Denoising of Optical Coherence Tomography Images in Ophthalmology Using Deep Learning: A Systematic Review
Abstract
:1. Introduction
2. Overview of Optical Coherence Tomography
3. Material and Methods
3.1. Eligibility Criteria
- Population (P): Studies focusing on the utilization of DL models with retinal imagery obtained from either clinical or research settings.
- Intervention and Control (I, C): Studies employing DL-based models for tasks such as image denoising, speckle reduction, or super-resolution, compared with a reference test.
- Outcomes (O): Studies reporting any estimate of image quality metrics (such as PSNR, CNR, SSIM) applied at either the image or pixel level.
3.2. Search Methods for Identifying Studies
3.3. Study Selection
3.4. Data Collection and Extraction
3.5. Risk of Bias and Applicability
3.6. Data Synthesis and Analysis
4. Results
4.1. Study Selection and Study Characteristics
4.2. Risk of Bias and Applicability
4.3. Findings of the Studies
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Aumann, S.; Donner, S.; Fischer, J.; Müller, F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In High Resolution Imaging in Microscopy and Ophthalmology; Springer International Publishing: Cham, Switzerland, 2019; pp. 59–85. [Google Scholar]
- Huang, S.; Tang, C.; Xu, M.; Qiu, Y.; Lei, Z. BM3D-based total variation algorithm for speckle removal with structure-preserving in OCT images. Appl. Opt. 2019, 58, 62336243. [Google Scholar] [CrossRef] [PubMed]
- Tey, K.Y.; Teo, K.; Tan, A.C.S.; Devarajan, K.; Tan, B.; Tan, J.; Schmetterer, L.; Ang, M. Optical coherence tomography angiography in diabetic retinopathy: A review of current applications. Eye Vis. 2019, 6, 110. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.L.; Liefers, B.; Treis, T.; Rodrigues, F.G.; Olvera-Barrios, A.; Paul, B.; Dhingra, N.; Lotery, A.; Bailey, C.; Taylor, P.; et al. Reliability of Retinal Pathology Quantification in Age-Related Macular Degeneration: Implications for Clinical Trials and Machine Learning Applications. Transl. Vis. Sci. Technol. 2021, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85117. [Google Scholar]
- Colston, B.W.; Sathyam, U.S.; DaSilva, L.B.; Everett, M.J.; Stroeve, P.; Otis, L.L. Dental OCT. Opt. Express 1998, 3, 230238. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-C.; Lin, J.-Y.; Yao, C.-Y.; Lyu, D.-Y.; Lee, S.-Y. Interactive OCT-Based Tooth Scan and Reconstruction. Sensors 2019, 19, 4234. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Mishra, A.; Bizheva, K.; Clausi, D.A. General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt. Express 2010, 18, 8338–8352. [Google Scholar] [CrossRef]
- Novacam Technologies, Inc. How Low-Coherence Interferometry (LCI) Works. 2021. Available online: https://www.novacam.com/technology/how-lci-works/ (accessed on 17 November 2023).
- McInnes, M.D.F.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; Hooft, L.; et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. J. Am. Med. Assoc. 2018, 319, 388396. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. (NIPS) 2012, 25, 10971105. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Nie, Q.; Izatt, J.A.; Toth, C.A.; Farsiu, S. Sparsity based denoising of spectral domain optical coherence tomography images. Biomed. Opt. Express 2012, 3, 927942. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, N.; Hao, Q. Real-time noise reduction based on ground truth free deep learning for optical coherence tomography. Biomed. Opt. Express 2021, 12, 20272040. [Google Scholar] [CrossRef] [PubMed]
- Optima—Cyst Segmentation Challenge. 2015. Available online: https://optima.meduniwien.ac.at/optima-segmentation-challenge-1/ (accessed on 17 November 2023).
- Ma, Y.; Chen, X.; Zhu, W.; Cheng, X.; Xiang, D.; Shi, F. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cgan. Biomed. Opt. Exp. 2018, 9, 5129–5146. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, M.; Kamasi, Z.G.; Rabbani, H. Automatic detection of hyperreflective foci in optical coherence tomography B-scans using morphological component analysis. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 1497–1500. [Google Scholar]
- Devalla, S.K.; Subramanian, G.; Pham, T.H.; Wang, X.; Perera, S.; Tun, T.A.; Aung, T.; Schmetterer, L.; Thiery, A.H.; Girard, M.J.A. A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head. Sci. Rep. 2019, 9, 14454. [Google Scholar] [CrossRef] [PubMed]
- Cheong, H.; Devalla, S.K.; Chuangsuwanich, T.; Tun, T.A.; Wang, X.; Aung, T.; Schmetterer, L.; Buist, M.L.; Boote, C.; Thiery, A.H.; et al. OCT-GAN: Single step shadow and noise removal from optical coherence tomography images of the human optic nerve head. Biomed. Opt. Express 2021, 12, 14821498. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Yang, J.; Li, P.; Zhang, S.; Mi, S. Retinal fundus image superresolution generated by optical coherence tomography based on a realistic mixed attention GAN. Med. Phys. 2022, 49, 318531998. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Malone, J.D.; Atay, Y.; Tao, Y.K.; Oguz, I. Retinal OCT Denoising with Pseudo-Multimodal Fusion Network. In OMIA 2020: Ophthalmic Medical Image Analysis; Springer: Cham, Switzerland, 2020; pp. 125–135. [Google Scholar]
- Akter, N.; Perry, S.; Fletcher, J.; Simunovic, M.; Roy, M. Automated Artifacts and Noise Removal from Optical Coherence Tomography Images Using Deep Learning Technique. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, 1–4 December 2020; pp. 2536–2542. [Google Scholar]
- Halupka, K.; Lee, B.A.M.; Lucy, K.; Rai, R.; Ishikawa, H.; Wollstein, G.; Schuman, J.; Garnavi, R. Retinal optical coherence tomography image enhancement via deep learning. Biomed. Opt. Express 2018, 9, 62056221. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, X.; Yu, A.; Fu, T.; Liu, D. Clustering-Oriented Multiple Convolutional Neural Networks for Optical Coherence Tomography Image Denoising. In Proceedings of the 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 13–15 October 2018; pp. 1–5. [Google Scholar]
- Chen, Z.; Zheng, Z.; Shen, H.; Zheng, Z.; Dai, P.; Ouyang, P. DN-GAN: Denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images. Biomed. Signal Process. Control 2020, 55, 101632. [Google Scholar] [CrossRef]
- Gour, N.; Khanna, P. Speckle denoising in optical coherence tomography images using residual deep convolutional neural network. Multimed. Tools Appl. 2020, 79, 1567915695. [Google Scholar] [CrossRef]
- Hasan, M.J.; Alom, M.S.; Fatema, U.; Wahid, M.F. Deep Learning Based Retinal OCT Image Denoising using Generative Adversarial Network. In Proceedings of the International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), Rajshahi, Bangladesh, 8–9 July 2021; pp. 1–6. [Google Scholar]
- Guo, A.; Fang, L.; Qi, M.; Li, S. Unsupervised Denoising of Optical Coherence Tomography Images with Nonlocal-Generative Adversarial Network. IEEE Trans. Instrum. Meas. 2020, 70, 112. [Google Scholar] [CrossRef]
- Qiu, B.; Huang, Z.; Liu, X.; Meng, X.; You, Y.; Liu, G.; Yang, K.; Maier, A.; Ren, Q.; Lu, Y. Noise reduction in optical coherence tomography images using a deep neural network with perceptually sensitive loss function. Biomed. Opt. Express 2020, 11, 817830. [Google Scholar] [CrossRef]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef]
- Qiu, B.; Zeng, S.; Meng, X.; Jiang, Z.; You, Y.; Geng, M.; Li, Z.; Hu, Y.; Huang, Z.; Zhou, C.; et al. Comparative study of deep neural networks with unsupervised Noise2Noise strategy for noise reduction of optical coherence tomography images. J. Biophotonics 2021, 14, e202100151. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Monadjemi, A.; Fang, L.; Rabbanni, H.; Zhang, Y. Three-dimensional optical coherence tomography image denoising through multi-input fully convolutional networks. Comput. Biol. Med. 2019, 108, 18. [Google Scholar] [CrossRef]
- Shi, F.; Cai, N.; Gu, Y.; Hu, D.; Ma, Y.; Chen, Y.; Chen, X. DeSpecNet: A CNN-based method for speckle reduction in retinal optical coherence tomography images. Phys. Med. Biol. 2019, 64, 175010. [Google Scholar] [CrossRef]
- Huang, Y.; Xia, W.; Lu, Z.; Liu, Y.; Chen, H.; Zhou, J.; Fang, L.; Zhang, Y. Noise-Powered Disentangled Representation for Unsupervised Speckle Reduction of Optical Coherence Tomography Images. IEEE Trans. Med. Imaging 2021, 40, 26002614. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Liu, X.; Wei, X.; Fu, T.; Liu, D. Generative Adversarial Networks with Dense Connection for Optical Coherence Tomography Images Denoising. In Proceedings of the 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 13–15 October 2018; pp. 1–5. [Google Scholar]
- Tajmirriahi, M.; Kafieh, R.; Amini, Z.; Rabbani, H. A Lightweight Mimic Convolutional Auto-Encoder for Denoising Retinal Optical Coherence Tomography Images. IEEE Trans. Instrum. Meas. 2021, 70, 18. [Google Scholar] [CrossRef]
- Sengupta, S.; Singh, A.; Lakshminarayanan, V. EdgeWaveNet: Edge aware residual wavelet GAN for OCT image denoising. In Proceedings of the Medical Imaging 2021: Imaging Informatics for Healthcare, Research, and Applications, Online, 15–20 February 2021; Volume 11601, pp. 110–115. [Google Scholar]
- Mehdizadeh, M.; MacNish, C.; Xiao, D.; Alonso-Caneiro, D.; Kugelman, J.; Bennamoun, M. Deep feature loss to denoise OCT images using deep neural networks. Biomed. Opt. 2021, 26, 046003. [Google Scholar] [CrossRef]
- Cai, N.; Shi, F.; Hu, D.; Chen, Y. A ResNet-based universal method for speckle reduction in optical coherence tomography images. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), Washington, DC, USA, 4–7 April 2018. [Google Scholar]
- Zhou, Q.; Wen, M.; Ding, M.; Zhang, X. Unsupervised despeckling of optical coherence tomography images by combining cross-scale CNN with an intra-patch and inter-patch-based transformer. Opt. Express 2022, 30, 1880018820. [Google Scholar] [CrossRef]
- Anoop, B.N.; Kalmady, K.S.; Udathu, A.; Siddharth, V.; Girish, G.N.; Kothari, A.R.; Rajan, J. A cascaded convolutional neural network architecture for despeckling OCT images. Biomed. Signal Process. Control 2021, 66, 102463. [Google Scholar] [CrossRef]
- Fu, Z.; Yu, X.; Ge, C.; Aziz, M.Z.; Liu, L. ADGAN: An Asymmetric Despeckling Generative Adversarial Network for Unpaired OCT Image Speckle Noise Reduction. In Proceedings of the IEEE 6th Optoelectronics Global Conference (OGC), Shenzhen, China, 15–18 September 2021; pp. 212–216. [Google Scholar]
- Wang, M.; Zhu, W.; Yu, K.; Chen, Z.; Shi, F.; Chen, X. Semi-Supervised Capsule cGAN for Speckle Noise Reduction in Retinal OCT Images. IEEE Trans. Med. Imaging 2021, 40, 11681183. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, K.; Wang, M.; Ma, Y.; Peng, Y.; Chen, Z.; Zhu, W.; Shi, F.; Chen, X. Speckle Noise Reduction for OCT Images Based on Image Style Transfer and Conditional GAN. IEEE J. Biomed. Health Inform. 2022, 26, 139150. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, W.; Chen, Q.; Park, H. Noise Reduction for SD-OCT Using a Structure-Preserving Domain Transfer Approach. IEEE J. Biomed. Health Inform. 2021, 25, 34603472. [Google Scholar] [CrossRef] [PubMed]
- Das, V.; Dandapat, S.; Bora, P.K. Unsupervised Super-Resolution of OCT Images Using Generative Adversarial Network for Improved Age-Related Macular Degeneration Diagnosis. IEEE Sens. J. 2020, 20, 87468756. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Z.; Shao, Z.; Ran, M.; Zhou, J.; Fang, L.; Zhang, Y. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network. Opt. Express 2019, 27, 1228912307. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Yu, X.; Li, M.; Mo, J. Self-Supervised Denoising of single OCT image with Self2Self-OCT Network. In Proceedings of the IEEE 7th Optoelectronics Global Conference (OGC), Shenzhen, China, 6–11 December 2022; pp. 200–204. [Google Scholar]
- Ma, Z.; Xie, Q.; Fan, F.; Zhu, J. DSGAN: A generative model for speckle noise reduction in retinal optical coherence tomography images. In Proceedings of the SPIE 12320, Optics in Health Care and Biomedical Optics XII, Online, 5–12 December 2022; p. 123201H. [Google Scholar]
- Xie, K.; Luo, M.; Chen, H.; Yang, M.; He, Y.; Liao, P.; Zhang, Y. Speckle denoising of optical coherence tomography image using residual encoder–decoder CycleGAN. Signal Image Video Process. 2023, 17, 1521–1533. [Google Scholar] [CrossRef]
- Xie, Q.; Ma, Z.; Zhu, L.; Fan, F.; Meng, X.; Gao, X.; Zhu, J. Multi-task generative adversarial network for retinal optical coherence tomography image denoising. Phys. Med. Biol. 2022, 68, 045002. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Zhang, Q.; Donnan, R.; Alomainy, A. Framework of Unsupervised based Denoising for Optical Coherence Tomography. In Proceedings of the International Conference on Biomedical Signal and Image Processing (ICBIP), Suzhou, China, 19–21 August 2022; pp. 19–24. [Google Scholar]
- Ahmed, H.; Zhang, Q.; Donnan, R.; Alomainy, A. Attention Based Speckle Reduction for Optical Coherence Tomography in Ophthalmology and Dentistry. In Proceedings of the International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 5–7 November 2022; pp. 1–6. [Google Scholar]
- Zhou, Q.; Wen, M.; Yu, B.; Lou, C.; Ding, M.; Zhang, X. Self-supervised transformer based non-local means despeckling of optical coherence tomography images. Biomed. Signal Process. Control 2023, 80, 104348. [Google Scholar] [CrossRef]
- Gholami, P.; Roy, P.; Parthasarathy, M.K.; Lakshminarayanan, V. OCTID: Optical coherence tomography image database. Comput. Electr. Eng. 2020, 81, 106532. [Google Scholar] [CrossRef]
- Kande, N.A.; Dakhane, R.; Dukkipati, A.; Yalavarthy, P.K. SiameseGAN: A Generative Model for Denoising of Spectral Domain Optical Coherence Tomography Images. IEEE Trans. Med. Imaging 2021, 40, 180192. [Google Scholar] [CrossRef]
- Qiu, B.; You, Y.; Huang, Z.; Meng, X.; Jiang, Z.; Zhou, C.; Liu, G.; Yang, K.; Ren, Q.; Lu, Y. N2NSR-OCT: Simultaneous denoising and super-resolution in optical coherence tomography images using semisupervised deep learning. J. Biophotonics 2020, 14, e202000282. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Wang, M.; Zhu, W.; Peng, Y.; Chen, Z.; Wang, L.; Wang, T.; Yao, C.; Wang, T.; et al. High-Resolution Hierarchical Adversarial Learning for OCT Speckle Noise Reduction. In MICCAI 2021: Medical Image Computing and Computer Assisted Intervention; Springer: Cham, Switzerland, 2021; pp. 372–381. [Google Scholar]
- Ahmed, H.; Zhang, Q.; Donnan, R.; Alomainy, A. Unsupervised Region-Based Denoising for Optical Coherence Tomography Framework. In Proceedings of the International Conference on Computational Intelligence and Applications (ICCIA), Nanjing, China, 24–26 June 2022; pp. 267–273. [Google Scholar]
- Hao, S.; Hao, G. Research on OCT Image Processing Based on Deep Learning. In Proceedings of the International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 17–19 July 2020; pp. 208–212. [Google Scholar]
- Abbas, Q.; Qureshi, I.; Yan, J.; Shaheed, K. Machine Learning Methods for Diagnosis of Eye-Related Diseases: A Systematic Review Study Based on Ophthalmic Imaging Modalities. Arch. Comput. Methods Eng. 2022, 29, 3861–3918. [Google Scholar] [CrossRef]
- Syed, A.M.; Faizan, M.; Akbar, M.U.; Fatima, J. Automated Techniques for Detection and Classification of Diabetic Macular Edema: A Review. Asian J. Eng. Sci. Technol. 2016, 39–43. [Google Scholar]
- Stankiewicz, A.; Marciniak, T.; Dabrowski, A.; Stopa, M.; Marciniak, E.; Obara, B. Segmentation of Preretinal Space in Optical Coherence Tomography Images Using Deep Neural Networks. Sensors 2021, 21, 7521. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Yu, L.; Rao, B.; Tromberg, B.J.; Chen, Z. Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform. Opt. Express 2010, 18, 1024103. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 60–65. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 20802095. [Google Scholar] [CrossRef]
Database | Keywords | Results | Date |
---|---|---|---|
Google Scholar | Image denoising AND deep learning AND “optical coherence tomography” | 4220 | 16 November 2023 |
Medline | Image denoising AND deep learning AND “optical coherence tomography” | 32 | 16 November 2023 |
Scopus | TITLE-ABS-KEY (image AND denoising AND deep AND learning AND “optical coherence tomography”) | 68 | 16 November 2023 |
Embase | (“image denoising”/exp OR “image denoising” OR ((“image”/exp OR image) AND (“denoising”/exp OR denoising))) AND (“deep learning”/exp OR “deep learning” OR (deep AND (“learning”/exp OR learning))) AND (“optical coherence tomography”/exp OR “optical coherence tomography”) | 37 | 16 November 2023 |
ArXiv | Image denoising AND deep learning AND “optical coherence tomography” | 9 | 16 November 2023 |
Domain | Leading Questions |
---|---|
Data Selection | 1—Are any data imbalances addressed in the article?
2—Was the dataset split explained correctly for training, validation, and testing? 3—Did the study collect sufficient noisy–clean image pairs? |
Index test | 1—Was the methodology sufficiently explained for reproducibility?
2—Were the results of deep learning models explained without knowledge of state-of-the-art denoisers? 3—Did the study apply any image quality metrics, sensitivity or robustness analysis on their model? |
Flow and Timing | 1—Was the full dataset utilized in the analysis? 2—Did each image have a reference clean image? 3—Were the reference clean images produced similarly? 4—Did the model show a sufficient interval between the reference and index test? |
Reference Standard | 1—Were state-of-the-art results of denoisers mentioned and utilized for interpretation?
2—Did the study describe the noisy–clean image procedure and minimize bias? 3—Were limitations, biases, and generalization issues reported sufficiently? |
Paper | Data Size | Pre-Processing and Augmentation | Model | Compared to | Loss Function | Image Quality Metrics |
---|---|---|---|---|---|---|
Devalla, 2019 [17] | 24,832 B-Scans (23,280/1552) | Augmentation: Rotation, flip, elastic deformation Pre-Processing: NA | U-Net with residual blocks | NA | MAE | SNR = 8.14 dB CNR = 7.63 dB MSSIM = 0.65 |
Cheong, 2021 [18] | 2628 B-Scans (2328/300) | Augmentation: rotation, translation, flip, and scaling Pre-Processing: NA | Hybrid model (framework containing U-Net followed by a choice of ResNet, ResXNet, or EfficientNet) | NA | Shadow + content + style | PSNR = 11.1% AGM = 57.2% CNR = 154% SSIM = 187% |
Tian, 2020 [19] | 350 HQ scans (315/35) | Augmentation: flip, rotation, cropping | RMA-GAN | SRCNN, EDSR, ESRGAN | Content + perceptual + adversarial + MS-SSIM + TV | PSNR = 25.7 dB SSIM = 0.77 |
Hu, 2020 [20] | 2500 B-Scans | Augmentation: NA | MSUN with self-fusion | NA | L1 + MSE | PSNR = 10.1 dB SSIM = 0.57 |
Akter, 2020 [21] | 157 B-Scans (100/57) | Augmentation: NA Pre-processing: contrast adjustment, sharpening filter, manually removed noise using Fiji: ImageJ | U-Net | WIN5-RB, Autoencoder, DnCNN, Dense-UNet | MSE | PSNR = 29.8 dB SSIM = 0.90 MSE = 0.005 MAE = 0.03 |
Halupka, 2018 [22] | 55,080 B-Scans (40,711/5587/ 8780) | Augmentation: flip, rotation, cropping | GAN | WGAN, BM3D, DD-CDWT | MSE + VGG + adversarial | PSNR = 32.3 dB SSIM = 0.78 MSE = 40.3 MS-SSIM = 0.92 |
Paper | Data Size | Pre-Processing and Augmentation | Model | Compared to | Loss Function | Image Quality Metrics |
---|---|---|---|---|---|---|
Wei, 2018 [23] | Duke [12] 26 B-Scans (22/4) | Pre-processing: KNN for clustering Augmentation: scaling | DnCNN | BM3D, NLM, BM3D-SAPCA, LPG-PCA, Low Rank, FFDnet | NA | PSNR = 28.2 dB CNR = 3.9 dB MSR = 6.2 |
Chen, 2020 [24] | 36 B-Scans (25/11) | Pre-processing: aligning, averaging, thresholding, adding speckle noise | DN-GAN | MSBTD, SBSDI, BM3D, K-SVD, Tikkhonov, SRResNet, GAN-SRResNet, DCSRN, GAN-U-Net | L1 + perceptual | PSNR = 27.9 dB SSIM = 0.9 FBE = 3.6 |
Gour, 2020 [25] | Duke [12] and Topcon [13], 23 B-Scans | NA DnCNN | Adaptive Median Filtering, wavelet thresholding, Tikhonov, BM3D, K-SVD, MSBTD, Anisotropic diffusion, STAT, Bayesian, Isotropic diffusion, SE-CNN | MSE | PSNR = 27.5 dB SSIM = 0.68 | |
Hassan, 2021 [26] | 10,000 B-Scans (8000/2000) | Pre-processing: added speckle noise | D-GAN | Wavelet, Bilateral, NLM, BM3D | Euclidean + perceptual + adversarial | PSNR = 35.4 dB MSE = 0.19 |
Ma, 2018 [15] | Duke [12] and Topcon [13] 521 B-Scans (512/9) | Pre-processing: registration, alignment and enhancing contrast Augmentation: flip, scaling, rotation, non-rigid transformation | cGAN | NLM, BM3D, STROLLR, K-SVD, MAP, DnCNN, ResNet | MSE + L1 + edge | SNR = 60.1 dB CNR = 10.0 dB ENL = 126.9 dB EPI = 1.0 |
Guo, 2020 [27] | Duke [12], A2A SD-OCT, 90 B-Scans (10/80) | NA | Nonlocal GAN | NLM, BM3D, K-SVD, BM4D, GCBD, GAN-MSE, DnCNN, GAN-WDP, DeGAN | Binary cross-entropy | SNR = 40.1 dB ENL = 981.3 dB CNR = 7.4 dB |
Qiu, 2020 [28] | 47 B-scans (37/10) | Pre-processing: averaged and registered the B-scans to create denoised image pairs | DnCNN | NLM, BM3D | Perceptually sensitive (SSIM loss) | PSNR = 26.4 dB SSIM = 0.71 MSE = 89.6 MS-SSIM = 0.91 |
Huang, 2021 [13] | OCT2017 [29], 84,500 B-scans (83,416/32/968) | Augmentation: crop | AC-SRResNet | BM3D, U-Net, SRResNet | L1 | SNR = 41.8 dB CNR = 44.6 dB EPI = 0.72 |
Halupka, 2018 [22] | 69 OCT volumes (51/7/11) | Pre-processing: averaged and registered the B-scans to create denoised image pairs | GAN | BM3D, DD-CDWT, CNN-WGAN | Adversarial + MSE + perceptual | PSNR = 32.3 dB SSIM = 0.78 MS-SSIM = 0.92 MSE = 40.3 |
Qiu, 2021 [30] | Duke [12], 52 groups of 50 B-scans each (37/15) | NA | P2PGAN-N2N | Median, NLM, BM3D | Adversarial + L1 | SNR = 35.5 dB SSIM = 0.81 CNR = 4.0 dB ENL = 260.3 dB R = 0.94 |
Abassi, 2019 [31] | Duke [12], 28 B-Scans (10, 18) | Augmentation: flip, rotate, crop | MIFCN | KSVD, BM3D, SAIST, PG-GMM, BM4D, SSR | MSE | PSNR = 27.4 dB CNR = 3.8 dB ENL = 2750.8 dB |
Shi, 2019 [32] | Topcon [13] and Cirrus [15], 11 groups of 256 B-Scans (2/9) | NA | DeSpec-Net | NLM, BM3D, STROLLR, K-SVD, MAP, Intra-volume compounding, DnCNN | L1 | SNR = 40.2 dB CNR = 9.7 dB ENL = 166.2 dB EPI = 0.91 |
Huang, 2020 [33] | Duke [12], 26 B-scans (10/16) | Pre-processing: registering and averaging images, removing any over smoothed images | DRGAN | Median, Bilateral, NLM, Wavelet, BM3D, SNR-GAN, NWSR, edge-sensitive cGAN, HDCycleGAN, Nonlocal GAN, SiameseGAN | Adversarial + reconstruction + cycle-consistency + novel noise | PSNR = 24.4 dB SSIM = 0.58 CNR = 3.2 dB EPI = 0.98 MSR = 4.8 ENL = 317.4 dB |
Yu, 2018 [34] | Duke [12], 15 B-scans (8/3/4) | Pre-processing: crop, removing unaligned images | DN-GAN | BM3D, BM3DPCA, LPGPCA, FFDNET | MSE + adversarial | PSNR = 31.0 dB CNR = 3.3 dB MSR = 3.7 |
Tajmirr-iahi, 2021 [35] | Topcon [13], 240 B-Scans (200/40) | Augmentation: rotation, shift, flip, and crop | Autoencoder | GT-SC-GMM, BM3D, MSBTD, Tikhonov | MSE | SNR = 108.8 dB CNR = 82.2 dB ENL = 58.4 dB TP = 0.79 EP = 0.98 CT = 4.68 |
Sengupta, 2021 [36] | Duke [12], 1600 B-Scans (1400/200) | Pre-processing: crop | EdgeWaveNet | NLM, DeBlur-GAN, RDNSR-GAN, RED-GAN | L1 + adversarial + Sobel edge | PSNR = 22.8 dB SSIM = 0.61 |
Mehdi-zadeh, 2021 [37] | 71 B-scans (51/20) | Augmentation: created patches | DnCNN | NA | L2 + L1 + perceptual + VGG | PSNR = 33.6 dB PSI = 0.23 JNB = 13.9 S3 = 0.26 |
Cai, 2018 [38] | Topcon [13], 256 B-scans (246/10) | Pre-processing: averaged and registered the B-scans to create denoised image pairs | ResNet | Median, NLM, BM3D | MSE | PSNR = 34.8 dB SSIM = 0.52 |
Zhou, 2022 [39] | 5000 B-scans (4500/480/20) | Pre-processing: crop | Transformer-IP2 | BM3D, PNLM, NCDF, OBNLM, DnCNN, CNN-NLM, Neighbor2Neighbor | Neighbor- 2Neighnor + PNLM | SNR = 154.6 dB CNR = 7.9 dB ENL = 13,160.3 dB |
Anoop, 2021 [40] | Duke [12] and Optima [14], 2720 B-scans (2176/544) | Pre-processing: noise distribution is found for each image, patches and denoised image pairs were created | DenseNet121 | CAD, OBNLM, TVG, Wavelet, K-SVD, DnCNN | Cross-entropy | PSNR = 31.0 dB SSIM = 0.91 |
Fu, 2021 [41] | Duke [12], 21 B-scans (16/5) | Pre-processing: registering and averaging images, removed any over smoothed images | ADGAN | Wavelet, NLM, BM3D, NWSR, HDCycleGAN | Adversarial + cycle-consistency | PSNR = 27.6 dB SSIM = 0.62 CNR = 3.1 dB ENL = 530.8 dB |
Wang, 2021 [42] | Topcon [13] and Cirrus [15], 1920 B-scans (512/1408) | Pre-processing: creating denoised image pairs from [23] | Capsule cGAN | BM3D, K-SVD, NLM, MAP, STROLLR, DnCNN, ResNet, Cycle-GAN, cGAN | L1 + Adversarial + SSIM | SNR = 59.0 dB CNR = 11.4 dB ENL = 417.2 dB EPI = 1.0 |
Zhou, 2022 [43] | Topcon [13] and Cirrus [15], 1920 B-scans (512/1408) | Pre-processing: registering and averaging images | Cycle-GAN with mini-cGAN | NLM, BM3D, STROLLR, K-SVD, MAP, DnCNN, DPDNN, NAGAN with mini-cGAN | L1 + MSE | SNR = 20.9 dB CNR = 12.5 dB SSI = 0.09 EPI = 0.99 |
Wu, 2021 [44] | 3737 B-scans, (3537/200) | Pre-processing: crop and contrast enhancement | cGAN | Cycle-GAN, DnCNN, BM3D, DCWT, NLM, MPE, cGAN, EGAN, SR | Adversarial + cycle-consistency + structural consistency + regularization | SNR = 35.0 dB CNR = 7.2 dB EPI = 0.92 CRSB = 0.14 |
Das, 2020 [45] | Duke [12] 45 B-scans and 384 OCT volumes, (2000/17) | Pre-processing: crop | SRGAN | SBSDI, SSR, NWSR, SRGAN | Adversarial + cycle-consistency + identity mapping | PSNR = 39.2 dB CNR = 4.7 dB |
Huang, 2019 [46] | Duke [12], 26 B-scans (10/16) | Pre-processing: crop | SDSR-OCT | BM3D + Bicubic, NWSR, SRCNN | Pixel + perceptual + GAN | PSNR = 28.1 dB CNR = 4.6 dB ENL = 537.5 dB EPI = 0.95 |
Ge, 2022 [47] | Duke [12], 10 B-scans | Pre-processing: clear images are obtained by registering and averaging and crop | Self2Self-OCT | BM3D, NWSR, DnCNN, DIP, TSI | Background noise attenuation + self-prediction | PSNR = 24.8 dB SSIM = 0.99 |
Ma, 2022 [48] | Duke [12], 26 B-scans (10/16) | NA | DSGAN | MIFCN, Edge-sensitive cGAN, SDSR-OCT | Adversarial + SSIM + MSE | PSNR = 28.1 dB SSIM = 0.95 CNR = 3.7 dB |
Xie, 2022 [49] | Duke [12], 26 B-scans (22/4) | NA | GAN | K-SVD, BM3D, wGAN, cGAN, SDSR, HDcycleGAN, DRGAN | Adversarial + cycle-consistency + perceptual | PSNR = 27.6 dB EPI = 1.0 CNR = 3.1 dB ENL = 73.8 dB MSR = 5.1 SSIM = 0.65 |
Xie, 2023 [50] | Duke [12], 26 B-scans (10/16) | NA | MGAN | NLM, BM3D, DnCNN, MIFCN, SDSR-OCT | Adversarial + pixel-level error + BCE+ SSIM | PSNR = 28.1 dB SSIM = 0.95 EPI = 0.99 CNR = 3.6 dB |
Ahmed, 2022 [51] | Duke [12], 18 B-scans (10/8) | Pre-processing: clean images are obtained by BM3D, BM3DDEB, Weiner and HWT | DenseNet with AG | BM3D, NLM | MSE + pixel difference | PSNR = 23.5 dB CNR = 7.7 dB ENL = 585.5 dB |
Ahmed, 2022 [52] | Duke [12] and dentistry, 28 B-scans (18/12) | NA | Autoencoder with MFSK and AG | BM3D, NLM, DnCNN, GAN | MSE + pixel difference | PSNR = 26.9 dB CNR = 7.0 dB ENL = 213.7 dB SSIM = 0.68 |
Zhou, 2023 [53] | OCT2017 [29] and OCTID [54], 5620 B-scans (5000/ 600/20) | Pre-processing: crop | Transformer-based NLM | N2N, DRGAN, Den-mimic-net, Contourlet, BM3D, INLSM, NLM, OBNLM, PNLM | MSE + gradient | CNR = 15.7 dB SNR = 51.1 dB ENL = 23,787 dB |
Kande, 2020 [55] | Duke [12], 28 B-Scans (10/18) | NA | SiameseGAN | MSBTD, MIFCN, Shared Encoder, WGAN U-Net, WGAN ResNet | MS-SSIM + perceptual | PSNR = 28.3 dB SSIM = 0.83 MSR = 4.2 CNR = 2.6 dB TP = 0.68 EP = 0.66 |
Qiu, 2020 [56] | Duke [12], 52 groups of 50 B-scans each (37/15) | Pre-processing: crop | DBPN | BM3D, Bicubic, NWSR, U-Net | MSE | PSNR = 31.3 dB RMSE = 0.027 MS-SSIM = 0.92 |
Zhou, 2021 [57] | Topcon [13] and Cirrus [15], 521 B-scans (512/9) | Pre-processing: registering and averaging images Augmentation: flip, scaling, rotation, non-rigid transformation | GAN with HRNet | NLM, STROLLR, DnCNN, DPDNN, Edge-cGAN, mini-cGAN | L1 + MSE + Adversarial | SNR = 40.4 dB CNR = 11.2 dB SSI = 0.09 EPI = 0.96 |
Ahmed, 2022 [58] | Duke [12], 18 B-scans (10/8) | NA | DnCNN | BM3D, Weiner, NLM | CNR + pixel difference | PSNR = 29.6 dB CNR = 11.5 dB ENL = 1196.6 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.; Zhang, Q.; Donnan, R.; Alomainy, A. Denoising of Optical Coherence Tomography Images in Ophthalmology Using Deep Learning: A Systematic Review. J. Imaging 2024, 10, 86. https://doi.org/10.3390/jimaging10040086
Ahmed H, Zhang Q, Donnan R, Alomainy A. Denoising of Optical Coherence Tomography Images in Ophthalmology Using Deep Learning: A Systematic Review. Journal of Imaging. 2024; 10(4):86. https://doi.org/10.3390/jimaging10040086
Chicago/Turabian StyleAhmed, Hanya, Qianni Zhang, Robert Donnan, and Akram Alomainy. 2024. "Denoising of Optical Coherence Tomography Images in Ophthalmology Using Deep Learning: A Systematic Review" Journal of Imaging 10, no. 4: 86. https://doi.org/10.3390/jimaging10040086
APA StyleAhmed, H., Zhang, Q., Donnan, R., & Alomainy, A. (2024). Denoising of Optical Coherence Tomography Images in Ophthalmology Using Deep Learning: A Systematic Review. Journal of Imaging, 10(4), 86. https://doi.org/10.3390/jimaging10040086