; Dobromir, M.; Murariu, M.; et al. Analysis and structural characterization of pigments and materials used in Nicolae Grigorescu heritage paintings. Spectrochim. Acta A 2016, 168, 218–229. [Google Scholar] [CrossRef]
- Arrizabalaga, I.; Gómez-Laserna, O.; Aramendia, J.; Arana, G.; Madariaga, J.M. Applicability of a diffuse reflectance infrared Fourier transform handheld spectrometer to perform in situ analyses on cultural heritage materials. Spectrochim. Acta A 2014, 129, 259–267. [Google Scholar] [CrossRef]
- Arrizabalaga, I.; Gómez-Laserna, O.; Aramendia, J.; Arana, G.; Madariaga, J.M. Determination of the pigments present in a wallpaper of the middle nineteenth century: The combination of mid-diffuse reflectance and far infrared spectroscopies. Spectrochim. Acta A 2014, 124, 308–314. [Google Scholar] [CrossRef]
- Von Aderkas, E.L.; Barsan, M.M.; Gilson, D.F.; Butler, I.S. Application of photoacoustic infrared spectroscopy in the forensic analysis of artists’ inorganic pigments. Spectrochim. Acta A 2010, 77, 954–959. [Google Scholar] [CrossRef]
- Maynez-Rojas, M.A.; Casanova-González, E.; Ruvalcaba-Sil, J.L. Identification of natural red and purple dyes on textiles by fiber-optics reflectance spectroscopy. Spectrochim. Acta A 2017, 178, 239–250. [Google Scholar] [CrossRef]
- Trzcińska, B.; Kowalski, R.; Zięba-Palus, J. Comparison of pigment content of paint samples using spectrometric methods. Spectrochim. Acta A 2014, 130, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Rampazzi, L.; Brunello, V.; Corti, C.; Lissoni, E. Non-invasive techniques for revealing the palette of the Romantic painter Francesco Hayez. Spectrochim. Acta A 2017, 176, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Carlesi, S.; Bartolozzi, G.; Cucci, C.; Marchiafava, V.; Picollo, M.; La Nasa, J.; Di Girolamo, F.; Dilillo, M.; Modugno, F.; Degano, I.; et al. Discovering “The Italian Flag” by Fernando Melani (1907–1985). Spectrochim. Acta A 2016, 168, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.K.; Thoury, M.; Zeibel, J.G.; Ricciardi, P.; Morales, K.M.; Dooley, K.A. Visible and infrared imaging spectroscopy of paintings and improved reflectography. Herit. Sci. 2016, 4, 1–10. [Google Scholar] [CrossRef]
- Clark, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. In Manual of Remote Sensing, Remote Sensing for the Earth Sciences; Wiley: New York, NY, USA, 1999; Volume 3, pp. 3–58. ISBN 9781601196620. [Google Scholar]
- Ricciardi, P.; Delaney, J.K.; Facini, M.; Zeibel, J.G.; Picollo, M.; Lomax, S.; Loew, M. Near infrared reflectance imaging spectroscopy to map paint binders in situ on illuminated manuscripts. Angew. Chem. Int. Edit. 2012, 51, 5607–5610. [Google Scholar] [CrossRef]
- Dooley, K.A.; Lomax, S.; Zeibel, J.G.; Miliani, C.; Ricciardi, P.; Hoenigswald, A.; Loew, M.; Delaney, J.K. Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst 2013, 138, 4838–4848. [Google Scholar] [CrossRef]
- Pelosi, C.; Capobianco, G.; Agresti, G.; Bonifazi, G.; Morresi, F.; Rossi, S.; Santamaria, U.; Serranti, S. A methodological approach to study the stability of selected watercolours for painting reintegration, through reflectance spectrophotometry, Fourier transform infrared spectroscopy and hyperspectral imaging. Spectroch. Acta A 2018, 198, 92–106. [Google Scholar] [CrossRef]
- Helwig, K. Iron oxide pigments. In Artistis’ Pigments. A Handbook of Their History and Characteristics, 1st ed.; Barrie, B.H., Ed.; National Gallery of Art: Washington, DC, USA; Archetype Publications: London, UK, 2007; Volume 4, pp. 39–109. ISBN 9781904982234. [Google Scholar]
- Paint and Varnishes: Methods of Exposures to Laboratory Light Sources-Part 1: General Guidance; ISO 16474-1; ISO: Geneva, Switzerland, 2013.
- Paint and Varnishes—Methods of Exposure to Laboratory Light Sources-Part 1: Xenon-Arc Lamp; ISO16474-2; ISO: Geneva, Switzerland, 2013.
- Grahn, H.; Geladi, P. (Eds.) Techniques and Applications of Hyperspectral Image Analysis; John Wiley & Sons: West Sussex, UK, 2007; pp. 1–15. ISBN 9780470010860. [Google Scholar]
- Otto, M. Chemometrics, Statistics and Computer Application in Analytical Chemistry; Wiley-VCH: New York, NY, USA, 1999. [Google Scholar]
- Vidal, M.; Amigo, J.M. Pre-processing of hyperspectral images. Essential steps before image analysis. Chemometr. Intell. Lab. 2012, 117, 138–148. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC-Trend Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Amigo, J.M.; Babamoradi, H.; Elcoroaristizabal, S. Hyperspectral image analysis. A tutorial. Anal. Chim. Acta 2015, 896, 34–51. [Google Scholar] [CrossRef]
- Rinnan, Å; Nørgaard, L.; van den Berg, F.; Thygesen, J.; Bro, R.; Engelsen, S.B. Data pre-processing. In Infrared Spectroscopy for Food Quality Analysis and Control; Academic Press: New York, NY, USA, 2009; Chapter 2; pp. 29–50. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Parvin, H.; Alizadeh, H.; Minaei-Bidgoli, B. MKNN: Modified k-nearest neighbour. In Proceedings of the World Congress on Engineering and Computer Science 2008 (WCECS 2008); Newswood Limited: San Francisco, CA, USA, 2008; pp. 831–834. [Google Scholar]
- Chitari, A.; Bag, V.V. Detection of brain tumor using classification algorithm. Int. J. Invent. Comput. Sci. Eng. 2014, 1, 2348–3539. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Siuly, S.; Kabir, E.; Wang, H.; Zhang, Y.; Siuly, S.; Kabir, E.; Wang, H.; Zhang, Y. Exploring sampling in the detection of multicategory EEG signals. Comput. Math. Methods Med. 2015, 2015, 576437. [Google Scholar] [CrossRef] [PubMed]
- Imandoust, S.B.; Bolandraftar, M. Application of K-Nearest Neighbor (KNN) approach for predicting economic events: Theoretical background. Int. J. Eng. Res. Appl. 2013, 3, 605–610. [Google Scholar]
- Du, M.; Chen, X. Accelerated k-nearest neighbours algorithm based on principal component analysis for text categorization. J. Zhejiang Univ. Sci. C 2013, 14, 407–416. [Google Scholar] [CrossRef]
- Velasco, F.; Alvaro, A.; Suarez, S.; Herrero, J.-M.; Yusta, I. Mapping Fe-bearing hydrated sulphate minerals with short wave infrared (SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain). J. Geochem. Explor. 2005, 87, 45–72. [Google Scholar] [CrossRef]
- Fremout, W.; Kuckova, S.; Crhova, M.; Sanyova, J.; Saverwyns, S.; Hynek, R.; Kodicek, M.; Vandenabeele, P.; Moens, L. Classification of protein binders in artist’s paints by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry: And evaluation of principal component analysis (PCA) and soft independent modelling of class analogy (SIMCA). Rapid Commun. Mass Spectrom. 2011, 25, 1631–1640. [Google Scholar] [CrossRef]
- Duchêne, S.; Detalle, V.; Bruder, R.; Sirven, J.B. Chemometrics and Laser Induced Breakdown Spectroscopy (LIBS) analyses for identification of wall paintings pigments. Curr. Anal. Chem. 2010, 6, 60–65. [Google Scholar] [CrossRef]
- Checa-Moreno, R.; Manzano, E.; Mirón, G.; Capitan-Vallvey, L.F. Comparison between traditional strategies and classification technique (SIMCA) in the identification of old proteinaceous binders. Talanta 2008, 75, 697–704. [Google Scholar] [CrossRef]
- Hoehse, H.; Paul, A.; Gornushkin, I.; Panne, U. Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS. Anal. Bioanal. Chem. 2012, 402, 1443–1450. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 12653–12680. [Google Scholar] [CrossRef]
- Kirby, J.; Saunders, D. Fading and colour change of Prussian blue: Methods of manufacture and the influence of extenders. Natl. Gallery Tech. Bull. 2004, 25, 73–99. [Google Scholar]
Abbreviation | Visible Colour | Description |
---|---|---|
GB1 | Black | Ivory black in pan |
TB1 | Black | Ivory black in tube |
GBr1 | Dark brown | Burnt umber in pan |
TBr1 | Dark brown | Burnt umber in tube |
GBr2 | Light brown | Natural umber in pan |
TBr2 | Light brown | Natural umber in tube |
GBr3 | Reddish brown | Burnt Sienna in pan |
GBr4 | Yellow-orange | Natural Sienna in pan |
TBr3 | Reddish brown | Burnt Sienna in tube |
TBr4 | Yellow-orange | Natural Sienna in tube |
GR1 | Dark red | Indian red in pan |
TR1 | Dark red | Indian red in tube |
GR2 | Light red | Venetian red in pan |
TR2 | Light red | Venetian red in tube |
GR3 | Light red | Cadmium red in pan |
TR3 | Light red | Cadmium red in tube |
GY1 | Light Yellow | Yellow ochre in pan |
TY1 | Light yellow | Yellow ochre in tube |
GG1 | Green | Bladder green in pan |
TG1 | Green | Chrome green in tube |
GG2 | Green | Viridian in pan |
TG2 | Green | Viridian in tube |
GC1 | Blue | Cobalt blue in pan |
TC1 | Blue | Cobalt blue in tube |
GU1 | Blue | Ultramarine blue in pan |
TU1 | Blue | Ultramarine blue in pan |
Abbreviation | Visible Colour | Description |
---|---|---|
Br1 | Dark brown | Burnt umber in powder + GA |
Br2 | Dark brown | Burnt umber in powder + GA |
Br3 | Dark brown | Natural umber in powder + GA |
Br4 | Dark brown | Burnt umber in powder + GA |
Br5 | Dark brown | Burnt umber in powder + GA |
Br6 | Dark brown | Natural umber in powder + GA |
Br7 | Dark brown | Natural umber in powder + GA |
Br8 | Dark brown | Natural umber in powder + GA |
Br9 | Dark brown | Burnt umber in powder + GA |
Br10 | Dark brown | Natural umber in powder + GA |
Br11 | Dark brown | Natural umber in powder + GA |
R1 | Light red | Red ochre in powder + GA |
R2 | Dark red | Red ochre in powder + GA |
R3 | Dark red | Red ochre in powder + GA |
R4 | Dark red | Red ochre powder + GA |
R5 | Dark red | Red ochre powder + GA |
R6 | Light red | Red ochre in powder + GA |
R7 | Light red | Red ochre in powder + GA |
Y1 | Dark yellow | Yellow ochre in powder + GA |
Y2 | Light yellow | Yellow ochre in powder + GA |
Y3 | Light yellow | Yellow ochre in powder + GA |
Y4 | Dark yellow | Yellow ochre in powder + GA |
Y5 | Dark yellow | Yellow ochre in powder + GA |
Y6 | Light yellow | Yellow ochre in powder + GA |
Y7 | Dark yellow | Yellow ochre in powder + GA |
Y8 | Light yellow | Yellow ochre in powder + GA |
Y9 | Dark yellow | Yellow ochre in powder + GA |
Y10 | Dark yellow | Yellow ochre in powder + GA |
Y11 | Dark yellow | Yellow ochre in powder + GA |
Y12 | Dark yellow | Yellow ochre in powder + GA |
CB1 | Blue | Cobalt blue in powder + GA |
UB1 | Blue | Ultramarine blue in powder + GA |
Commercial Watercolours | Pigment Powders+Gum Arabic | ||
---|---|---|---|
Abbreviation | Stability | Abbreviation | Stability |
GB1 | High | Br1 | High |
TB1 | Medium-high | Br2 | Medium-high |
GBr1 | High | Br3 | Medium-low |
TBr1 | High | Br4 | High |
GBr2 | Medium | Br5 | High |
TBr2 | Medium-high | Br6 | High |
GBr3 | Low | Br7 | Medium-high |
GBr4 | Low | Br8 | Medium-high |
TBr3 | Low | Br9 | Medium-high |
TBr4 | Medium | Br10 | High |
GR1 | High | Br11 | High |
TR1 | High | R1 | High |
GR2 | High | R2 | High |
TR2 | Medium-low | R3 | High |
GR3 | High | R4 | Medium-high |
TR3 | Medium-low | R5 | High |
GY1 | High | R6 | Medium-high |
TY1 | Medium | R7 | Medium-high |
GG1 | High | Y1 | Medium-high |
TG1 | High | Y2 | Medium-high |
GG2 | High | Y3 | Medium-high |
TG2 | High | Y4 | High |
GC1 | High | Y5 | High |
TC1 | High | Y6 | Medium-high |
GU1 | Medium-high | Y7 | High |
TU1 | Medium | Y8 | High |
Y9 | Low | ||
Y10 | High | ||
Y11 | Medium | ||
Y12 | Low | ||
CB1 | High | ||
UB1 | High |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonifazi, G.; Capobianco, G.; Pelosi, C.; Serranti, S. Hyperspectral Imaging as Powerful Technique for Investigating the Stability of Painting Samples. J. Imaging 2019, 5, 8. https://doi.org/10.3390/jimaging5010008
Bonifazi G, Capobianco G, Pelosi C, Serranti S. Hyperspectral Imaging as Powerful Technique for Investigating the Stability of Painting Samples. Journal of Imaging. 2019; 5(1):8. https://doi.org/10.3390/jimaging5010008
Chicago/Turabian StyleBonifazi, Giuseppe, Giuseppe Capobianco, Claudia Pelosi, and Silvia Serranti. 2019. "Hyperspectral Imaging as Powerful Technique for Investigating the Stability of Painting Samples" Journal of Imaging 5, no. 1: 8. https://doi.org/10.3390/jimaging5010008
APA StyleBonifazi, G., Capobianco, G., Pelosi, C., & Serranti, S. (2019). Hyperspectral Imaging as Powerful Technique for Investigating the Stability of Painting Samples. Journal of Imaging, 5(1), 8. https://doi.org/10.3390/jimaging5010008