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Abstract: Forest damage has become more frequent in Hungary in the last decades, and remote sens-
ing offers a powerful tool for monitoring them rapidly and cost-effectively. A combined approach was
developed to utilise high-resolution ESA Sentinel-2 satellite imagery and Google Earth Engine cloud
computing and field-based forest inventory data. Maps and charts were derived from vegetation
indices (NDVI and Z·NDVI) of satellite images to detect forest disturbances in the Hungarian study
site for the period of 2017–2020. The NDVI maps were classified to reveal forest disturbances, and the
cloud-based method successfully showed drought and frost damage in the oak-dominated Nagyerdő
forest of Debrecen. Differences in the reactions to damage between tree species were visible on the
index maps; therefore, a random forest machine learning classifier was applied to show the spatial
distribution of dominant species. An accuracy assessment was accomplished with confusion matrices
that compared classified index maps to field-surveyed data, demonstrating 99.1% producer, 71%
user, and 71% total accuracies for forest damage and 81.9% for tree species. Based on the results of
this study and the resilience of Google Earth Engine, the presented method has the potential to be
extended to monitor all of Hungary in a faster, more accurate way using systematically collected
field-data, the latest satellite imagery, and artificial intelligence.
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1. Introduction

The increasing occurrence of combined biotic and abiotic disturbances in recent years is
putting forests at a greater risk of severe damage all around Europe [1]. The frequency and
severity of large-scale droughts, fires, and insect outbreaks have reached unprecedented
levels [2]. In addition, climate change exacerbates both types of disturbances [3]; thus,
studying forest ecosystems on the European level is necessary and could reveal negative
responses to forest disturbances.

As is the case in all of Europe, in Hungary, the occurrences of abiotic (windfall, snow
break, droughts, flood, fire, etc.), and biotic (insects, wildlife, virus, and fungi) disturbances
have increased in their number and intensity in recent decades, which is visible in the
damage trends as well [4]. When tree stands are damaged, the yield significantly decreases
and mortality increases. This results in a lower photosynthetic activity and tree vitality.
Damage chains can appear as well, since the probability of biotic damage made by insects
is higher after severe abiotic damage such as a drought, when the defence mechanisms of
trees are weakened and more vulnerable [5]. Both biotic and abiotic disturbances and their
combinations concern the scientific community, since the vulnerability of forests increases
under climate change. Not only the declination of forest health but also massive tree
mortality was reported, which has great ecological and economic importance [6].

Both biotic and abiotic damage can be detected using remote sensing, on which
complex forest monitoring systems can be built [7,8]. Using remote sensing (RS), we
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can monitor the physical characteristics of forests from a distance by utilising emitted
and reflected solar radiation [9]. Satellite-based RS methods offer great opportunities to
collect comprehensive data about the current state of health and temporal dynamics of
forests, with a high temporal (from 2 to 5 days up to intraday) and spatial (from 10 m to
submeter) resolution [10]. In addition to abiotic and biotic damage, satellite images detect
anthropogenic activities affecting forest health, such as forest management with clearcuts,
selective cutting, and reforestation, which makes them ideal for large-area forest mapping
and monitoring of all disturbance types [11].

The utilisation of optical satellite image series data provides a powerful, precise and
cost-efficient means of detecting changes in forest health [12]. The European Space Agency’s
(ESA) Sentinel-2 (S-2) satellite imagery, available since 2015, with a 10 × 10 m spatial
resolution and 2–5-day revisit time, has multiplied the available amount of geospatial
data, making it possible to develop forest monitoring approaches and systems, even with
harmonised, long-term datasets.

Forest monitoring approaches can be divided into two groups: systems and services.
Systems are created for entire countries, utilising a national database, developed by pro-
fessionals from institutes with specific forestry knowledge. The results are published on
interactive web pages, and the systems’ services are updated regularly. A forest monitoring
system was developed in Hungary, called ‘TEMRE’, capable of detecting different types
of damage based on vegetation indices derived from MODIS [13] and Sentinel-2 and -3
imageries [14]. The changes in forest health are monitored in wall-to-wall systems, utilising
harmonised Landsat and Sentinel-2 image series in the Slovak Republic [15] and Sentinel-2
and Planet in the Czech Republic [16]. The Czech system focuses on spruce bark beetle
(Ips typhographus) damage, which has become a severe issue lately in several European
countries [17]. Buras et al. [2] observed and quantified drought impacts with the German
forest condition monitor utilising MODIS images of forests in Germany and Europe, which
is also a frequent problem all over the continent.

The second group of monitoring approaches is services. They are usually developed
and tested for study areas and specific reasons, e.g., a natural disaster. The results are
published in articles, and the maps are not available online for access. The scale of these
services ranges from nationwide ones to smaller study areas.

Landsat satellites were utilised to investigate how the spatial and temporal character-
istics of the Landsat archive can support forest monitoring in Finland [18]. Kern et al. [19]
focused on the biotic damage in certain parts of Hungary and Croatia caused by the oak
lace bug (Corythucha arcuata), while other Sentinel-based development projects have begun
in several countries (Poland, Czech Republic, and Slovak Republic) for several reasons in-
cluding forest health change [20,21], treefall gap [22], defoliation [23], and forest succession
detection [24].

In both types of monitoring approaches, machine learning (ML) can be applied, which
is an application of artificial intelligence that can be used in the Google Earth Engine
(GEE) cloud computing platform [25] to expand the potential of monitoring forest health
disturbances [26], identifying forest damage or classify tree species [27], which helps
interpretation of forest maps more properly. ML algorithms like random forest (RF),
minimum distance estimation, support vector machine, k-nearest neighbour regression,
and gradient boost regression tree could be applied [28,29] to achieve monitoring goals.
This study applied the RF algorithm, which is suitable for vegetation [30] and land cover
monitoring [31], but also tree species classification [32]. The above-mentioned ML methods
could potentially provide valuable information about forest health. Hence, they could be
used to predict future states, which could further the enhance monitoring efficiency.

The main objective of this study was to test the GEE cloud computing method on
Sentinel-2 imagery to reveal spatial and temporal changes in the forest cover and health
in Hungary. The GEE is capable of executing the monitoring tasks in the online cloud:
accessing, storing, processing, analysing, and visualising big data enables the fast and
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convenient monitoring of forests [33] and the effect of forest disturbances [34]. Cloud
processing is a fast and powerful tool for monitoring [35], which is ideal for our goal.

The other objective was to test whether the validation of satellite maps is possible
using ground-based datasets of the Hungarian Forestry Database (FD) and Hungarian
National Forest Damage Registration System, where data are collected and stored regularly
for the whole country in a uniform way. The ultimate goal is to automatise the moni-
toring process using both the remotely sensed and field-based datasets in a wall-to-wall
monitoring system.

2. Materials and Methods
2.1. Study Site

The Nagyerdő (Great Forest) of Debrecen is situated north of the city of Debrecen
(21.63◦ N, 47.57◦ E) in eastern Hungary (Figure 1) and covers a 1092 ha, contiguous,
protected area [36]. In the past, the loess and sandy soils in the area had a favourable water
supply that maintained large, continuous forests. Today, a drier climate, river regulations,
and forest cutting have reduced the forest to smaller patches.

J. Imaging 2024, 10, x FOR PEER REVIEW 3 of 17 
 

 

The main objective of this study was to test the GEE cloud computing method on 
Sentinel-2 imagery to reveal spatial and temporal changes in the forest cover and health 
in Hungary. The GEE is capable of executing the monitoring tasks in the online cloud: 
accessing, storing, processing, analysing, and visualising big data enables the fast and 
convenient monitoring of forests [33] and the effect of forest disturbances [34]. Cloud pro-
cessing is a fast and powerful tool for monitoring [35], which is ideal for our goal. 

The other objective was to test whether the validation of satellite maps is possible 
using ground-based datasets of the Hungarian Forestry Database (FD) and Hungarian 
National Forest Damage Registration System, where data are collected and stored regu-
larly for the whole country in a uniform way. The ultimate goal is to automatise the mon-
itoring process using both the remotely sensed and field-based datasets in a wall-to-wall 
monitoring system. 

2. Materials and Methods 
2.1. Study Site 

The Nagyerdő (Great Forest) of Debrecen is situated north of the city of Debrecen 
(21.63° N, 47.57° E) in eastern Hungary (Figure 1) and covers a 1092 ha, contiguous, pro-
tected area [36]. In the past, the loess and sandy soils in the area had a favourable water 
supply that maintained large, continuous forests. Today, a drier climate, river regulations, 
and forest cutting have reduced the forest to smaller patches.  

 
Figure 1. Location of the Nagyerdő in Eastern Hungary, north of the city of Debrecen. 

The most typical forest communities in the Nagyerdő are oak with lily of the valley 
(Convallario—Quercetum roboris); oak–hornbeam (Querco robori—Carpinetum) and open 
oak forests on sand (Festuco rupicolae—Quercetum roboris), which were common in previ-
ous times, have disappeared.  

The tree composition of the Nagyerdő includes multiple species, but the oldest, larg-
est, and most important, protected pedunculate oaks (Quercus robur) can be found in the 

Figure 1. Location of the Nagyerdő in Eastern Hungary, north of the city of Debrecen.

The most typical forest communities in the Nagyerdő are oak with lily of the valley
(Convallario—Quercetum roboris); oak–hornbeam (Querco robori—Carpinetum) and open oak
forests on sand (Festuco rupicolae—Quercetum roboris), which were common in previous
times, have disappeared.

The tree composition of the Nagyerdő includes multiple species, but the oldest, largest,
and most important, protected pedunculate oaks (Quercus robur) can be found in the old
forest. Other domestic species like silver poplar (Populus alba), wild cherry (Prunus avium),
Tatar maple (Acer tataricum), field maple (Acer campestre), field elm (Ulmus minor), wych
elm (Ulmus glabra), large-leaved lime (Tilia platyphyllos), or silver lime (Tilia tormentosa) can
be found too, while black locust (Robinia pseudoacacia), Scots pine (Pinus sylvestris), and red
oak (Quercus rubra) are the most frequently found foreign species.
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The forest has been suffering for decades from increasing abiotic damage as well
as from more and more frequent drought stress during the spring and summer due to
decreased precipitation and a lower groundwater level, resulting in a decreasing yield and
lower vitality [37], while ice damage takes place during springs when seedlings and young
trees freeze, and game damage is also observed in sites of reforestation.

The forest was divided into four quarters; drought and frost damage occurred mostly
in the NW and NE quarters, but it also occurred in the SW and SE quarters, to a lesser
degree. A total of 131 forest compartments out of 394 (33%) were damaged.

2.2. Satellite-Based Dataset

Sentinel-2 imagery from the European Space Agency has been available since 2015,
with a 2–5-day revisit time, high 10 × 10–60 × 60 m spatial resolution, and a free and
open data policy, which makes it ideal for forest monitoring (ESA 2022). The multispectral
instrument measures the radiance of the surface of Earth in 13 spectral bands (Table 1).

Table 1. Spectral bands of Sentinel-2 multispectral instrument.

Band Number Bands Central Wavelength (µm) Resolution (m)

Band 1 Coastal aerosol 0.443 60
Band 2 Blue 0.490 10
Band 3 Green 0.560 10
Band 4 Red 0.665 10
Band 5 Vegetation red edge 0.705 20
Band 6 Vegetation red edge 0.740 20
Band 7 Vegetation red edge 0.783 20
Band 8 Near-infrared 0.842 10

Band 8A Vegetation red edge 0.865 20
Band 9 Water vapour 0.945 60

Band 10 Short-wave infrared
cirrus 1.375 60

Band 11 Short-wave infrared 1.610 20
Band 12 Short-wave infrared 2.190 20

Sentinel-2 satellite data accessing, processing, analysis, and visualisation was per-
formed online in Google Cloud using the application interface of GEE [38]. GEE uses both
JavaScript and Python programming languages; here, JavaScript was used. The method
used in GEE consists of several steps, shown in the flowchart (Figure 2). In order to create
high-quality satellite composites for the study period, spatial, temporal, and quality filter-
ing and masking were applied. Vegetation indices and classified forest maps were derived
from these composites aiming to show the vegetation health state and species composition.

The Sentinel-2 L2A satellite imagery of the ESA provided the basis for the remote-
sensing survey at a 10 × 10 m spatial resolution as the first step in the process. The
bottom-of-atmosphere reflectance-based (level 2) annual composites were created with
GEE for each year between 2017 and 2020 using spatial, temporal, and quality filtering for
the region of interest (ROI), time window, and cloud coverage. The annual composites
were made from the S-2_SR collection by applying the pixel-wise filters and reducers to
create cloud-free images for vegetation periods.

Spatial filtering using filterBounds was calibrated to filter pixels outside of the study
area (or ROI), which was given in a shapefile polygon and a WGS84 (EPSG 4326) coordinate
reference system. The polygons are from the Hungarian Forest Database, and they were
filtered to exclude forest compartments with water surfaces, roads, buildings, openings,
nursery gardens, and keep only forest-covered areas.

Similarly, we defined a time window using filterDate based on the vegetation period
of each year (e.g., filterDate (‘14 April 2017’, ‘15 October 2017’)) to keep pixels from the
active state of the vegetation. Temporal filtering is also important for reducing the dataset,
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since GEE is not capable of processing large-sized dataset for vast areas and longer periods.
Altogether, 95 images were used for creating composites.

Cloud filtering was completed in two steps. The first step involved prefiltering cloudy
pixels with the metadata of Sentinel-2 (ee.Filter.lte (‘CLOUDY_PIXEL_PERCENTAGE’,
5)) that were less than or equal to 5% of coverage, which was applied on the satellite
image collection. The maximum 5% of cloud coverage limit was necessary to keep enough
images for mosaicking. The second step utilised the QA10 bitmask, where 0 values of 10
and 11 bits refer to cloudless pixels. The two-step filtering resulted in a nearly cloud-free
image collection.
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GEE for forest damage monitoring and tree species classification.

The second step involved the calculation of vegetation indices, where the normalised
difference vegetation index (NDVI) (1) and standardised Z·NDVI (2) were calculated.

The normalised difference vegetation index (NDVI) (1) is the most widely used index
for indirectly measuring the photosynthetic activity of vegetation. It is calculated according
to the following formula [39]:

NDVI = (NIR − RED)/(NIR + RED) (1)

where RED is band 4 and NIR (near infrared) is band 8. The high NDVI values mean
healthy vegetation with strong photosynthetic activity, while low values refer to unhealthy
vegetation or lower vegetation cover. The ee.image.normalizedDifference ([4,8]) function
was used to calculate the NDVI in GEE.

To exhibit greater interannual and spatial changes and show vegetation anomalies
more efficiently, standardised NDVI values (Z·NDVI) (2) [40] were calculated from the
original NDVI:

Z·NDVI = (NDVI − NDVImean)/NDVIstd (2)

where NDVI is the NDVI of the actual year, NDVImean is the multiple-year average of
NDVIs (2017–2020 here), and NDVIstd is the standard deviation of NDVI values (2017–2020).
Using a long-term mean and standard deviation helps to show actual change unlike the
NDVI does, since it shows an actual state in itself.

The third step was the aggregation of the dataset of VIs with reducers, which is needed
to visualise and export the dataset while not exceed the computing limitations of GEE.
Different filters, such as median (.median()), mean (.mean()), and standard deviation (STD)
(.stdDev()), were used for reduction. The mean and STD are used in the formula of the
Z·NDVI, while the median is for displaying and exporting maps. The creation of true
colour composites (RGB) was the fourth step, using red (B4), green (B3), and blue bands
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(B2), and a median filter. Without these reducers, GEE is not capable of calculating mosaics
due to the limitations.

Setting the display parameters and properties was the next step: the map centre (with
ROI polygon as the centre and zoom level), colour palettes (green–red transitional scale for
NDVI), and borders (colour and width) were described for visualisation. These parameters
were used in the sixth step, when the actual visualisation occurred on the GEE platform:
RGB and VI maps and charts. The charts were made with the ui.Chart.image.series function
over the complete dataset, with a median reducer.

The seventh step involved the export of the maps with Export.image.toDrive and
charts with ui.Chart.image.series to Google Drive and a PC. Further offline analysis was
conducted using QGIS 3.22.3. open-source desktop GIS software (QGIS 3.22.3) [41].

VI maps were derived from S-2 composites for each year. The state index maps
provided information on the condition of the forests in each year. A standardised NDVI
was calculated using the time series of 2017–2020, presenting change with a deviation from
median of the four years.

The tree species classification was achieved with ee.Classifier.smileRandomForest
classifier. A median composite of 2021 was used as the base of the dominant species
classification: black locust, Scots pine, pedunculate oak, red oak, and clearcuts. All satellite
bands were used in the classification as an input. The RF algorithm used 100 decision trees
and 10 variables per split at 10 × 10 m spatial resolution.

Manually selected training points on the RGB image gave the base of the sampling;
as training input, these points were utilised for the classification of tree species. Of the
123 points (15 black locust, 22 red oak, 27 Scots pine, 40 pedunculate oak, and 19 clearcut)
selected using the geometry imports function, five classes were defined. The classes
were based on the Hungarian Forestry Database’s ground-based tree species dataset. The
RF-based classification was completed with the training data, and the classified map
was exported using the image.toDrive function, which was later validated with ground-
based data.

2.3. Ground-Based Dataset

Ground-based forest damage reports were applied for validation. The forest protection
damage reports of the Hungarian National Forest Damage Registration System (HNFDRS)
of the Hungarian National Land Centre are collected systematically since 2012, four times
per year throughout the country on forest compartment levels.

In the damage reports, late frost was registered in young stands in 2017, while in 2018,
2019, and 2020 [42,43], drought, frost, and game damage took place in the Nagyerdő. The
damage type is registered in the reports and is available on the HNFDRS website. The data
contain information about damage frequency and intensity (or severity), which are given
for each forest compartment expressed as the percentage of damaged trees for each tree
species (0–100%) (Figure 3) and the intensity of damage (0–100%), respectively [43]. The
damaged area was given in hectares from ground-based reports, while a new attribute,
damage ratio (3), was calculated using the following formula, measured on a 0–100% scale:

Damage ratio = damaged area/total area × 100 (3)

Validation of the RS data with field data of forest health was achieved with confusion
matrices. The damage registered in the forest damage reports was compared to Z·NDVI
values on the pixel level in QGIS 3.22.3 software. For this, the polygons of reports were
rasterised to a 10 × 10 m resolution grid that is identical to the Sentinel-2 images in size.
These rasters of field-based damage reports were reclassified according to the damage
ratio: when it was below 30%, it was assigned a value of 0 (no damage), while above
30%, the value was 1 (damage). While regarding Z·NDVI values, −0.5 was selected as a
threshold. Every pixel was considered forest damage if the value was below the threshold
and marked with 0, while all pixels exceeding the threshold were assigned a value of 1. The
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result maps were analysed using the accuracy assessment postprocessing function of the
semi-automatic classification plugin (SCP) of QGIS in the form of confusion matrices [44].
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Figure 3. Field-based damage map of the Nagyerdő from 2017 to 2020. The most considerable severe
damage was observed in the northern half, but 33% of the area of the forest was damaged overall.

To validate RF-based tree species classification results, the majority value was cal-
culated from RF-based classified pixels in QGIS for each forest compartment with zonal
statistics of the raster analysis function. The majority function showed the most frequent
pixel value of the dominant tree species. The reclassified RF-based tree species map was
compared to field data of the forestry database. The attribute of the dominant species of
the forestry database was compared to the RF-based species. The forest compartment-level
comparison was based on the number of agreements between field-based and classified
tree species. In the MS Excel table, the if function was used to test logical agreement. If
both classification and field data agreed, the operator said true; otherwise, it was false. The
total accuracy was calculated from every forest compartment according to this formula (3):

Tree species total accuracy = correctly classified compartments/total compartments × 100 (4)

2.4. Statistical Analysis

We performed the Shapiro–Wilk test for normality on 100 randomly selected points
from all Z·NDVI maps. This method was applied by the authors of the Z·NDVI formula [40],
and 80% normality was achieved in that study. The points were created with random points
in the layer bounds function of QGIS and analysed using Past 4.14 statistics software [45].

3. Results

Our study managed to show forest damage within the Nagyerdő of Debrecen. The
field-based and remotely sensed datasets were suitable input for cloud computing, and
machine learning was applied for damage detection and tree species classification.

Normality tests were conducted on Z·NDVI maps for each year and found that at
p < 5%, their distribution was normal for at least 95% of the points in 2017, 2018, and 2019.
In these years, p values were 0.37, 0.3, and 0.11, respectively, while in 2020, the p value was
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significantly lower (0.01), but it was not due to the outliers; the bins of Z·NDVI values were
distributed evenly.

Forest health was successfully studied in the period of 2017–2020. The analysis of
Z·NDVI maps showed differences between the years (Figure 4). The map of the year 2017
contained large, healthy, dark green coloured areas with high Z·NDVI values, but also
some damaged, orange, or red areas with a rather open canopy or clearcuts. A decrement
in Z·NDVI values was detected in 2018 in the majority of the forest, with new areas of
clearcuts. A positive anomaly appeared on the maps in 2019 and 2020 caused by artificial
plantings after clearcuts and regeneration forests. However, generally positive changes
were observed, although negative changes were also apparent in these years, like new
clearcuts. Moreover, in 2020, the oak-dominated NE quarter of the forest became less vital.
This negative change is due to drought stress to which pedunculate oak is sensitive [46].
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Figure 4. Annual Z·NDVI composites of the Nagyerdő in 2017 (a), 2018 (b), 2019 (c), and 2020 (d). In
every year, clearcuts, droughts, and frost damage caused a significant drop of photosynthetic activity
when each year was compared to the long-term mean. Regeneration was observed as well, and there
were differences between tree species’ reactions to damage.
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Differences have been observed between the studied years. Both the RS-based and
ground-based methods detected that several forest compartments were damaged in 2017.
However, these differences are less evident in 2018. The year 2018 was generally drier than
2017, and the entire forest appeared to be in a less vital condition in accordance with the
Z·NDVI values, while 2019 was a year with more positive values and fewer damage reports;
thus, better condition. In 2020, the forest state declined again when more damage was
reported and lower Z·NDVI values were observed, especially in the NE quarter, where a
visible phenomenon shows the suffering of pedunculate oak-dominated stands, which lasts
for decades due to drought stress caused by a lack of water and heat periods. However,
there is no perfect match between the ground-based survey of disturbances and RS data,
which could be due to weaker, no-disturbance changes in forests.

Pixel-wise comparisons of remotely sensed Z·NDVI values and ground-based damage
reports were made using confusion matrices, calculated for each year, where the RS-based
Z·NDVI was the classified, and the field reports were the reference values (Table 2).

Table 2. Confusion matrix of forest damage in the period of 2017–2020. Values are given as ratio (%).

2017 2018
Reference

Damaged Non-damaged Damaged Non-damaged

Classified
Damaged 72 25 55 32

Non-damaged 3 0 1 12

2019 2020
Reference

Damaged Non-damaged Damaged Non-damaged

Classified
Damaged 75 25 72 28

Non-damaged 0 0 0 0

User’s (UA), producer’s (PA), and total accuracies (TA) were given for every year as
well. The mean TA for all four years was 70.85% (Table 3). The PA was high (99–100%), but
the UA varied between 62.7 and 74% and TA between 63.24 and 74.51%.

Table 3. Accuracy assessment of forest damage datasets for the years 2017–2020.

2017 2018 2019 2020 Mean

Producer’s accuracy (%) 99.19 99.89 100 99.42 99.63
User’s accuracy (%) 74.01 62.69 74.62 72.25 70.89
Total accuracy (%) 73.70 63.24 74.51 71.95 70.85

The differences between VI values within forest compartments are not exclusively
due to damage but also to different tree species, which were observed on the RF-based
classification and VI maps as well.

RF-based classification showed that the NE and SE quarters were dominated homo-
geneously by pedunculate oak (Figure 5), with smaller patches of other species, while
in the NW and SW quarters, the occurrences of black locust, red oak, and Scots pine
were detected in coherent patches where species distribution often corresponded to forest
compartment borders.

The species comparison on a forest compartment level based on a majority attribute
indicated a 76.1% accuracy for the five classes (four species plus clearcut). In 258 com-
partments of the total 339, there was an agreement on the species. However, we aimed to
classify only the dominant species, while other compartments with secondary, tertiary, or
quaternary mixed species resulted in a lower accuracy. Furthermore, there is an ongoing
tree species change in several compartments when foreign species are exchanged with
domestic pedunculate oak. That is the reason for compartment-sized clearcuts resulting
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in a lower classification accuracy. Only focusing on forest-covered compartments and
excluding clearcuts, a higher total accuracy was registered: 81.79%.
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The comparison of VIs and classified tree species maps indicated a connection between
them, and domestic and foreign species reacted differently to forest damage which resulted
in different VI scores. The varying VI values of different species were visible on the Z·NDVI
maps of 2017 and 2018 (Figure 4a,b), in the bottom part of the NW quarter, where black
locust, red oak, Scots pine, and pedunculate oak-dominated stands were situated in a row.
The stands with black locust and the pedunculate oak majority had lower vitality and VI
values, while pine and red oak were in a better condition compared to them. Scots pine
and pedunculate oak showed higher Z·NDVI values in 2017 compared to the other species;
however, in the following years, vitality oak stands decreased, and larger, less vital areas
appeared in certain forest compartments in 2019 and 2020 due to drought stress; especially
in the NE quarter (Figure 4c,d), the state of the pedunculate oaks continuously declined in
the study period. Frost damage in young stands can be seen as well in 2017, 2018, and 2020
in several compartments in the NW and SW quarters.

In addition to maps, time series can also be analysed in charts; thus, these were created
from the Sentinel-2 imagery showing a median NDVI curve of the Nagyerdő for the years
2017–2020 (Figure 6). A declination can be seen from the ideal curve in the vegetation
period, when the curve ideally reaches 0.9 in the midsummer and gradually decreases in
the fall. If the forest is damaged, it can be seen on the shape of the NDVI curve as well.
Drought affected the NDVI curve in 2018, 2019, and 2020, and according to the severity of
the damage, different drops were detected on the graph.
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4. Discussion

The objective of our study was to utilise satellite imagery and field reports for forest
damage monitoring and tree species classification conducted with Google Earth Engine and
machine learning. The application of Sentinel-2 imagery in GEE has several advantages that
made the forest monitoring successful; but it had also some limitations. The simultaneous
utilisation of a combined remotely sensed and ground-based datasets system is possible
in a wall-to-wall monitoring system, also in an automatised way; however, some known
problems should be fixed before moving the system to an operational level.

Studies dealing with forest monitoring using GEE, Sentinel-2, or ML showed varied
results from all over the world. Climate zones have an influence on the methods and results.
A temperate forest degradation study was performed by Chen et al. [47] in Georgia using
GEE and Landsat imagery, where the UA of the forest degradation class was 69% and the
PA was 83%. In Germany, environmental drivers of drought in spruce stands were studied
on NDVI curves derived from S-2 from 2016 to 2020, and they found that 38–45% of stands
were damaged [48]. In Italy [49] and Croatia [50], forest disturbance events were mapped
based on the difference between years (2017–2020 and 2016–2021, respectively). In these
cases, combined biotic and abiotic factors were studied. In Portugal, the focus was on insect
damage, which was identified with RF at an 81% accuracy [51].

To increase the accuracy of monitoring in a temperate climate, certain errors should
be fixed, which we encountered while working with GEE. One problem was a high cloud
cover which caused gaps in the dataset, especially in April, May, and June, months during
which cloudless images of the area of interest were virtually unavailable for some years.
The spring and early summer months (April, May, and June) are particularly important
in the vegetation period because they mark the beginning of the growing season (leaf
unfolding), with increasing photosynthetic activity. According to Swedish studies [52,53],
these months provide valuable information concerning the spring phenological stage, and
the RF classification is more accurate when these months are used. Still, cloud masking
remains an existing problem in the S-2 dataset; however, an increasing number of refined
datasets and algorithms such as the cloud probability dataset and the s2cloudless or Fmask
algorithms, which are partly available in GEE [54]. The disadvantage of some algorithms
like s2cloudless is the high computing capacity demand which easily causes timeout errors.
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Tropical forest disturbances were studied by researchers since the largest, contiguous
forests can be found there; these methods could be interesting in the European scaled plan.
Chen et al. [55] used harmonised Landsat and Sentinel-2 data, showing 84.5% and 95.5%
TAs for Tanzania and Brazil, respectively. A near real-time change detection approach with
ML showed a 71–87% accuracy in Colombia and Mexico [56].

Later, in the boreal region, Yang [57] investigated biotic forest damage caused by the
spruce bark beetle in Sweden on a multitemporal Sentinel-2 collection, with maximum
likelihood and the enhanced vegetation index plus green normalised difference vegetation
index, where an 89% TA was achieved.

Another problem was the validation of the RS results with the ground-based dataset
results. The large sampling area (several hectares) is a drawback of the ground-based
dataset compared to high-resolution satellite pixels (10 × 10 m), which causes an uneven
distribution of data. When scattered pixels are compared to entire forest compartments, the
difference can be observed. In order to fix this problem, zonal basis median values of pixels
were calculated for each compartment, which reduced the diversity of VI values and on
one hand, made it harder to detect slight changes in the forest health state, but on the other
hand, it made the datasets comparable.

Our study also showed the advantage of the compartment-based comparison method’s
easier application for practical use since field data from the forestry database are used
by forest managers, and the VI maps were made for the same forest compartments and
validated by the same datasets. It could reduce the workload of fieldwork; thus, using dam-
age reports created by foresters could represent an alternative to the repetitive fieldwork
triggered by each new research study.

The date from the ground-based registration could also be problematic, since if field
data are collected and reported after satellite image acquisition, there will not be overlap
regarding damage in the same year. RS could indicate damage earlier than the ground
survey, which is a useful feature to survey forest damage before going out to complete
fieldwork. However, in some cases, the effects of dry periods appear in the following
year instead of the studied year. The difference in sampling size is visible between the
producer’s and user’s accuracies, where ~99% and 70% showed a notable difference in the
accuracy of damage detection.

Machine learning was successfully applied to Sentinel-2 data aiming to classify tree
species, supporting the interpretation of NDVI maps. The combination of the cloud systems
of GEE and ML enabled the visualisation of the distribution of different forest types and
different forest damage types in all the investigated years. However, some previous
studies reported better results using multitemporal S-2 images with pedunculate oak, Scots
pine, silver birch, dunkeld larch, and Norway spruce in Sweden, with RF resulting in an
88.2% total accuracy [52]. Fourteen S-2 images were used in the multitemporal imagery,
resulting in an 88.2% TA, but for a single image in July, it was 75.9%, which is similar
to our result. Also in Sweden, an 87% TA was obtained for the same species [53] with
the Bayesian inference method, using 23 pieces of S-2 images. From Latvia, a 92–94% TA
was reported with three S-2 images on Scots pine, Norway spruce, silver birch, and black
alder [58]. With the RF method, Puletti et al. [32] obtained an 86.2% TA on four mixed
forest types, emphasising that the multitemporal imagery made of different phenological
periods was more accurate and proved to be better than single satellite images. However,
the drawback of the presented work is that many studies focus on coniferous species, which
are more easily classified than deciduous ones. Another reported issue was the accuracy
of the deforestation class due to being small compared to other classes, so it is harder to
detect [47].

It would be beneficial to test other ML methods on our study site as well, and several
supervised and unsupervised algorithms are available in GEE besides RF. These algorithms
can replace the process of downloading and processing satellite images as well as the need
for external programs, since the whole process can be created in the cloud.
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On the other hand, ground-based datasets like forest damage reports cannot be up-
loaded directly to public GEE servers due to security issues and policies. This could make
it impossible to carry out a fully online analysis, which would be desirable, especially on
a larger scale (i.e., for the whole of Hungary or even Europe). Thus, the method has a
potential for large-scale usage; however, its performance in different climatic regions needs
to be validated first, and data security has to be taken into consideration. The ML can be
used to find forest damage as well, in addition to the tree species classification, which could
be an expansion of this study in the future.

Utilised datasets could be expanded as well. Since drought has become a very serious
problem both in Hungary and worldwide, climatic and meteorological datasets (precip-
itation, temperature, soil moisture, etc.) can be used to describe dry periods, as Birinyi
et al. suggested, comparing corn yield to the NDVI and EVI in Hungary with GEE to
demonstrate the correspondence of drought with VIs [59].

5. Conclusions

Based on our results, it can be said that the combination of satellite imagery and field-
based reports could provide appropriate input for forest damage monitoring in GEE. We
successfully identified different types of forest damage on Z·NDVI maps in the surveyed
four years (2017–2020), while tree species classification with RF was also successful. Both
drought and frost damage were shown by the combination of RS-based and field datasets.
This GEE and RF-based method is of great importance when forest damage is more and
more frequent all around Europe due to climate change and the fact that several tree species
are unable to adapt to warmer climatic conditions; thus, constant and accurate monitoring
is needed to obtain data about forest health change.

The great advantage of GEE is resilience and flexibility: study sites can be modified
easily, and the creation of maps and charts can be achieved rapidly for other areas covered
by the same RS dataset, and Sentinel and Landsat satellites cover the mainland surfaces of
Earth in 5–8 days, and their harmonised dataset (HSL) is available partly in GEE.

We believe that greater cloud filtering is an essential part of forest monitoring to create
denser time series of satellite imagery. However, the cloudy pixel percentage filtering
and QA 10 bitmasking utilised in this study proved satisfactory results, since high-quality
mosaics were made for each studied period, but there were gaps in the dataset during
cloudy springs or summers. Other cloud-filtering algorithms like Fmask or s2cloudless can
be tested on S-2 imagery and integrated into the GEE code, and with adequate cloudless
images created with these new methods, the annual composites can be replaced with
monthly or weekly ones. On these denser series, the seasonality in vegetation indices can
also be studied more accurately. Although there could still be areas (high mountains and
islands) with frequent cloud cover where it is not possible to achieve cloudless images
for some periods, on mainland areas, the harmonisation of Sentinel and Landsat satellites
could solve the problem of cloud coverage [60].

The great advantage of the RS-based method conducted using GEE is that it could
support the forestry labour force with swift and accurate forest damage surveying in
contrast with time-consuming, traditional fieldwork methods. The field reports and other
field-based forestry data of national databases could support the expansion of the combined
method, since they are produced for entire countries and no extra field measurements
would be needed. That is one of the most important reasons why we used these databases
in the study instead of conducting our own field measurements. As we hypothesised, the
field reports can be used for validation despite the different scales; however, the accuracy
can be improved. The results of our study can also help to carry out field measurements
and reports more effectively. ML could also help determine the damage threshold instead
of a manual selection and also detect trends in the time series of forest states, which sit
outside these patterns, and identify the thresholds.

To test our approach on a larger scale, the expansion to a wall-to-wall monitoring
system would be desirable: first for Hungary and after, for Europe. Since in Europe, similar
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conditions and forest damage types can be found, the monitoring could be performed in
a uniform way including data collection, processing, analysis, and visualisation as well.
Cloud computing and machine learning have great significance in this method, since the
whole monitoring process could run in the virtual cloud.

Besides spatial expansion, other types of forest damage could be surveyed with the
GEE-based method, namely the spruce bark beetle and oak lace bug gradations, which
have both caused massive damage in several European countries. This monitoring on
the European level could show the outbreak and spread of the species from one country
to another. The oak lace bug was studied in Hungary and Croatia in these terms but on
MODIS imagery, not on Sentinel-2. The bark beetle-related studies also focused on study
areas or single countries; thus, it would be interesting to try the method for a larger-scale
damage survey using water indices, like NDWI.

Ultimately a wall-to-wall system could be created for the entirety of Hungary based on
cloud-free Sentinel-2 composites, powered by GEE and supported by ML. The application
of ML could ensure both a more accurate damage threshold determination and damage
detection as well. A fully automatised, regularly updated, country-wide map would be
a great asset for both researchers and practical foresters in forest surveying and damage
monitoring. It could be part of the new EU Framework for Forest Monitoring and Strategic
Plans as well as helping to develop an EU-wide forest observation framework.
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of the Nagyerdő. Special thanks to Zoltán Somogyi (Hungarian Forest Research Institute) and Svein
Solberg (Norwegian Institute of Bioeconomy Research, Norway) for their corrections and advice on
the manuscript. We also thank the Foreign Language Centre of the University of Sopron and the
Translation Agency of the University of Debrecen for linguistic proofreading.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage.

Nat. Clim. Change 2014, 4, 806–810. [CrossRef] [PubMed]
2. Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003.

Biogeosciences 2020, 17, 1655–1672. [CrossRef]
3. Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.J.; Lasch, P.; Eggers, J.;

van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and
what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [CrossRef] [PubMed]

4. Hirka, A.; Pödör, Z.; Garamszegi, B.; Csóka, G. A magyarországi erdei aszálykárok fél évszázados trendjei (1962–2011). [50 years
trends of the forest drought damage in Hungary (1962–2011)]. Erdészettudományi Közlemények 2018, 8, 11–25. [CrossRef]

5. MacAllister, S.; Mencuccini, M.; Sommer, U.; Engel, J.; Hudson, A.; Salmon, Y.; Dexter, K.G. Drought-induced mortality in Scots
pine: Opening the metabolic black box. Tree Physiol. 2019, 39, 1358–1370. [CrossRef]

6. Teshome, D.T.; Zharare, G.E.; Naidoo, S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under
a Changing Climate. Front. Plant Sci. 2020, 11, 601009. [CrossRef] [PubMed]

https://doi.org/10.1038/nclimate2318
https://www.ncbi.nlm.nih.gov/pubmed/25737744
https://doi.org/10.5194/bg-17-1655-2020
https://doi.org/10.1016/j.jenvman.2014.07.030
https://www.ncbi.nlm.nih.gov/pubmed/25156267
https://doi.org/10.17164/EK.2018.001
https://doi.org/10.1093/treephys/tpz049
https://doi.org/10.3389/fpls.2020.601009
https://www.ncbi.nlm.nih.gov/pubmed/33329666


J. Imaging 2024, 10, 14 15 of 17

7. Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020,
2, 405–412. [CrossRef]

8. Tomppo, E.; Wang, G.; Praks, J.; McRoberts, R.E.; Waser, L.T. Editorial Summary, Remote Sensing Special Issue “Advances in
Remote Sensing for Global Forest Monitoring”. Remote Sens. 2021, 13, 597. [CrossRef]

9. National Aeronautics and Space Administration (NASA). Remote Sensing: An Overview. Available online: https://earthdata.
nasa.gov/learn/backgrounders/remote-sensing (accessed on 5 December 2023).

10. European Space Agency (ESA). Sentinel-2 Overview. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2
(accessed on 5 December 2023).

11. Congalton, R.G. Mapping and Monitoring Forest Cover. Forests 2021, 12, 1184. [CrossRef]
12. Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global percent tree cover at a spatial

resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact. 2003, 7, 1–15. [CrossRef]
13. Somogyi, Z.; Koltay, A.; Molnár, T.; Móricz, N. Forest health monitoring system in Hungary based on MODIS products. In Theory,

Meets Practice in GIS, Proceedings of the 9. Hungarian GIS Conference and Exhibition, Debrecen, Hungary, 24–25 May 2018; Molnár, V.É.,
Ed.; Debrecen University Press: Debrecen, Hungary, 2018; pp. 325–330. ISBN 978-963-318-723-4.

14. National Aeronautics and Space Administration (NASA). MODIS. 2019. Available online: https://terra.nasa.gov/about/terra-
instruments/modis (accessed on 5 December 2023).
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Sentinel-2 satellite image density for country-wide forests]. In Soproni Egyetem Erdőmérnöki Kar VI; Bidló, A., Facskó, F., Eds.;
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