Prediction of the Leaf Primordia of Potato Tubers Using Sensor Fusion and Wavelength Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials, Sampling, and Measurement of Primordial Leaf Count
2.2. Electronic Measurements
2.2.1. VIS/NIR Interactance System
2.2.2. VIS/NIR Hyperspectral Imaging System
2.3. Data Analysis and Fusion
2.3.1. Calculation of the Mean Reflectance Spectra and Wavelength Selection
2.3.2. Data Fusion
2.3.3. Partial Least Squares Regression and the Preprocessing of Fused Data
3. Results
3.1. Constituent Distribution and Wavelength Selection Results
3.2. Partial Least Squares Regression Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pihlanto, A.; Mäkinen, S.; Mattila, P. Potential health-promoting properties of potato-derived proteins, peptides and phenolic compounds. In Agriculture Issue and Policies: Production, Consumption and Health Benefits; Claudio, C., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012; pp. 173–194. [Google Scholar]
- United States Department of Agriculture (USDA); Economic Research Services (RRS). Potatoes: U.S. per capita availability 1970–2017. In Vegetables and Pulses Yearbook; USDA: Washington, DC, USA, 2018. [Google Scholar]
- Copp, L.J.; Blenkinsop, R.W.; Yada, R.Y.; Marangoni, A.G. The relationship between respiration and chip color during long-term storage of potato tubers. Am. J. Potato Res. 2000, 77, 279–287. [Google Scholar] [CrossRef]
- Stark, J.C.; Love, S.L. Tuber Quality, in Potato Production Systems; Stark, J.C., Love, S.L., Eds.; University of Idaho: Moscow, ID, USA, 2003; pp. 329–344. [Google Scholar]
- Wohleb, C.H.; Knowles, N.R.; Pavek, M.J. Plant Growth and Development. In The Potato, Botany, Production and Uses; Navarre, R., Pavek, M., Eds.; CABI: Boston, MA, USA, 2014; pp. 64–82. [Google Scholar]
- Cutter, E.G. Structure and development of the potato plant. In The Potato Crop The Scientific Basis for Improvement, 2nd ed.; Capman & Hall: London, UK, 1992; pp. 65–161. [Google Scholar]
- Suttle, J.C. Dormancy and sprouting. In Potato Biology and Biotechnology Advances and Perspectives; Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Governs, F., Mackerron, D.K.L., Taylor, M.A., Ross, H.A., Eds.; Elsevier: Oxford, UK, 2007; pp. 287–310. [Google Scholar]
- Pringle, B.; Bishop, C.; Clayton, R. Potatoes Postharvest; CABI International: Oxfordshire, UK, 2009. [Google Scholar]
- Spychalla, J.P.; Desborough, S.L. Fatty acids, membrane permeability, and sugars of stored potato tubers. Plant Physiol. 1990, 94, 1207–1213. [Google Scholar] [CrossRef]
- Kirk, W.W.; Davis, H.V.; Marshall, B. The effect of temperature on the initiation of leaf primordia in developing potato sprouts. J. Exp. Bot. 1985, 36, 1634–1643. [Google Scholar] [CrossRef]
- Afek, U.; Orenstein, J.; Nuriel, E. Using HPP (hydrogen peroxide plus) to inhibit potato sprouting during storage. Am. J. Potato Res. 2000, 77, 63–65. [Google Scholar] [CrossRef]
- Jedhav, S.J.; Mazza, G.; Desai, U.T. Postharvest handling and storage. In Potato: Production, Processing, and Products; Salunkhe, D.K., Kadam, S.S., Jadhav, S.J., Eds.; CRC Press: Boca Raton, FL, USA, 1991; p. 69. [Google Scholar]
- Pinhero, R.G.; Coffin, R.; Yada, Y.R. Post-harvest storage of potatoes. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 339–370. [Google Scholar]
- Daniels-Lake, B.; Olsen, N.; Delgado, H.L.; Zink, R. Potato Sprout Control Products to Minimize Sprout Production, NAPPO Science and Technology Documents; North American Plant Protection Organization: Ottawa, ON, Canada, 2013. [Google Scholar]
- McClure, W.F. Near-Infrared Spectroscopy in Food Science and Technology; Ozaki, Y., McClure, W.F., Christy, A.A., Eds.; John Willey & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 1–10. [Google Scholar]
- Fassio, A.; Fernández, E.G.; Restaino, E.A.; La Manna, A.; Cozzolino, D. Predicting the nutritive value of high moisture grain corn by near infrared reflectance spectroscopy. Comput. Electron. Agric. 2009, 67, 59–63. [Google Scholar] [CrossRef]
- Pearson, T. Hardware-based image processing for high-speed inspection of grains. Comput. Electron. Agric. 2009, 69, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Suphamitmongkol, W.; Nie, G.; Liu, R.; Kasemsumran, S.; Shi, Y. An alternative approach for the classification of orange varieties based on near infrared spectroscopy. Comput. Electron. Agric. 2013, 91, 87–93. [Google Scholar] [CrossRef]
- Kumar, S.; McGlone, A.; Whitworth, C.; Volz, R. Postharvest performance of apple phenotypes predicted by near-infrared (NIR) spectral analysis. Postharvest Biol. Technol. 2015, 100, 16–22. [Google Scholar] [CrossRef]
- Sánchez, M.; Garrido-Varo, A.; Pérez-Marín, D. NIRS technology for fast authentication of green asparagus grown under organic and conventional production systems. Postharvest Biol. Technol. 2013, 85, 116–123. [Google Scholar] [CrossRef]
- Chen, J.Y.; Zhang, H.; Miao, Y.; Matsunaga, R. NIR measurement of specific gravity of potato. Food Sci. Technol. Res. 2005, 11, 26–31. [Google Scholar] [CrossRef]
- Scanlon, M.G.; Pritchard, M.K.; Adam, L.R. Quality evaluations of processing potatoes by near infrared reflectance. J. Sci. Food Agric. 1999, 79, 763–771. [Google Scholar] [CrossRef]
- Subedi, P.P.; Walsh, K.B. Assessment of potato dry matter concentration using short-wave near-infrared spectroscopy. Potato Res. 2009, 52, 67–77. [Google Scholar] [CrossRef]
- Haase, N.U. Prediction of potato processing quality by near infrared reflectance spectroscopy of ground raw tubers. J. Near Infrared Spectrosc. 2011, 19, 37. [Google Scholar] [CrossRef]
- Rady, A.M.; Guyer, D.E.; Kirk, W.; Donis-Gonzalez, I.R. The potential use of visible/near infrared spectroscopy and hyperspectral imaging to predict processing-related constituents of potatoes. J. Food Eng. 2014, 135, 11–25. [Google Scholar] [CrossRef]
- Yaptenco, K.F.; Kawakamis, S.; Takano, K. Nondestructive determination of sugar content in ‘Danshaku’ potato (solanum tuberosum l.) by near infrared spectroscopy. J. Agric. Sci. Tokyo Nogyo Daigaku 2000, 44, 284–294. [Google Scholar]
- Jeong, J.-C.; Ok, H.-C.; Hur, O.-S.; Kim, C.G. Prediction of sprouting capacity using near-infrared spectroscopy in potato tubers. Am. J. Potato Res. 2008, 85, 309–314. [Google Scholar] [CrossRef]
- Manso, J.Y. Sensor Fusion of IR, NIR, and Raman Spectroscopic Data for Polymorph Quantitation of an Agrochemical Compound. Master’s Thesis, Faculty of the University of Delaware, Newark, DE, USA, 2008. [Google Scholar]
- Mendoza, F.; Lu, R.; Ariana, D.; Cen, H.; Bailey, B. Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 2011, 62, 149–160. [Google Scholar] [CrossRef]
- Mendoza, F.; Lu, R.; Cen, H. Comparison and fusion of four nondestructive sensors for predicting apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 2012, 73, 89–98. [Google Scholar] [CrossRef]
- Ulloa, P.A.; Guerra, R.; Cavaco, A.M.; Rosa da Costa, A.M.; Fifueira, A.C.; Brigas, A.F. Determination of the botanical origin of honey by sensor fusion of impedance e-tongue and optical spectroscopy. Comput. Electron. Agric. 2013, 94, 1–11. [Google Scholar] [CrossRef]
- Ignat, T.; Alchanatis, V.; Schmilovitch, Z. Maturity prediction of intact bell peppers by sensor fusion. Comput. Electron. Agric. 2014, 104, 9–17. [Google Scholar] [CrossRef]
- Mohebbi, M.; Amiryousefi, M.R.; Hasanpour, N.; Ansarifar, E. Employing an intelligence model and sensitivity analysis to investigate some physicochemical properties of coated bell pepper during storage. Int. J. Food Sci. Technol. 2011, 47, 299–305. [Google Scholar] [CrossRef]
- Ignat, T.; Mizrach, A.; Schmilovitch, Z.; Fefoldi, J.; Egozi, H.; Hoffman, A. Bell pepper maturity determination by ultrasonic technique. Prog. Agric. Eng. Sci. 2010, 6, 17–34. [Google Scholar] [CrossRef]
- Baltazar, A.; Aranda, J.I.; Gonzalez-Aguilar, G. Bayesian classification of ripening stages of tomato fruit using acoustic impact and colorimeter sensor data. Comput. Electron. Agric. 2008, 60, 113–121. [Google Scholar] [CrossRef]
- Li, C.; Heinemann, P.; Sherry, R. Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection. Sens. Actuators B Chem. 2007, 125, 301–310. [Google Scholar] [CrossRef]
- Kavdir, I.; Guyer, D.E. Apple grading using fuzzy logic. Turk. J. Agric. 2003, 27, 375–382. [Google Scholar]
- Zude, M.; Herold, B.; Roger, J.M.; Bellon-Maurel, V.; Landahl, S. Nondestructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life. J. Food Eng. 2006, 77, 254–260. [Google Scholar] [CrossRef]
- Steinmetz, V.; Roger, J.M.; Molto, E.; Blasco, J. On-line fusion of colour camera and spectrophotometer for sugar content prediction of apples. J. Agric. Eng. Res. 1999, 73, 207–216. [Google Scholar] [CrossRef]
- Saito, Y.; Hatanaka, T.; Uosaki, K.; Shigeto, K. Eggplant classification using artificial neural network. In Proceedings of the International Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 2, pp. 1013–1018. [Google Scholar]
- Natale, C.D.; Zude-Sasse, M.; Macagnano, A.; Paolesse, R.; Herold, B.; D’amico, A. Outer product analysis of electronic nose and visible spectra: Application to the measurement of peach fruit characteristics. Anal. Chim. Acta 2002, 459, 107–117. [Google Scholar] [CrossRef]
- Ortiz, C.; Barreiro, P.; Correa, E.; Riquelme, F.; Ruiz-Altisent, M. Nondestructive identification of woolly peaches using impact response and nearinfrared spectroscopy. J. Agric. Eng. Res. 2001, 78, 281–289. [Google Scholar] [CrossRef]
- Steinmetz, V.; Biavati, E.; Molto, E.; Pons, R.; Fornes, I. Predicting the maturity of oranges with non-destructive sensors. Actae Hortic. 1997, 421, 271–278. [Google Scholar] [CrossRef]
- Knowles, N.R.; Plissey, E.S. Maintaing tuber health during harvest, storage, and post-storage handling. In Potato Health Management; Johnson, D.A., Ed.; American Phytopathological Society Press: St. Paul, MN, USA, 2007. [Google Scholar]
- Rady, A.; Guyer, D.E.; Lu, R. Evaluation of sugar content of potatoes using hyperspectral imaging. J. Food Bioprocess Technol. 2015, 8, 995–1010. [Google Scholar] [CrossRef]
- Varmuza, K.; Filmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Mark, H. Data Analysis: Multilinear regression and principal component analysis. In Handbook of Near-Infrared Analysis; Burns, D.A., Ciurczak, E.W., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Rady, A.; Guyer, D.E. Utilization of visible/near-infrared spectroscopic and wavelength selection methods in sugar prediction and potatoes classification. J. Food Meas. Charact. 2015, 9, 20–34. [Google Scholar] [CrossRef]
- Rinnan, Å.; Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Wise, B.M.; Gallagher, N.B.; Bro, R.; Shaver, J.M.; Windig, W.; Kock, R.S. PLS_Toolbox 4.0 for Use with Matlab; Eigenvector Research, Inc.: Manson, WA, USA, 2006; pp. 137–192. [Google Scholar]
- Zhao, Y.; Wang, S.; Li, Z.; Pei, Z.; Cao, F. An improved changeable size moving window partial least square applied for molecular spectroscopy. Chemom. Intell. Lab. Syst. 2016, 152, 118–124. [Google Scholar] [CrossRef]
- Deng, B.-C.; Yun, Y.-H.; Ma, P.; Lin, C.-C.; Ren, D.-B.; Liang, Y.-Z. A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals. Analyst 2015, 140, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
Minimum | Maximum | Mean | Standard Deviation | |
---|---|---|---|---|
FL1879 | 4.33 | 57.66 | 13.47 | 13.62 |
R.Norkotah | 4.33 | 45.67 | 12.96 | 8.61 |
No. of Selected Wavelengths | No. of Wavelengths in the Visible Range | No. of Wavelengths in the NIR Range | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
W = 1 | W = 2 | W = 3 | W = 1 | W = 2 | W = 3 | W = 1 | W = 2 | W = 3 | ||
VIS/NIR interactance | FL1879 | 94 | 106 | 93 | 49 | 40 | 45 | 45 | 66 | 48 |
R.Norkotah | 26 | 34 | 33 | 1 | 10 | 18 | 25 | 24 | 15 | |
VIS/NIR hyperspectral | FL1879 | 29 | 36 | 63 | 22 | 20 | 39 | 7 | 16 | 24 |
R.Norkotah | 59 | 34 | 60 | 47 | 21 | 45 | 12 | 13 | 15 |
Optical System | Cultivar | Calibration * | Prediction ** | ||||
---|---|---|---|---|---|---|---|
Rcal | RMSECV | LVs | Rpred | RMSEPpred | RPDpred | ||
VIS/NIR interactance system | FL1879 | 0.99 | 0.3055 | 18 | 0.89 | 0.3285 | 2.22 |
R.Norkotah | 0.91 | 0.4183 | 18 | 0.77 | 0.3560 | 1.5 | |
VIS/NIR hyperspectral imaging | FL1879 | 0.49 | 13.124 | 7 | 0.47 | 11.7014 | 1.14 |
R.Norkotah | 0.78 | 9.5766 | 5 | 0.43 | 7.8047 | 1.10 |
Interval Width (W) | Cultivar | Preprocessing Method a | Calibration | Prediction | ||||
---|---|---|---|---|---|---|---|---|
Rcal | RMSECV | LVs | Rpred | RMSEP | RPDval | |||
W = 1 | FL1879 | A5, B2; C2 | 0.99 | 0.1299 | 20 | 0.95 | 0.1662 | 3.01 |
R.Norkotah | A6, B1; C2 | 0.98 | 0.1401 | 12 | 0.96 | 0.1411 | 3.55 | |
W = 2 | FL1879 | A3, B1; C2 | 0.98 | 0.1815 | 13 | 0.91 | 0.2206 | 2.27 |
R.Norkotah | A5, B2; C2 | 0.96 | 0.1775 | 11 | 0.95 | 0.1547 | 3.24 | |
W = 3 | FL1879 | A1, B3; C2 | 0.98 | 0.1933 | 20 | 0.91 | 0.2012 | 2.49 |
R.Norkotah | A5, B3; C2 | 0.98 | 0.1504 | 17 | 0.94 | 0.1709 | 2.93 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rady, A.; Guyer, D.; Kirk, W.; Donis-González, I.R. Prediction of the Leaf Primordia of Potato Tubers Using Sensor Fusion and Wavelength Selection. J. Imaging 2019, 5, 10. https://doi.org/10.3390/jimaging5010010
Rady A, Guyer D, Kirk W, Donis-González IR. Prediction of the Leaf Primordia of Potato Tubers Using Sensor Fusion and Wavelength Selection. Journal of Imaging. 2019; 5(1):10. https://doi.org/10.3390/jimaging5010010
Chicago/Turabian StyleRady, Ahmed, Daniel Guyer, William Kirk, and Irwin R Donis-González. 2019. "Prediction of the Leaf Primordia of Potato Tubers Using Sensor Fusion and Wavelength Selection" Journal of Imaging 5, no. 1: 10. https://doi.org/10.3390/jimaging5010010
APA StyleRady, A., Guyer, D., Kirk, W., & Donis-González, I. R. (2019). Prediction of the Leaf Primordia of Potato Tubers Using Sensor Fusion and Wavelength Selection. Journal of Imaging, 5(1), 10. https://doi.org/10.3390/jimaging5010010