Next Article in Journal
Multi-Modal Medical Image Registration with Full or Partial Data: A Manifold Learning Approach
Previous Article in Journal
Compressive Sensing Hyperspectral Imaging by Spectral Multiplexing with Liquid Crystal
Previous Article in Special Issue
MRI Robot for Prostate Focal Laser Ablation: An Ex Vivo Study in Human Prostate
Article Menu

Export Article

Open AccessArticle
J. Imaging 2019, 5(1), 4; https://doi.org/10.3390/jimaging5010004

Magnetic Resonance Conditional Microinjector

1
School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
2
Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
3
Neuroimaging and Visual Science Laboratory, Departments of Ophthalmology and Radiology, NYU School of Medicine, New York University, New York, NY 10016, USA
*
Author to whom correspondence should be addressed.
Received: 17 September 2018 / Revised: 12 December 2018 / Accepted: 20 December 2018 / Published: 30 December 2018
(This article belongs to the Special Issue Image-Guided Medical Robotics)
Full-Text   |   PDF [1817 KB, uploaded 30 December 2018]   |  

Abstract

Glaucoma, one of the leading causes of blindness, has been linked to increases in intraocular pressure. In order to observe and study this effect, proposed is a specialized microinjector and driver that can be used to inject small amounts of liquid into a target volume. Magnetic resonance imaging (MRI) guided remotely activated devices require specialized equipment that is compatible with the MR environment. This paper presents an MR Conditional microinjector system with a pressure sensor for investigating the effects of intraocular pressure (IOP) in near-real-time. The system uses pressurized air and a linear actuation device to push a syringe in a controlled, stepwise manner. The feasibility and utility of the proposed investigative medical research tool were tested and validated by measuring the pressure inside an intact animal donor eyeball while precise, small volumes of water were injected into the specimen. Observable increases in the volume of the specimen at measured, specific target pressure increases show that the system is technically feasible for studying IOP effects, while the changes in shape were depicted in MRI scan images themselves. In addition, it was verified that the presence and operation of the system did not interfere with the MRI machine, confirming its conditional compatibility with the 3T MRI. View Full-Text
Keywords: glaucoma; intraocular pressure; blindness; microinjector; eye; MRI; image guided; actuation; pneumatic; magnetic resonance glaucoma; intraocular pressure; blindness; microinjector; eye; MRI; image guided; actuation; pneumatic; magnetic resonance
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Wineland, A.; Chen, Y.; Boland, B.; Chan, K.; Tse, Z. Magnetic Resonance Conditional Microinjector. J. Imaging 2019, 5, 4.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Imaging EISSN 2313-433X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top