Forest Disturbance Monitoring Using Cloud-Based Sentinel-2 Satellite Imagery and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Satellite-Based Dataset
2.3. Ground-Based Dataset
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Hirka, A.; Pödör, Z.; Garamszegi, B.; Csóka, G. A magyarországi erdei aszálykárok fél évszázados trendjei (1962–2011). [50 years trends of the forest drought damage in Hungary (1962–2011)]. Erdészettudományi Közlemények 2018, 8, 11–25. [Google Scholar] [CrossRef]
- MacAllister, S.; Mencuccini, M.; Sommer, U.; Engel, J.; Hudson, A.; Salmon, Y.; Dexter, K.G. Drought-induced mortality in Scots pine: Opening the metabolic black box. Tree Physiol. 2019, 39, 1358–1370. [Google Scholar] [CrossRef]
- Teshome, D.T.; Zharare, G.E.; Naidoo, S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. Front. Plant Sci. 2020, 11, 601009. [Google Scholar] [CrossRef] [PubMed]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Tomppo, E.; Wang, G.; Praks, J.; McRoberts, R.E.; Waser, L.T. Editorial Summary, Remote Sensing Special Issue “Advances in Remote Sensing for Global Forest Monitoring”. Remote Sens. 2021, 13, 597. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Remote Sensing: An Overview. Available online: https://earthdata.nasa.gov/learn/backgrounders/remote-sensing (accessed on 5 December 2023).
- European Space Agency (ESA). Sentinel-2 Overview. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 5 December 2023).
- Congalton, R.G. Mapping and Monitoring Forest Cover. Forests 2021, 12, 1184. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact. 2003, 7, 1–15. [Google Scholar] [CrossRef]
- Somogyi, Z.; Koltay, A.; Molnár, T.; Móricz, N. Forest health monitoring system in Hungary based on MODIS products. In Theory, Meets Practice in GIS, Proceedings of the 9. Hungarian GIS Conference and Exhibition, Debrecen, Hungary, 24–25 May 2018; Molnár, V.É., Ed.; Debrecen University Press: Debrecen, Hungary, 2018; pp. 325–330. ISBN 978-963-318-723-4. [Google Scholar]
- National Aeronautics and Space Administration (NASA). MODIS. 2019. Available online: https://terra.nasa.gov/about/terra-instruments/modis (accessed on 5 December 2023).
- Barka, I.; Lukeš, P.; Bucha, T.; Hlásny, T.; Strejček, R.; Mlčoušek, M.; Křístek, Š. Remote sensing-based forest health monitoring systems—Case studies from Czechia and Slovakia. Cent. Eur. For. J. 2018, 64, 259–275. [Google Scholar]
- Lukeš, P.; Strejček, R.; Křístek, Š.; Mlčoušek, M. Hodnocení zdravotního stavu lesních porostů v České republice pomocí dat Sentinel-2. [Forest Health Assessment in Czech Republic Using Sentinel-2 Satellite Data]. 2018. Available online: http://www.uhul.cz/images/aktuality_doc/Metodika_-_final.pdf (accessed on 5 December 2023).
- Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.; Schelhaas, M.J.; Svoboda, M.; et al. Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Curr. For. Rep. 2021, 7, 138–165. [Google Scholar] [CrossRef]
- Saarinen, N.; White, J.C.; Wulder, M.A.; Kangas, A.; Tuominen, S.; Kankare, V.; Holopainen, M.; Hyyppä, J.; Vastaranta, M. Landsat archive holdings for Finland: Opportunities for forest monitoring. Silva Fenn. 2018, 52, 9986. [Google Scholar] [CrossRef]
- Kern, A.; Marjanović, H.; Csóka, G.; Móricz, N.; Pernek, M.; Hirka, A.; Matošević, D.; Paulin, M.; Kovač, G. Detecting the oak lace bug infestation in oak forests using MODIS and meteorological data. Agric. For. Meteorol. 2021, 306, 108436. [Google Scholar] [CrossRef]
- Barka, I.; Bucha, T.; Molnár, T.; Móricz, N.; Somogyi, Z.; Koreň, M. Suitability of MODIS-based NDVI index for forest monitoring and its seasonal applications in Central Europe. Cent. Eur. For. J. 2019, 66, 206–217. [Google Scholar] [CrossRef]
- Bárta, V.; Lukeš, P.; Homolová, L. Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102335. [Google Scholar] [CrossRef]
- Barton, I.; Király, G.; Czimber, K. Sentinel-2A űrfelvétel-idősorozat sűrűség vizsgálata az országos erdőállományra; [Survey of Sentinel-2 satellite image density for country-wide forests]. In Soproni Egyetem Erdőmérnöki Kar VI; Bidló, A., Facskó, F., Eds.; Faculty Scientific Conference of University of Sopron, Faculty of Forestry, University of Sopron Press: Sopron, Hungary, 2018; pp. 123–127. [Google Scholar]
- Hawryło, P.; Bednarz, B.; Wężyk, P.; Szostak, M. Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2. Eur. J. Remote Sens. 2018, 51, 194–205. [Google Scholar] [CrossRef]
- Szostak, M.; Szostak, P.; Piela, D. Using of Sentinel-2 images for automation of the forest succession detection. Eur. J. Remote Sens. 2018, 51, 142–149. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Lastovicka, J.; Svec, P.; Paluba, D.; Kobliuk, N.; Svoboda, J.; Hladky, R.; Stych, P. Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sens. 2020, 12, 1914. [Google Scholar] [CrossRef]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef]
- Bar, S.; Parida, B.R.; Chandra Pandey, A. Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on the GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sens. Appl. Soc. Environ. 2020, 18, 100324. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, N.; Chen, Y.; Gao, S. Comparison of different machine learning methods for GPP estimation using remote sensing data. IOP Conf. Ser. Mater. Sci. Eng. 2019, 490, 062010. [Google Scholar] [CrossRef]
- Niculescu, S.S.; Billey, A.; Talab-Ou-Ali, H. Random forest classification using Sentinel-1 and Sentinel-2 series for vegetation monitoring in the Pays de Brest (France). In Proceedings of the SPIE Remote Sensing 2018, Berlin, Germany, 10–13 September 2018; p. 1078305. [Google Scholar] [CrossRef]
- Svoboda, J.; Štych, P.; Laštovička, J.; Paluba, D.; Kobliuk, N. Random Forest Classification of Land Use, Land-Use Change and Forestry (LULUCF) Using Sentinel-2 Data—A Case Study of Czechia. Remote Sens. 2022, 14, 1189. [Google Scholar] [CrossRef]
- Puletti, N.; Chianucci, F.; Castaldi, C. Use of Sentinel-2 for forest classification in Mediterranean environments. Ann. Silvic. Res. 2017, 42, 32–38. [Google Scholar] [CrossRef]
- Osei, J.C.; Andam-Akorful, S.; Osei Jnr, E. Long Term Monitoring of Ghana’s Forest Reserves Using Google Earth Engine. Preprint 2019. [Google Scholar] [CrossRef]
- Hamunyela, E.; Rosca, S.; Mirt, A.; Engle, E.; Herold, M.; Gieseke, F.; Verbesselt, J. Implementation of BFASTmonitor Algorithm on Google Earth Engine to Support Large-Area and Sub-Annual Change Monitoring Using Earth Observation Data. Remote Sens. 2020, 12, 2953. [Google Scholar] [CrossRef]
- Stefanos, S.; Vasileios, A.; Giorgos, M. A cloud-based mapping approach for assessing spatiotemporal changes in erosion dynamics due to biotic and abiotic disturbances in a Mediterranean Peri-Urban forest. Catena 2022, 218, 106564. [Google Scholar] [CrossRef]
- Hortobágy National Park (HNP). Debreceni Nagyerdő TT. [Nagyerdő of Debrecen, Nature Conservation Area]. Available online: https://www.hnp.hu/hu/szervezeti-egyseg/termeszetvedelem/oldal/debreceni-nagyerdo-tt (accessed on 5 December 2023).
- Botos, G. The city of Debrecen and its green-belt, the Nagyerdő. Az Erdő 1971, 20, 40–53. [Google Scholar]
- Google. Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR (accessed on 5 December 2023).
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1974; Volume 1, pp. 48–62. [Google Scholar]
- Peters, A.J.; Walter-Shea, E.A.; Andrés Viña, L.J.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based standardized vegetation index. Photogramm. Eng. Remote Sens. 2002, 68, 72–75. [Google Scholar]
- QGIS. QGIS Geographic Information System. QGIS Association. Web Site. 2023. Available online: http://www.qgis.org (accessed on 5 December 2023).
- Hirka, A. A 2018. évi biotikus és abiotikus erdőgazdasági károk, valamint a 2019-ben várható károsítások. [Biotic and Abiotic Forest Damage in 2018 and Expected Ones in 2019]. Web Site. 2019. Available online: https://nfk.gov.hu/download.php?id_file=40718 (accessed on 5 December 2023).
- Hirka, A. A 2019. évi biotikus és abiotikus erdőgazdasági károk, valamint a 2020-ban várható károsítások. [Biotic and Abiotic Forest Damage in 2019 and Expected Ones in 2020]. Web Site. 2020. Available online: https://erti.naik.hu/system/files/uploads/2020-09/prognozis_2019-2020.pdf (accessed on 5 December 2023).
- Congedo, L. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 4. [Google Scholar]
- Árvai, M.; Morgós, A.; Kern, Z. Growth-climate relations and the enhancement of drought signals in pedunculate oak (Quercus robur L.) tree-ring chronology in Eastern Hungary. iForest 2018, 11, 267–274. [Google Scholar] [CrossRef]
- Chen, S.; Woodcock, C.E.; Bullock, E.L.; Arévalo, P.; Torchinava, P.; Peng, S.; Olofsson, P. Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sens. Environ. 2021, 265, 112648. [Google Scholar] [CrossRef]
- Montzka, C.; Bayat, B.; Tewes, A.; Mengen, D.; Vereecken, H. Sentinel-2 Analysis of Spruce Crown Transparency Levels and Their Environmental Drivers After Summer Drought in the Northern Eifel (Germany). Front. For. Glob. Change 2021, 4, 667151. [Google Scholar] [CrossRef]
- Francini, S.; Chirici, G. A Sentinel-2 derived dataset of forest disturbances occurred in Italy between 2017 and 2020. Data Brief 2022, 42, 108297. [Google Scholar] [CrossRef]
- Gašparović, M.; Klobučar, D.; Gašparović, I. Automatic Forest degradation monitoring by remote sensing methods and Copernicus data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B3-2022, 611–616. [Google Scholar] [CrossRef]
- Mantas, V.; Fonseca, L.; Baltazar, E.; Canhoto, J.; Abrantes, I. Detection of Tree Decline (Pinus pinaster Aiton) in European Forests Using Sentinel-2 Data. Remote Sens. 2022, 14, 2028. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef]
- Axelsson, A.; Lindberg, E.; Reese, H.; Olsson, H. Tree species classification using Sentinel-2 imagery and Bayesian inference. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102318. [Google Scholar] [CrossRef]
- Tarrio, K.; Tang, X.; Masek, J.G.; Claverie, M.; Shi Qiu, J.J.; Zhu, Z.; Woodcock, C.E. Comparison of cloud detection algorithms for Sentinel-2 imagery. Sci. Remote Sens. 2020, 2, 100010. [Google Scholar] [CrossRef]
- Chen, N.; Tsendbazar, N.E.; Hamunyela, E.; Verbesselt, J.; Herold, M. Sub-annual tropical forest disturbance monitoring using harmonized Landsat and Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102386. [Google Scholar] [CrossRef]
- Pacheco-Pascagaza, A.M.; Gou, Y.; Louis, V.; Roberts, J.F.; Rodríguez-Veiga, P.; da Conceição Bispo, P.; Espírito-Santo, F.D.B.; Robb, C.; Upton, C.; Galindo, G.; et al. Near Real-Time Change Detection System Using Sentinel-2 and Machine Learning: A Test for Mexican and Colombian Forests. Remote Sens. 2022, 14, 707. [Google Scholar] [CrossRef]
- Yang, S. Detecting Bark Beetle Damage with Sentinel-2 Multi-Temporal Data in Sweden. Master’s Thesis, Department of Physical Geography and Ecosystem Science Lund University, Lund, Sweden, 2021. [Google Scholar]
- Siņica-Siņavskis, J.; Dinuls, R.; Zarins, J.; Mednieks, I. Automatic tree species classification from Sentinel-2 images using deficient inventory data. In Proceedings of the 17th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 6–8 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Birinyi, E.; Kristóf, D.; Barcza, Z.; Kern, A. Vegetációs indexek és meteorológiai tényezők idősorainak aszálydetektálási célú vizsgálata különböző hazai termőtájakon, kukorica haszonnövényre. [Analysis of Vegetation indices and meteorological factors for detecting drought in corn plantations in different Hungarian landscapes]. In XII: Theory Meets Practice in GIS; Molnár, V.É., Ed.; University of Debrecen Press: Debrecen, Hungary, 2021; pp. 67–68. ISBN 978-963-318-977-1. [Google Scholar]
- Wang, Q.; Blackburn, G.; Onojeghuo, A.; Dash, J.; Zhou, L.; Zhang, Y.; Atkinson, P. Fusion of Landsat 8 OLI and Sentinel-2 MSI Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [Google Scholar] [CrossRef]
Band Number | Bands | Central Wavelength (µm) | Resolution (m) |
---|---|---|---|
Band 1 | Coastal aerosol | 0.443 | 60 |
Band 2 | Blue | 0.490 | 10 |
Band 3 | Green | 0.560 | 10 |
Band 4 | Red | 0.665 | 10 |
Band 5 | Vegetation red edge | 0.705 | 20 |
Band 6 | Vegetation red edge | 0.740 | 20 |
Band 7 | Vegetation red edge | 0.783 | 20 |
Band 8 | Near-infrared | 0.842 | 10 |
Band 8A | Vegetation red edge | 0.865 | 20 |
Band 9 | Water vapour | 0.945 | 60 |
Band 10 | Short-wave infrared cirrus | 1.375 | 60 |
Band 11 | Short-wave infrared | 1.610 | 20 |
Band 12 | Short-wave infrared | 2.190 | 20 |
2017 | 2018 | ||||
Reference | |||||
Damaged | Non-damaged | Damaged | Non-damaged | ||
Classified | Damaged | 72 | 25 | 55 | 32 |
Non-damaged | 3 | 0 | 1 | 12 | |
2019 | 2020 | ||||
Reference | |||||
Damaged | Non-damaged | Damaged | Non-damaged | ||
Classified | Damaged | 75 | 25 | 72 | 28 |
Non-damaged | 0 | 0 | 0 | 0 |
2017 | 2018 | 2019 | 2020 | Mean | |
---|---|---|---|---|---|
Producer’s accuracy (%) | 99.19 | 99.89 | 100 | 99.42 | 99.63 |
User’s accuracy (%) | 74.01 | 62.69 | 74.62 | 72.25 | 70.89 |
Total accuracy (%) | 73.70 | 63.24 | 74.51 | 71.95 | 70.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnár, T.; Király, G. Forest Disturbance Monitoring Using Cloud-Based Sentinel-2 Satellite Imagery and Machine Learning. J. Imaging 2024, 10, 14. https://doi.org/10.3390/jimaging10010014
Molnár T, Király G. Forest Disturbance Monitoring Using Cloud-Based Sentinel-2 Satellite Imagery and Machine Learning. Journal of Imaging. 2024; 10(1):14. https://doi.org/10.3390/jimaging10010014
Chicago/Turabian StyleMolnár, Tamás, and Géza Király. 2024. "Forest Disturbance Monitoring Using Cloud-Based Sentinel-2 Satellite Imagery and Machine Learning" Journal of Imaging 10, no. 1: 14. https://doi.org/10.3390/jimaging10010014
APA StyleMolnár, T., & Király, G. (2024). Forest Disturbance Monitoring Using Cloud-Based Sentinel-2 Satellite Imagery and Machine Learning. Journal of Imaging, 10(1), 14. https://doi.org/10.3390/jimaging10010014