Exemplar-Based Face Colorization Using Image Morphing
Abstract
:1. Introduction
2. Image Morphing
2.1. Morphing Model Based on [31]
- Fixing and minimizing over leads to the following K single registration problems:
- Fixing , resp., leads to solving the following image sequence problem
2.2. Space Discrete Morphing Model
Solution of the Registration Problems
Multilevel Strategy
Algorithm 1 Morphing Algorithm (informal). | |
1: | |
2: | create image stack on by smoothing and downsampling |
3: | solve (3) for with , for |
4: | |
5: | use bilinear interpolation to get v on from |
6: | obtain images from by (9) |
7: | while do |
8: | find image path and deformation path minimizing (3) with initialization |
9: | |
10: | if l > 0 then |
11: | use bilinear interpolation to get and on |
12: | for do |
13: | calculate intermediate images between with using (9) |
14: |
3. Face Colorization
3.1. Luminance Normalization
3.2. Chrominance Transfer by the Morphing Maps
4. Variational Methods for Chrominance Postprocessing
Algorithm 2 Minimization of (13). | |
1: | , |
2: | |
3: | , |
4: | for do |
5: | |
6: | |
7: | |
8: | |
9: | |
10: |
Algorithm 3 Debiasing of Algorithm 2. | |
1: | , |
2: | |
3: | , |
4: | , |
5: | , |
6: | for do |
7: | |
8: | |
9: | |
10: | |
11: | |
12: | |
13: | |
14: | |
15: | |
16: |
5. Numerical Examples
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Solution of the Image Sequence Problem
Appendix B. Gauss-Newton Method for the Registation Problem
References
- Levin, A.; Lischinski, D.; Weiss, Y. Colorization using optimization. ACM Trans. Graph. 2004, 23, 689–694. [Google Scholar] [CrossRef]
- Irony, R.; Cohen-Or, D.; Lischinski, D. Colorization by example. In Proceedings of the 16th Eurographics Conference on Rendering Techniques, Konstanz, Germany, 29 June 29–1 July 2005; pp. 201–210. [Google Scholar]
- Pierre, F.; Aujol, J.F.; Bugeau, A.; Papadakis, N.; Ta, V.T. Luminance-chrominance model for image colorization. SIAM J. Imaging Sci. 2015, 8, 536–563. [Google Scholar] [CrossRef]
- Yatziv, L.; Sapiro, G. Fast image and video colorization using chrominance blending. IEEE Trans. Image Process. 2006, 15, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Jack, K. Video Demystified: A Handbook for the Digital Engineer; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Gupta, R.K.; Chia, A.Y.S.; Rajan, D.; Ng, E.S.; Zhiyong, H. Image colorization using similar images. In Proceedings of the 20th ACM International Conference on Multimedia, Nara, Japan, 29 October–2 November 2012; pp. 369–378. [Google Scholar]
- Horiuchi, T. Colorization algorithm using probabilistic relaxation. Image Vis. Comput. 2004, 22, 197–202. [Google Scholar] [CrossRef]
- Welsh, T.; Ashikhmin, M.; Mueller, K. Transferring color to greyscale images. ACM Trans. Graph. 2002, 21, 277–280. [Google Scholar] [CrossRef]
- Efros, A.A.; Leung, T.K. Texture synthesis by non-parametric sampling. In Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1033–1038. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, Y.; Schillings, V.; Meinel, C. Grayscale image matting and colorization. In Proceedings of the Asian Conference on Computer Vision, Jeju Island, Korea, 27–30 January 2004; pp. 1164–1169. [Google Scholar]
- Charpiat, G.; Hofmann, M.; Schölkopf, B. Automatic image colorization via multimodal predictions. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2008; pp. 126–139. [Google Scholar]
- Chia, A.Y.S.; Zhuo, S.; Kumar, R.G.; Tai, Y.W.; Cho, S.Y.; Tan, P.; Lin, S. Semantic colorization with internet images. ACM Trans. Graph. 2011, 30, 156. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A. Colorful image colorization. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–16. [Google Scholar]
- Smythe, D.B. A Two-Pass Mesh Warping Algorithm for Object Transformation and Image Interpolation; Technical report; ILM Technical Memo Department, Lucasfilm Ltd.: San Francisco, CA, USA, 1990. [Google Scholar]
- Wolberg, G. Digital Image Warping; IEEE Computer Society Press: Los Alamitos, CA, USA, 1990; Volume 10662. [Google Scholar]
- Wolberg, G. Image morphing: A survey. Vis. Comput. 1998, 14, 360–372. [Google Scholar] [CrossRef]
- Miller, M.I.; Younes, L. Group actions, homeomorphisms, and matching: A general framework. Int. J. Comput. Vis. 2001, 41, 61–84. [Google Scholar] [CrossRef]
- Trouvé, A.; Younes, L. Local geometry of deformable templates. SIAM J. Math. Anal. 2005, 37, 17–59. [Google Scholar] [CrossRef]
- Trouvé, A.; Younes, L. Metamorphoses through Lie group action. Found. Comput. Math. 2005, 5, 173–198. [Google Scholar] [CrossRef]
- Christensen, G.E.; Rabbitt, R.D.; Miller, M.I. Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 1996, 5, 1435–1447. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, P.; Grenander, U.; Miller, M.I. Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 1998, 56, 587–600. [Google Scholar] [CrossRef]
- Trouvé, A. An infinite dimensional group approach for physics based models in pattern recognition. Int. J. Comput. Vis. 1995, 28, 213–221. [Google Scholar] [CrossRef]
- Trouvé, A. Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vis. 1998, 28, 213–221. [Google Scholar] [CrossRef]
- Beg, M.F.; Miller, M.I.; Trouvé, A.; Younes, L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 2005, 61, 139–157. [Google Scholar] [CrossRef]
- Richardson, C.L.; Younes, L. Metamorphosis of images in reproducing kernel Hilbert spaces. Adv. Comput. Math. 2016, 42, 573–603. [Google Scholar] [CrossRef]
- Hong, Y.; Joshi, S.; Sanchez, M.; Styner, M.; Niethammer, M. Metamorphic geodesic regression. Med. Image Comput. Comput. Assist. Interv. 2012, 15, 197–205. [Google Scholar] [PubMed]
- Younes, L. Shapes and Diffeomorphisms; Springer: Berlin, Germany, 2010. [Google Scholar]
- Miller, M.I.; Trouvé, A.; Younes, L. Hamiltonian systems and optimal control in computational anatomy: 100 years since D’Arcy Thompson. Annu. Rev. Biomed. Eng. 2015, 17, 447–509. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.I.; Trouvé, A.; Younes, L. On the metrics and Euler-Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 2002, 4, 375–405. [Google Scholar] [CrossRef] [PubMed]
- Berkels, B.; Effland, A.; Rumpf, M. Time discrete geodesic paths in the space of images. SIAM J. Imaging Sci. 2015, 8, 1457–1488. [Google Scholar] [CrossRef]
- Christensen, G.E.; Johnson, H.J. Consistent image registration. IEEE Trans. Med. Imaging 2001, 20, 568–582. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.; Modersitzki, J. Curvature based image registration. J. Math. Imaging Vis. 2003, 18, 81–85. [Google Scholar] [CrossRef]
- Haber, E.; Modersitzki, J. A multilevel method for image registration. SIAM J. Sci. Comput. 2006, 27, 1594–1607. [Google Scholar] [CrossRef]
- Han, J.; Berkels, B.; Droske, M.; Hornegger, J.; Rumpf, M.; Schaller, C.; Scorzin, J.; Urbach, H. Mumford–Shah Model for one-to-one edge matching. IEEE Trans. Image Process. 2007, 16, 2720–2732. [Google Scholar] [CrossRef] [PubMed]
- Modersitzki, J. Numerical Methods for Image Registration; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Modersitzki, J. FAIR: Flexible Algorithms for Image Registration; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
- Deledalle, C.A.; Papadakis, N.; Salmon, J.; Vaiter, S. CLEAR: Covariant LEAst-square Refitting with applications to image restoration. SIAM J. Imaging Sci. 2017, 10, 243–284. [Google Scholar] [CrossRef]
- Miller, M.I.; Christensen, G.E.; Amit, Y.; Grenander, U. Mathematical textbook of deformable neuroanatomies. Proc. Natl. Acad. Sci. USA 1993, 90, 11944–11948. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Schnörr, C.; Steidl, G. Simultaneous higher order optical flow estimation and decomposition. SIAM J. Sci. Comput. 2007, 29, 2283–2304. [Google Scholar] [CrossRef]
- Bertalmio, M. Image Processing for Cinema; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Nikolova, M.; Steidl, G. Fast Hue and Range Preserving Histogram Specification: Theory and New Algorithms for Color Image Enhancement. IEEE Trans. Image Process. 2014, 23, 4087–4100. [Google Scholar] [CrossRef] [PubMed]
- Hertzmann, A.; Jacobs, C.E.; Oliver, N.; Curless, B.; Salesin, D.H. Image analogies. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; pp. 327–340. [Google Scholar]
- Peter, P.; Kaufhold, L.; Weickert, J. Turning diffusion-based image colorization into efficient color compression. IEEE Trans. Image Process. 2016, 26, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Chambolle, A.; Pock, T. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 2011, 40, 120–145. [Google Scholar] [CrossRef]
- Joshi, S.C.; Miller, M.I. Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 2000, 9, 1357–1370. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Hua, G.; Wen, F.; Sun, J. Supervised transformer network for efficient face detection. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 122–138. [Google Scholar]
Image | K | |||
---|---|---|---|---|
Figure 5-1. row | 0.025 | 24 | 50 | 0.005 |
Figure 5-2. row | 0.05 | 24 | 25 | 0.005 |
Figure 5-3. row | 0.05 | 12 | - | - |
Figure 5-4. row | 0.05 | 24 | - | - |
Figure 6-1. row | 0.005 | 32 | - | - |
Figure 6-2. row | 0.0075 | 18 | 50 | 0.05 |
Figure 6-3. row | 0.04 | 24 | - | - |
Figure 7 | 0.0075 | 18 | - | - |
Figure 8 | 0.01 | 25 | - | - |
Figure 9-1. row | 0.005 | 25 | - | - |
Figure 9-2. row | 0.01 | 25 | - | - |
Figure 9-3. row | 0.01 | 25 | - | - |
Gray | Welsh et al. [8] | Gupta et al. [6] | Pierre et al. [3] | Our | |
---|---|---|---|---|---|
Figure 9-1. row 1. pair | 24.8023 | 20.0467 | 26.3527 | 33.7694 | 44.7808 |
Figure 9-1. row 2. pair | 24.5218 | 23.9513 | 25.9457 | 34.4231 | 45.4682 |
Figure 9-2. row 1. pair | 24.3784 | 22.6729 | 27.5586 | 32.0119 | 41.1413 |
Figure 9-2. row 2. pair | 23.7721 | 23.2375 | 25.9375 | 30.1398 | 39.4254 |
Figure 9-3. row 1. pair | 24.5950 | 30.3985 | 24.3112 | 31.5263 | 42.3861 |
Figure 9-3. row 2. pair | 24.3907 | 27.7816 | 25.6207 | 31.8982 | 42.4092 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Persch, J.; Pierre, F.; Steidl, G. Exemplar-Based Face Colorization Using Image Morphing. J. Imaging 2017, 3, 48. https://doi.org/10.3390/jimaging3040048
Persch J, Pierre F, Steidl G. Exemplar-Based Face Colorization Using Image Morphing. Journal of Imaging. 2017; 3(4):48. https://doi.org/10.3390/jimaging3040048
Chicago/Turabian StylePersch, Johannes, Fabien Pierre, and Gabriele Steidl. 2017. "Exemplar-Based Face Colorization Using Image Morphing" Journal of Imaging 3, no. 4: 48. https://doi.org/10.3390/jimaging3040048
APA StylePersch, J., Pierre, F., & Steidl, G. (2017). Exemplar-Based Face Colorization Using Image Morphing. Journal of Imaging, 3(4), 48. https://doi.org/10.3390/jimaging3040048