When Sex Matters: Differences in the Central Nervous System as Imaged by OCT through the Retina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Image Processing
2.3. Texture Analysis
2.4. Statistical Analysis
3. Results
3.1. Pairwise Correlations
3.2. Normality Testing
3.3. Hypothesis Testing
3.4. Multiple Comparison Corrections
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- London, A.; Benhar, I.; Schwartz, M. The retina as a window to the brain—From eye research to CNS disorders. Nat. Rev. Neurol. 2013, 9, 44–53. [Google Scholar] [CrossRef]
- Svetozarskiy, S.; Kopishinskaya, S. Retinal optical coherence tomography in neurodegenerative diseases (review). Sovrem. Tehnol. Med. 2015, 7, 116–123. [Google Scholar] [CrossRef]
- Alves, C.; Jorge, L.; Canário, N.; Santiago, B.; Santana, I.; Castelhano, J.; Ambrósio, A.F.; Bernardes, R.; Castelo-Branco, M. Interplay between macular retinal changes and white matter integrity in early Alzheimer’s disease. J. Alzheimers Dis. 2019, 70, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Czakó, C.; Kovács, T.; Ungvari, Z.; Csiszar, A.; Yabluchanskiy, A.; Conley, S.; Csipo, T.; Lipecz, A.; Horváth, H.; Sándor, G.L.; et al. Retinal biomarkers for Alzheimer’s disease and vascular cognitive impairment and dementia (VCID): Implication for early diagnosis and prognosis. GeroScience 2020, 42, 1499–1525. [Google Scholar] [CrossRef] [PubMed]
- Vanston, J.E.; Strother, L. Sex differences in the human visual system. J. Neurosci. Res. 2017, 95, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Hougaard, A.; Jensen, B.H.; Amin, F.M.; Rostrup, E.; Hoffmann, M.B.; Ashina, M. Cerebral asymmetry of fMRI-BOLD responses to visual stimulation. PLoS ONE 2015, 10, e0126477. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, B.; Shi, C.; Ma, X.; Sabel, B.A.; Chen, X.; Tao, L. Ocular dominance and functional asymmetry in visual attention networks. Investig. Ophthalmol. Vis. Sci. 2021, 62, 9. [Google Scholar] [CrossRef]
- El-Ashry, M.; Hegde, V.; James, P.; Pagliarini, S. Analysis of macular thickness in British population using optical coherence tomography (OCT): An emphasis on interocular symmetry. Curr. Eye Res. 2008, 33, 693–699. [Google Scholar] [CrossRef]
- Altan, C.; Arman, B.H.; Arici, M.; Urdem, U.; Solmaz, B.; Pasaoglu, I.; Basarir, B.; Onmez, F.; Taskapili, M. Normative posterior pole asymmetry analysis data in healthy Caucasian population. Eur. J. Ophthalmol. 2019, 29, 386–393. [Google Scholar] [CrossRef]
- Çubuk, M.; Kasım, B.; Koçluk, Y.; Sukgen, E.A. Effects of age and gender on macular thickness in healthy subjects using spectral optical coherence tomography/scanning laser ophthalmoscopy. Int. Ophthalmol. 2018, 38, 127–131. [Google Scholar] [CrossRef]
- Ly, A.; Banh, J.; Luu, P.; Huang, J.; Yapp, M.; Zangerl, B. Interocular asymmetry of the superonasal retinal nerve fibre layer thickness and blood vessel diameter in healthy subjects. PLoS ONE 2019, 14, e0226728. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, A.G.; Bendtsen, M.D.; Vorum, H.; Bøgsted, M.; Hargitai, J. Normal value ranges for central retinal thickness asymmetry in healthy Caucasian adults measured by SPECTRALIS SD-OCT posterior pole asymmetry analysis. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3875–3882. [Google Scholar] [CrossRef] [PubMed]
- Al-Haddad, C.; Antonios, R.; Tamim, H.; Noureddin, B. Interocular symmetry in retinal and optic nerve parameters in children as measured by spectral domain optical coherence tomography. Br. J. Ophthalmol. 2014, 98, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Pawar, N.; Maheshwari, D.; Ravindran, M.; Ramakrishnan, R. Interocular symmetry of retinal nerve fiber layer and optic nerve head parameters measured by Cirrus high-definition optical coherence tomography in a normal pediatric population. Indian J. Ophthalmol. 2017, 65, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Song, M.Y.; Hwang, Y.H. Interocular symmetry of optical coherence tomography parameters in healthy children and adolescents. Sci. Rep. 2022, 12, 653. [Google Scholar] [CrossRef] [PubMed]
- Adhi, M.; Aziz, S.; Muhammad, K.; Adhi, M.I. Macular thickness by age and gender in healthy eyes using spectral domain optical coherence tomography. PLoS ONE 2012, 7, e37638. [Google Scholar] [CrossRef] [PubMed]
- Ooto, S.; Hangai, M.; Tomidokoro, A.; Saito, H.; Araie, M.; Otani, T.; Kishi, S.; Matsushita, K.; Maeda, N.; Shirakashi, M.; et al. Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8769–8779. [Google Scholar] [CrossRef]
- Ooto, S.; Hangai, M.; Yoshimura, N. Effects of sex and age on the normal retinal and choroidal structures on optical coherence tomography. Curr. Eye Res. 2015, 40, 213–225. [Google Scholar] [CrossRef]
- Delori, F.C.; Goger, D.G.; Keilhauer, C.; Salvetti, P.; Staurenghi, G. Bimodal spatial distribution of macular pigment: Evidence of a gender relationship. J. Opt. Soc. Am. A 2006, 23, 521–538. [Google Scholar] [CrossRef]
- Haan, J.; Verbraak, F.D.; Visser, P.J.; Bouwman, F.H. Retinal thickness in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2017, 6, 162–170. [Google Scholar] [CrossRef]
- Hart, N.J.; Koronyo, Y.; Black, K.L.; Koronyo-Hamaoui, M. Ocular indicators of Alzheimer’s: Exploring disease in the retina. Acta Neuropathol. 2016, 132, 67–787. [Google Scholar] [CrossRef] [PubMed]
- Archibald, N.K.; Clarke, M.P.; Mosimann, U.P.; Burn, D.J. The retina in Parkinson’s disease. Brain 2009, 132, 1128–1145. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Zhu, X.H.; Liu, Y.H. Potential role of retina as a progression of Parkinson’s disease. Int. J. Ophthalmol. 2011, 4, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Varga, B.E.; Gao, W.; Laurik, K.L.; Tátrai, E.; Simó, M.; Somfai, G.M.; DeBuc, D.C. Investigating tissue optical properties and texture descriptors of the retina in patients with multiple sclerosis. PLoS ONE 2015, 10, e0143711. [Google Scholar] [CrossRef] [PubMed]
- Tazarjani, H.D.; Amini, Z.; Kafieh, R.; Ashtari, F.; Sadeghi, E. Retinal OCT texture analysis for differentiating healthy controls from multiple sclerosis (MS) with/without optic neuritis. BioMed Res. Int. 2021, 2021, 5579018. [Google Scholar] [CrossRef] [PubMed]
- Nuzzi, R.; Scalabrin, S.; Becco, A.; Panzica, G. Gonadal hormones and retinal disorders: A review. Front. Endocrinol. 2018, 9, 66. [Google Scholar] [CrossRef]
- Nuzzi, R.; Caselgrandi, P. Sex hormones and their effects on ocular disorders and pathophysiology: Current aspects and our experience. Int. J. Mol. Sci. 2022, 23, 3269. [Google Scholar] [CrossRef]
- Shaqiri, A.; Roinishvili, M.; Grzeczkowski, L.; Chkonia, E.; Pilz, K.; Mohr, C.; Brand, A.; Kunchulia, M.; Herzog, M.H. Sex-related differences in vision are heterogeneous. Sci. Rep. 2018, 8, 7521. [Google Scholar] [CrossRef]
- Schuman, J.; Orgul, S.; Gugleta, K.; Dubler, B.; Flammer, J. Interocular difference in progression of glaucoma correlates with interocular differences in retrobulbar circulation. Am. J. Ophthalmol. 2000, 129, 728–733. [Google Scholar] [CrossRef]
- Xu, G.; Hu, Y.; Zhu, S.; Guo, Y.; Xiong, L.; Fang, X.; Liu, J.; Zhang, Q.; Huang, N.; Zhou, J.; et al. A multicenter study of interocular symmetry of corneal biometrics in Chinese myopic patients. Sci. Rep. 2021, 11, 5536. [Google Scholar] [CrossRef]
- Cava, J.A.; Allphin, M.T.; Mastey, R.R.; Gaffney, M.; Linderman, R.E.; Cooper, R.F.; Carroll, J. Assessing interocular symmetry of the foveal cone mosaic. Investig. Ophthalmol. Vis. Sci. 2020, 61, 23. [Google Scholar] [CrossRef] [PubMed]
- Anantrasirichai, N.; Achim, A.; Morgan, J.E.; Erchova, I.; Nicholson, L. SVM-based texture classification in optical coherence tomography. In Proceedings of the 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, USA, 7–11 April 2013; pp. 1332–1335. [Google Scholar] [CrossRef]
- Nunes, A.; Silva, G.; Duque, C.; Januário, C.; Santana, I.; Ambrósio, A.F.; Castelo-Branco, M.; Bernardes, R. Retinal texture biomarkers may help to discriminate between Alzheimer’s, Parkinson’s, and healthy controls. PLoS ONE 2019, 14, e0218826. [Google Scholar] [CrossRef] [PubMed]
- Julesz, B. Visual pattern discrimination. IRE Trans. Inf. Theory 1962, 8, 84–92. [Google Scholar] [CrossRef]
- Bergen, J.R.; Landy, M.S. Computational modeling of visual texture segregation. In Computational Models of Visual Processing; Landy, M., Movshon, J.A., Eds.; MIT Press: Cambridge, MA, USA, 1991; pp. 253–271. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Tourassi, G.D. Journey toward computer-aided diagnosis: Role of image texture analysis. Radiology 1999, 213, 317–320. [Google Scholar] [CrossRef]
- Castellano, G.L.; Bonilha, L.; Li, L.M.; Cendes, F. Texture analysis of medical images. Clin. Radiol. 2004, 59, 1061–1069. [Google Scholar] [CrossRef]
- Nunes, A.; Serranho, P.; Quental, H.; Ambrósio, A.F.; Castelo-Branco, M.; Bernardes, R. Sexual dimorphism of the adult human retina assessed by optical coherence tomography. Health Technol. 2020, 10, 913–924. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Li, K.; Wu, X.; Chen, D.; Sonka, M. Optimal surface segmentation in volumetric images—A graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 28, 119–134. [Google Scholar] [CrossRef]
- Garvin, M.K.; Abramoff, M.D.; Wu, X.; Russell, S.R.; Burns, T.L.; Sonka, M. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 2009, 28, 1436–1447. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Garvin, M.K.; Sonka, M. Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, P.; Rodrigues, P.; Lobo, C.; Leal, S.; Figueira, J.; Serranho, P.; Bernardes, R. Ocular fundus reference images from optical coherence tomography. Comput. Med. Imaging Graph. 2014, 38, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Soh, L.-K.; Tsatsoulis, C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 1999, 37, 780–795. [Google Scholar] [CrossRef]
- Clausi, D.A. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 2002, 28, 45–62. [Google Scholar] [CrossRef]
- Storey, J.D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B 2002, 64, 479–498. [Google Scholar] [CrossRef]
Female | Male | |
---|---|---|
N | 49 | 49 |
Age (years): mean(std) | 42.5(16.3) | 42.0(16.0) |
Age (years): min(max) | 19(74) | 20(74) |
Right (left) eyes | 49(49) | 49(49) |
Total acquisitions | 98 | 98 |
Females | Males | |
---|---|---|
Non-corrected results | 21 | 2 |
Bonferroni | 2 | 0 |
Benjamini-Hochberg | 2 | 0 |
False Discovery Rate | 6 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, A.; Serranho, P.; Guimarães, P.; Ferreira, J.; Castelo-Branco, M.; Bernardes, R. When Sex Matters: Differences in the Central Nervous System as Imaged by OCT through the Retina. J. Imaging 2024, 10, 6. https://doi.org/10.3390/jimaging10010006
Nunes A, Serranho P, Guimarães P, Ferreira J, Castelo-Branco M, Bernardes R. When Sex Matters: Differences in the Central Nervous System as Imaged by OCT through the Retina. Journal of Imaging. 2024; 10(1):6. https://doi.org/10.3390/jimaging10010006
Chicago/Turabian StyleNunes, Ana, Pedro Serranho, Pedro Guimarães, João Ferreira, Miguel Castelo-Branco, and Rui Bernardes. 2024. "When Sex Matters: Differences in the Central Nervous System as Imaged by OCT through the Retina" Journal of Imaging 10, no. 1: 6. https://doi.org/10.3390/jimaging10010006
APA StyleNunes, A., Serranho, P., Guimarães, P., Ferreira, J., Castelo-Branco, M., & Bernardes, R. (2024). When Sex Matters: Differences in the Central Nervous System as Imaged by OCT through the Retina. Journal of Imaging, 10(1), 6. https://doi.org/10.3390/jimaging10010006