Evaluation of Transfer Learning Efficacy for Surgical Suture Quality Classification on Limited Datasets
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset Formation and Annotation
2.2. Model Training Methodology
2.3. Model Quality Assessment
3. Results
3.1. IOVS Classification
3.2. COOS Classification
3.3. ILS Classification
3.4. Model Interpretation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNN | Convolutional neural network |
COOS | Continuous over-and-over open suture |
ILS | Interrupted laparoscopic suture |
IOVS | Interrupted open vascular suture |
References
- Christo, C.G.; Van Rooij, J.; Geerards, A.J.M.; Remeijer, L.; Beekhuis, W.H. Suture-related Complications Following Keratoplasty: A 5-Year Retrospective Study. Cornea 2001, 20, 816–819. [Google Scholar] [CrossRef]
- Böhringer, D.; Sundmacher, R.; Reinhard, T. Fadenkomplikationen nach perforierender Keratoplastik. Klin. Monatsbl. Augenheilkd. 2010, 227, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.W.; Price, M.O.; Bowers, P.J.; Price, F.W. Long-term graft survival after penetrating keratoplasty. Ophthalmology 2003, 110, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, H.; Ristkari, S.; Mokka, R. Early laparotomy wound dehiscence: A randomized comparison of three suture materials and two methods of fascial closure. Ann. Chir. Gynaecol. 1988, 77, 111–113. [Google Scholar]
- Patel, S.V.; Paskar, D.D.; Nelson, R.L.; Vedula, S.S.; Steele, S.R. Closure methods for laparotomy incisions for preventing incisional hernias and other wound complications. Cochrane Database Syst. Rev. 2017, 11, CD005661. [Google Scholar] [CrossRef]
- Obertop, H.; Gouma, D.J. Complications in Surgery–Let’s Face Them. Dig. Surg. 2002, 19, 83–85. [Google Scholar] [CrossRef]
- Schröder, W.; Raptis, D.A.; Schmidt, H.M.; Gisbertz, S.S.; Moons, J.; Asti, E.; Luyer, M.D.P.; Hölscher, A.H.; Schneider, P.M.; Van Berge Henegouwen, M.I.; et al. Anastomotic Techniques and Associated Morbidity in Total Minimally Invasive Transthoracic Esophagectomy: Results From the EsoBenchmark Database. Ann. Surg. 2019, 270, 820–826. [Google Scholar] [CrossRef]
- Oliveira, A.; Faria, S.; Gonçalves, N.; Martins, A.; Leão, P. Surgical approaches to colonic and rectal anastomosis: Systematic review and meta-analysis. Int. J. Color. Dis. 2023, 38, 52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Q.; Tang, R.; Zhang, C.-F.; Xia, M.-Y.; Shuai, L.-Y.; Tang, H.; Ji, G.-Y. Comparison study of two anastomosis techniques in right hemicolectomy: A systematic review and pooling up analysis. Int. J. Color. Dis. 2025, 40, 50. [Google Scholar] [CrossRef]
- Kamarajah, S.K.; Evans, R.P.T.; Nepogodiev, D.; Hodson, J.; Bundred, J.R.; Gockel, I.; Gossage, J.A.; Isik, A.; Kidane, B.; Mahendran, H.A.; et al. The influence of anastomotic techniques on postoperative anastomotic complications: Results of the Oesophago-Gastric Anastomosis Audit. J. Thorac. Cardiovasc. Surg. 2022, 164, 674–684.e5. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Donlon, N.E.; Elliott, J.A.; Robb, W.B.; Bolger, J.C. Optimal oesophagogastric anastomosis techniques for oesophageal cancer surgery–A systematic review and network meta-analysis of randomised clinical trials. Eur. J. Surg. Oncol. 2025, 51, 109600. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Xue, X.; Zeng, H.; Ye, W.; Xie, T.; Wang, X.; Lin, S. Comparison of different surgical techniques and anastomosis methods in short-term outcomes of right colon cancer: A network meta-analysis of open surgery, laparoscopic, and robot-assisted techniques with extracorporeal and intracorporeal anastomosis. Updates Surg. 2025, 77, 309–325. [Google Scholar] [CrossRef]
- Kim, S.; Huh, J.W.; Lee, W.Y.; Yun, S.H.; Kim, H.C.; Cho, Y.B.; Park, Y.; Shin, J.K. Comparative analysis of functional end-to-end and end-to-side anastomosis in laparoscopic right hemicolectomy for colon cancer. Surgery 2025, 180, 109051. [Google Scholar] [CrossRef]
- Tu, D.-H.; Qu, R.; Ping, W.; Yang, G.; Fu, X.; Cai, Y. Anastomosis oversewing technique to prevent leakage after oesophagectomy: A propensity score-matched analysis. Eur. J. Cardio-Thorac. Surg. 2022, 61, 990–998. [Google Scholar] [CrossRef]
- Steger, J.; Jell, A.; Ficht, S.; Ostler, D.; Eblenkamp, M.; Mela, P.; Wilhelm, D. Systematic Review and Meta-Analysis on Colorectal Anastomotic Techniques. TCRM 2022, 18, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Treil, L.; Neumann, N.; Chanes, N.; Lejay, A.; Bourcier, T.; Bismuth, J.; Lee, J.T.; Sheahan, M.; Rouby, A.-F.; Chakfé, N.; et al. Objective Evaluation of Clock Face Suture Using the Objective Structured Assessment of Technical Skill (OSATS) Checklist. EJVES Vasc. Forum 2022, 57, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Kil, I.; Eidt, J.F.; Singapogu, R.B.; Groff, R.E. Assessment of Open Surgery Suturing Skill: Image-based Metrics Using Computer Vision. J. Surg. Educ. 2024, 81, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Noraset, T.; Mahawithitwong, P.; Dumronggittigule, W.; Pisarnturakit, P.; Iramaneerat, C.; Ruansetakit, C.; Chaikangwan, I.; Poungjantaradej, N.; Yodrabum, N. Automated measurement extraction for assessing simple suture quality in medical education. Expert. Syst. Appl. 2024, 241, 122722. [Google Scholar] [CrossRef]
- Kitaguchi, D.; Teramura, K.; Matsuzaki, H.; Hasegawa, H.; Takeshita, N.; Ito, M. Automatic purse-string suture skill assessment in transanal total mesorectal excision using deep learning-based video analysis. BJS Open 2023, 7, zrac176. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, H.; Funke, I.; Peters, P.; Venkatesh, D.K.; Egger, J.; Rivoir, D.; Röhrig, R.; Hölzle, F.; Bodenstedt, S.; Willemer, M.-C.; et al. AIxSuture: Vision-based assessment of open suturing skills. Int. J. CARS 2024, 19, 1045–1052. [Google Scholar] [CrossRef]
- Kasa, K.; Burns, D.; Goldenberg, M.G.; Selim, O.; Whyne, C.; Hardisty, M. Multi-Modal Deep Learning for Assessing Surgeon Technical Skill. Sensors 2022, 22, 7328. [Google Scholar] [CrossRef]
- Ebina, K.; Abe, T.; Hotta, K.; Higuchi, M.; Furumido, J.; Iwahara, N.; Kon, M.; Miyaji, K.; Shibuya, S.; Lingbo, Y.; et al. Automatic assessment of laparoscopic surgical skill competence based on motion metrics. PLoS ONE 2022, 17, e0277105. [Google Scholar] [CrossRef] [PubMed]
- Kuzminsky, J.; Phillips, H.; Sharif, H.; Moran, C.; Gleason, H.E.; Topulos, S.P.; Pitt, K.; McNeil, L.K.; McCoy, A.M.; Kesavadas, T. Reliability in performance assessment creates a potential application of artificial intelligence in veterinary education: Evaluation of suturing skills at a single institution. ajvr 2023, 84, ajvr.23.03.0058. [Google Scholar] [CrossRef] [PubMed]
- Handelman, A.; Keshet, Y.; Livny, E.; Barkan, R.; Nahum, Y.; Tepper, R. Evaluation of suturing performance in general surgery and ocular microsurgery by combining computer vision-based software and distributed fiber optic strain sensors: A proof-of-concept. Int. J. CARS 2020, 15, 1359–1367. [Google Scholar] [CrossRef]
- Funke, I.; Mees, S.T.; Weitz, J.; Speidel, S. Video-based surgical skill assessment using 3D convolutional neural networks. Int. J. CARS 2019, 14, 1217–1225. [Google Scholar] [CrossRef]
- Mansour, M.; Cumak, E.N.; Kutlu, M.; Mahmud, S. Deep learning based suture training system. Surg. Open Sci. 2023, 15, 1–11. [Google Scholar] [CrossRef]
- Dhanakshirur, R.R.; Katiyar, V.; Sharma, R.; Suri, A.; Kalra, P.K.; Arora, C. From Feline Classification to Skills Evaluation: A Multitask Learning Framework for Evaluating Micro Suturing Neurosurgical Skills. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; pp. 3374–3378. [Google Scholar]
- Nagaraju, M.S.; Rao, B.S. An Outlook of Medical Image Analysis via Transfer Learning Approaches. TS 2022, 39, 1463–1474. [Google Scholar] [CrossRef]
- Angriawan, M. Transfer Learning Strategies for Fine-Tuning Pretrained Convolutional Neural Networks in Medical Imaging. RJCSE 2023, 4, 73–88. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Zhang, Y. Deep learning on medical image analysis. CAAI Trans. Intel. Tech. 2025, 10, 1–35. [Google Scholar] [CrossRef]
- Ayana, G.; Dese, K.; Choe, S. Transfer Learning in Breast Cancer Diagnoses via Ultrasound Imaging. Cancers 2021, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Abdlaty, R.; Doerwald-Munoz, L.; Farrell, T.J.; Hayward, J.E.; Fang, Q. Hyperspectral imaging assessment for radiotherapy induced skin-erythema: Pilot study. Photodiagn. Photodyn. Ther. 2021, 33, 102195. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Majewicz Fey, A. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Int. J. CARS 2018, 13, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
Metric | Formula | Description |
---|---|---|
Precision | Proportion of correct positive predictions relative to all positive predictions. | |
Recall | Proportion of correct positive predictions relative to all actual positive cases. | |
F1-score | Harmonic mean of precision and recall. | |
AUC-ROC | - | Area under the curve that illustrates the trade-off between model sensitivity and specificity at different classification thresholds. The value ranges from 0.5 (random guessing) to 1 (perfect model). |
Architecture | Precision | Recall | F1-Score | AUC-ROC | Threshold | Scoreadj |
---|---|---|---|---|---|---|
External View | ||||||
Xception | 0.902 ± 0.063 | 0.983 ± 0.021 | 0.939 ± 0.033 | 0.910 ± 0.067 | 0.374 ± 0.102 | 0.913 ** |
ResNet50V2 | 0.917 ± 0.036 | 0.948 ± 0.032 | 0.932 ± 0.031 | 0.946 ± 0.025 | 0.482 ± 0.074 | 0.915 * |
MobileNetV3Large | 0.926 ± 0.053 | 0.939 ± 0.035 | 0.932 ± 0.033 | 0.931 ± 0.039 | 0.476 ± 0.017 | 0.911 *** |
VGG19 | 0.917 ± 0.058 | 0.930 ± 0.052 | 0.923 ± 0.046 | 0.915 ± 0.064 | 0.484 ± 0.010 | 0.895 |
VGG16 | 0.909 ± 0.041 | 0.922 ± 0.043 | 0.914 ± 0.013 | 0.914 ± 0.043 | 0.476 ± 0.027 | 0.905 |
DenseNet121 | 0.894 ± 0.047 | 0.922 ± 0.017 | 0.907 ± 0.018 | 0.885 ± 0.023 | 0.470 ± 0.060 | 0.892 |
InceptionV3 | 0.877 ± 0.090 | 0.939 ± 0.035 | 0.903 ± 0.040 | 0.886 ± 0.061 | 0.462 ± 0.104 | 0.876 |
EfficientNetB0 | 0.886 ± 0.034 | 0.922 ± 0.084 | 0.901 ± 0.037 | 0.918 ± 0.032 | 0.580 ± 0.130 | 0.882 |
Internal View | ||||||
ResNet50V2 | 0.914 ± 0.017 | 0.950 ± 0.032 | 0.931 ± 0.011 | 0.959 ± 0.008 | 0.334 ± 0.242 | 0.930 * |
VGG16 | 0.897 ± 0.017 | 0.960 ± 0.037 | 0.927 ± 0.022 | 0.952 ± 0.030 | 0.382 ± 0.136 | 0.918 ** |
Xception | 0.904 ± 0.030 | 0.940 ± 0.037 | 0.922 ± 0.033 | 0.930 ± 0.040 | 0.516 ± 0.060 | 0.904 *** |
DenseNet121 | 0.886 ± 0.073 | 0.940 ± 0.058 | 0.909 ± 0.038 | 0.936 ± 0.034 | 0.458 ± 0.040 | 0.893 |
EfficientNetB0 | 0.886 ± 0.040 | 0.910 ± 0.066 | 0.896 ± 0.032 | 0.931 ± 0.036 | 0.394 ± 0.160 | 0.884 |
MobileNetV3Large | 0.906 ± 0.085 | 0.890 ± 0.097 | 0.889 ± 0.026 | 0.928 ± 0.017 | 0.432 ± 0.056 | 0.885 |
VGG19 | 0.850 ± 0.053 | 0.940 ± 0.037 | 0.892 ± 0.036 | 0.890 ± 0.035 | 0.430 ± 0.135 | 0.872 |
InceptionV3 | 0.831 ± 0.071 | 0.930 ± 0.060 | 0.874 ± 0.039 | 0.866 ± 0.058 | 0.478 ± 0.039 | 0.852 |
Architecture | Precision | Recall | F1-Score | AUC-ROC | Threshold | Scoreadj |
---|---|---|---|---|---|---|
DenseNet121 | 0.825 ± 0.128 | 0.805 ± 0.165 | 0.788 ± 0.071 | 0.853 ± 0.080 | 0.470 ± 0.055 | 0.787 * |
Xception | 0.738 ± 0.264 | 0.810 ± 0.048 | 0.740 ± 0.153 | 0.842 ± 0.108 | 0.340 ± 0.157 | 0.700 |
EfficientNetB0 | 0.845 ± 0.142 | 0.676 ± 0.107 | 0.734 ± 0.055 | 0.823 ± 0.054 | 0.368 ± 0.078 | 0.746 ** |
MobileNetV3Large | 0.831 ± 0.164 | 0.681 ± 0.085 | 0.730 ± 0.042 | 0.829 ± 0.047 | 0.394 ± 0.125 | 0.745 *** |
VGG16 | 0.925 ± 0.150 | 0.619 ± 0.142 | 0.716 ± 0.078 | 0.781 ± 0.069 | 0.486 ± 0.015 | 0.729 |
ResNet50V2 | 0.756 ± 0.244 | 0.743 ± 0.076 | 0.715 ± 0.116 | 0.809 ± 0.108 | 0.396 ± 0.163 | 0.692 |
VGG19 | 0.626 ± 0.037 | 0.771 ± 0.172 | 0.685 ± 0.092 | 0.811 ± 0.057 | 0.306 ± 0.117 | 0.674 |
InceptionV3 | 0.644 ± 0.235 | 0.814 ± 0.138 | 0.676 ± 0.108 | 0.752 ± 0.100 | 0.342 ± 0.115 | 0.662 |
Architecture | Precision | Recall | F1-Score | AUC-ROC | Threshold | Scoreadj |
---|---|---|---|---|---|---|
ResNet50V2 | 1.000 ± 0.000 | 0.908 ± 0.084 | 0.950 ± 0.047 | 0.959 ± 0.036 | 0.428 ± 0.081 | 0.931 * |
VGG16 | 1.000 ± 0.000 | 0.903 ± 0.145 | 0.942 ± 0.089 | 0.969 ± 0.045 | 0.356 ± 0.093 | 0.911 |
DenseNet121 | 1.000 ± 0.000 | 0.903 ± 0.145 | 0.942 ± 0.089 | 0.957 ± 0.061 | 0.454 ± 0.032 | 0.908 |
EfficientNetB0 | 0.931 ± 0.057 | 0.953 ± 0.058 | 0.941 ± 0.053 | 0.971 ± 0.024 | 0.488 ± 0.125 | 0.920 ** |
MobileNetV3Large | 0.964 ± 0.073 | 0.928 ± 0.099 | 0.940 ± 0.056 | 0.965 ± 0.039 | 0.434 ± 0.089 | 0.919 *** |
Xception | 0.978 ± 0.044 | 0.858 ± 0.143 | 0.905 ± 0.079 | 0.920 ± 0.082 | 0.412 ± 0.047 | 0.876 |
InceptionV3 | 0.823 ± 0.116 | 0.978 ± 0.044 | 0.889 ± 0.073 | 0.945 ± 0.048 | 0.472 ± 0.030 | 0.866 |
VGG19 | 0.837 ± 0.111 | 0.956 ± 0.089 | 0.882 ± 0.048 | 0.924 ± 0.035 | 0.360 ± 0.165 | 0.872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishchenko, R.; Solopov, M.; Popandopulo, A.; Chechekhina, E.; Turchin, V.; Popivnenko, F.; Ermak, A.; Ladyk, K.; Konyashin, A.; Golubitskiy, K.; et al. Evaluation of Transfer Learning Efficacy for Surgical Suture Quality Classification on Limited Datasets. J. Imaging 2025, 11, 266. https://doi.org/10.3390/jimaging11080266
Ishchenko R, Solopov M, Popandopulo A, Chechekhina E, Turchin V, Popivnenko F, Ermak A, Ladyk K, Konyashin A, Golubitskiy K, et al. Evaluation of Transfer Learning Efficacy for Surgical Suture Quality Classification on Limited Datasets. Journal of Imaging. 2025; 11(8):266. https://doi.org/10.3390/jimaging11080266
Chicago/Turabian StyleIshchenko, Roman, Maksim Solopov, Andrey Popandopulo, Elizaveta Chechekhina, Viktor Turchin, Fedor Popivnenko, Aleksandr Ermak, Konstantyn Ladyk, Anton Konyashin, Kirill Golubitskiy, and et al. 2025. "Evaluation of Transfer Learning Efficacy for Surgical Suture Quality Classification on Limited Datasets" Journal of Imaging 11, no. 8: 266. https://doi.org/10.3390/jimaging11080266
APA StyleIshchenko, R., Solopov, M., Popandopulo, A., Chechekhina, E., Turchin, V., Popivnenko, F., Ermak, A., Ladyk, K., Konyashin, A., Golubitskiy, K., Burtsev, A., & Filimonov, D. (2025). Evaluation of Transfer Learning Efficacy for Surgical Suture Quality Classification on Limited Datasets. Journal of Imaging, 11(8), 266. https://doi.org/10.3390/jimaging11080266