Controlled Combustion and Pyrolysis of Waste Plastics: A Comparison Based on Human Health Risk Assessment
Abstract
:1. Introduction
2. Results
2.1. Processes
- Catalytic conversion of polyolefin from waste plastic: A pyrolysis power plant continuously operated for the production of liquid fuel and syngas. HHRA is carried out for dioxins and PCBDls. VOCs can be emitted from this process during accidents or in unsteady-state conditions, typical of uncontrolled start-ups.
- Controlled combustion of waste plastic: a continuously fed incinerator with direct energy production. HHRA is carried out for heavy metals and PAHs. In addition, dioxins, PCBDls, and VOCs can be emitted, but we suppose the Best Available Technology is chosen in order to keep their concentrations below the threshold levels.
2.1.1. Pyrolysis Plant
2.1.2. Incinerator Plant
2.1.3. Scenarios
- A.
- Catalytic pyrolysis plant—Emission under continuous controlled operation (pollutants considered: dioxins and PCBs);
- B.
- Incineration plant—Emissions under continuous controlled operations (pollutants considered: PAHs and heavy metals), soot emissions under law limits [20]
- C.
- Incinerator plant—Emissions under controlled continuous operations (pollutants considered: PAHs and heavy metals), soot emissions over law limits
2.2. Risk for Inhalation
2.2.1. Risk for Inhalation Scenario A
2.2.2. Risk for Inhalation Scenarios B and C
2.3. Risk for Ingestion
2.3.1. Risk for Ingestion Scenario A
2.3.2. Risk for Ingestion Scenarios B and C
3. Discussion
4. Materials and Methods
4.1. Main Pollutants
4.2. Flue Gases—Catalytic Pyrolysis
4.3. Flue Gas—Controlled Combustion
4.4. Exposure Assessment
4.4.1. Exposure Pathways
- inhalation;
- ingestion of soil and dust; ingestion of vegetables, grain, and fruit cultivated in the fields near the site; ingestion of fish coming from rivers/seawater near the site; and ingestion of milk, cheese, and meat coming from farms located near the site.
4.4.2. Transport Models
4.5. Toxic and Cancer Risk Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simoneit, B.R.T.; Medeiros, P.M.; Didyk, B.M. Combustion Products of Plastics as Indicators for Refuse Burning in the Atmosphere. Environ. Sci. Technol. 2005, 39, 6961–6970. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0. In What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Current State and Future Prospects of Plastic Waste as Source of Fuel: A Review. Renew. Sustain. Energy Rev. 2015, 50, 1167–1180. [Google Scholar] [CrossRef]
- COREPLA Rapporto Di Sostenibilità 2021. Available online: https://www.corepla.it/sites/default/files/documenti/corepla_rapporto_di_sostenibilita_2021_x_web.pdf (accessed on 17 March 2023).
- COREPLA Rapporto Di Sostenibilità 2019. Available online: https://www.corepla.it/sites/default/files/documenti/corepla_rapporto_di_sostenibilita_2019.pdf (accessed on 17 March 2023).
- COREPLA Rapporto Di Sostenibilità 2020. Available online: https://www.corepla.it/sites/default/files/documenti/rapportodisostenibilita2020_2_0.pdf (accessed on 17 March 2023).
- Shemwell, B.E.; Levendis, Y.A. Particulates Generated from Combustion of Polymers (Plastics). J. Air Waste Manag. Assoc. 2000, 50, 94–102. [Google Scholar] [CrossRef]
- Lemieux, P.M.; Lutes, C.C.; Santoianni, D.A. Emissions of Organic Air Toxics from Open Burning: A Comprehensive Review. Prog. Energy Combust. Sci. 2004, 30, 1–32. [Google Scholar] [CrossRef]
- Scott, G. Polymers and the Environment; Royal Society of Chemistry: Washington, DC, USA, 1999. [Google Scholar] [CrossRef] [Green Version]
- Aguado, J.; Serrano, D.P. Feedstock Recycling of Plastic Wastes; The Royal Society of Chemistry: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A Review on Thermal and Catalytic Pyrolysis of Plastic Solid Waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef]
- He, Z.; Li, G.; Chen, J.; Huang, Y.; An, T.; Zhang, C. Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds Emitted from Different Plastic Solid Waste Recycling Workshops. Environ. Int. 2015, 77, 85–94. [Google Scholar] [CrossRef]
- Paladino, O.; Massabò, M. Health Risk Assessment as an Approach to Manage an Old Landfill and to Propose Integrated Solid Waste Treatment: A Case Study in Italy. Waste Manag. 2017, 68, 344–354. [Google Scholar] [CrossRef]
- XVII Legislatura—XVII Legislatura—Lavori—Progetti Di Legge—Scheda Del Progetto Di Legge. Available online: https://www.camera.it/leg17/126?leg=17&idDocumento=4502 (accessed on 17 March 2023).
- Paladino, O.; Moranda, A. Human Health Risk Assessment of a Pilot-Plant for Catalytic Pyrolysis of Mixed Waste Plastics for Fuel Production. J. Hazard. Mater. 2021, 405, 124222. [Google Scholar] [CrossRef]
- Butler, E.; Devlin, G.; McDonnell, K. Waste Polyolefins to Liquid Fuels via Pyrolysis: Review of Commercial State-of-the-Art and Recent Laboratory Research. Waste Biomass Valorization 2011, 2, 227–255. [Google Scholar] [CrossRef] [Green Version]
- Pyrolysis Archives—Donghe Mechanical Equipment. Available online: https://www.dohoenv.com/pro_cat/pyrolysis/ (accessed on 19 March 2023).
- Bhoi, P.R.; Rahman, M.H. Hydrocarbons Recovery through Catalytic Pyrolysis of Compostable and Recyclable Waste Plastics Using a Novel Desk-Top Staged Reactor. Environ. Technol. Innov. 2022, 27, 102453. [Google Scholar] [CrossRef]
- Valavanidis, A.; Iliopoulos, N.; Gotsis, G.; Fiotakis, K. Persistent Free Radicals, Heavy Metals and PAHs Generated in Particulate Soot Emissions and Residue Ash from Controlled Combustion of Common Types of Plastic. J. Hazard. Mater. 2008, 156, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Italian Ministry of Environment D.Lgs n. 133/2005. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2005-07-15&atto.codiceRedazionale=005G0160&elenco30giorni=false (accessed on 4 January 2023).
- Gałko, G.; Rejdak, M.; Tercki, D.; Bogacka, M.; Sajdak, M. Evaluation of the Applicability of Polymeric Materials to BTEX and Fine Product Transformation by Catalytic and Non-Catalytic Pyrolysis as a Part of the Closed Loop Material Economy. J. Anal. Appl. Pyrolysis 2021, 154, 105017. [Google Scholar] [CrossRef]
- Fuentes, C.; Colman Lerner, J.; Vázquez, P.; Sambeth, J. Analysis of the Emission of PAH in the Thermal and Catalytic Pyrolysis of Polystyrene. Catal. Today 2021, 372, 175–182. [Google Scholar] [CrossRef]
- Jung, J.M.; Lee, T.; Jung, S.; Tsang, Y.F.; Bhatnagar, A.; Lee, S.S.; Song, H.; Park, W.K.; Kwon, E.E. Control of the Fate of Toxic Pollutants from Catalytic Pyrolysis of Polyurethane by Oxidation Using CO2. Chem. Eng. J. 2022, 442, 136358. [Google Scholar] [CrossRef]
- Impianto 1—AMIU Genova S.p.A.|Open Data #GenovaMetropoli. Available online: https://dati.cittametropolitana.genova.it/it/content/impianto-1-amiu-genova-spa (accessed on 12 January 2023).
- Meteo Genova, Previsioni Del Tempo e Temperature Medie—Aeroporto.Net. Available online: https://www.aeroporto.net/aeroporto-genova/meteo-genova/ (accessed on 12 January 2023).
- Radiazione Solare in Italia—MR WATT Shop. Available online: https://www.mrwatt.eu/it/content/radiazione-solare-in-italia (accessed on 12 January 2023).
- PubChem 2,3,7,8-Tetrachlorodibenzo-P-Dioxin|C12H4Cl4O2—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/15625#section=US-EPA-Regional-Screening-Levels-for-Chemical-Contaminants (accessed on 25 April 2020).
- Echeverria, D.; White, R.F.; Sampaio, C. A Behavioral Evaluation of PCE Exposure in Patients and Dry Cleaners: A Possible Relationship between Clinical and Preclinical Effects. J. Occup. Environ. Med. 1995, 37, 667–680. [Google Scholar] [CrossRef]
- US EPA Slope Factor. Available online: http://www.popstoolkit.com/tools/HHRA/SF_USEPA.aspx (accessed on 12 January 2023).
- US-EPA. Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds National Academy Sciences (NAS) Review Draft; Environmental Protection Agency: Washington, DC, USA, 2003.
- Porfiri, C.; Montoya, J.C.; Koskinen, W.C.; Azcarate, M.P. Adsorption and Transport of Imazapyr through Intact Soil Columns Taken from Two Soils under Two Tillage Systems. Geoderma 2015, 251, 1–9. [Google Scholar] [CrossRef]
- Risk-Based Screening Table—FAQ|Mid-Atlantic Risk Assessment|US EPA. Available online: https://archive.epa.gov/region9/superfund/web/html/faq.html#FAQ14 (accessed on 12 January 2023).
- Man, Y.B.; Sun, X.L.; Zhao, Y.G.; Lopez, B.N.; Chung, S.S.; Wu, S.C.; Cheung, K.C.; Wong, M.H. Health Risk Assessment of Abandoned Agricultural Soils Based on Heavy Metal Contents in Hong Kong, the World’s Most Populated City. Environ. Int. 2010, 36, 570–576. [Google Scholar] [CrossRef]
- Lead and Lead Compounds—OEHHA. Available online: https://oehha.ca.gov/chemicals/lead-and-lead-compounds (accessed on 9 January 2023).
- Benzo[a]Pyrene-OEHHA. Available online: https://oehha.ca.gov/chemicals/benzoapyrene (accessed on 13 January 2023).
- US EPA National Center for Environmental Assessment. Exposure Factors Handbook 2011 Edition (Final Report); US EPA National Center for Environmental Assessment: Washington, DC, USA, 2011.
- US EPA. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin CASRN 1746-01-6|IRIS|US EPA, ORD; Environmental Protection Agency: Washington, DC, USA, 2012.
- PubChem Aroclor 1254|C12H5Cl5—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Aroclor-1254 (accessed on 25 April 2020).
- US EPA. Benzo[a]Pyrene (BaP) CASRN 50-32-8|DTXSID2020139|IRIS|US EPA, ORD; Environmental Protection Agency: Washington, DC, USA, 2017.
- Nag, R.; Cummins, E. Human Health Risk Assessment of Lead (Pb) through the Environmental-Food Pathway. Sci. Total Environ. 2022, 810, 151168. [Google Scholar] [CrossRef]
- Jung, J.M.; Cho, S.H.; Jung, S.; Lin, K.Y.A.; Chen, W.H.; Tsang, Y.F.; Kwon, E.E. Disposal of Plastic Mulching Film through CO2-Assisted Catalytic Pyrolysis as a Strategic Means for Microplastic Mitigation. J. Hazard. Mater. 2022, 430, 128454. [Google Scholar] [CrossRef]
- Agenzia per la Protezione Dell’ambiente e per i Servizi Tecnici. Diossine, Furani e PCB; Agenzia per la Protezione Dell’ambiente e per i Servizi Tecnici: Rome, Italy, 2006.
- IARC Agents Classified by the IARC Monographs, Volumes 1–132—IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 4 January 2023).
- BAT Reference Documents|Eippcb. Available online: https://eippcb.jrc.ec.europa.eu/reference (accessed on 12 January 2023).
- CIMA Research Foundation MyDEWETRA 2.0. Available online: https://www.mydewetra.org/ (accessed on 4 January 2023).
- MERLIN-Expo—Exposure Assessment Software. Available online: https://merlin-expo.eu/ (accessed on 15 January 2023).
- Tier I Forms and Instructions|US EPA. Available online: https://www.epa.gov/epcra/tier-i-forms-and-instructions (accessed on 19 March 2023).
- Tier II Forms and Instructions|US EPA. Available online: https://www.epa.gov/epcra/tier-ii-forms-and-instructions (accessed on 19 March 2023).
- Moranda, A.; Cianci, R.; Paladino, O. Analytical Solutions of One-Dimensional Contaminant Transport in Soils with Source Production-Decay. Soil Syst. 2018, 2, 40. [Google Scholar] [CrossRef] [Green Version]
- Paladino, O.; Moranda, A.; Massabò, M.; Robbins, G.A. Analytical Solutions of Three-Dimensional Contaminant Transport Models with Exponential Source Decay. Groundwater 2017, 56, 96–108. [Google Scholar] [CrossRef] [PubMed]
- EPA. EPA’s National-Scale Air Toxics Assessment An Overview of Methods for EPA’s National-Scale Air Toxics Assessment; EPA: Washington, DC, USA, 2011.
- U.S. Environmental Protection Agency. Guidelines for Carcinogen Risk Assessment; U.S. Environmental Protection Agency: Washington, DC, USA, 2005.
Types of Plastics | PS | PVC | LDPE | HDPE | PP | PET |
---|---|---|---|---|---|---|
%wt | 15 | 3 | 20 | 25 | 30 | 7 |
Plasmix in input [kg h−1] | 500 |
Lower heating value LHV [kJ kg−1] | 41,000–43,000 |
Catalyst [kg h−1] | 15–25 |
Liquid fuel produced [kg h−1] | 350–400 |
Coke/char residue [%] | 15–30 |
Flue gas flow rate [Nm3 h−1] | 230–270 |
Flue gas density in normal conditions [kg m−3] | 1.6 |
PM of gas [Da] | 35 |
Height of the stack [m] | 15 |
Diameter of the stack [m] | 0.3 |
Sectors | Velocity Class 1 | Velocity Class 2 | Velocity Class 3 | Velocity Class 4 | Velocity Class 5 | Velocity Class 6 | Sum of the Sectors Weight |
---|---|---|---|---|---|---|---|
<0.3 m s−1 | 0.3–2.3 m s−1 | 2.3–3.9 m s−1 | 3.9–6.5 m s−1 | 6.5–12 m s−1 | >12 m s−1 | ||
0.0–22.5 | 0 | 4.45 | 1.72 | 0.58 | 0.1 | 0 | 6.85 |
22.5–45.0 | 0 | 12.31 | 12.99 | 11.25 | 2.27 | 0.05 | 38.87 |
45.0–67.5 | 0 | 32.57 | 49.66 | 82.39 | 80.59 | 20.83 | 266.04 |
67.5–90.0 | 0 | 50.5 | 53.19 | 29.27 | 6.11 | 0.15 | 139.21 |
90.0–112.5 | 0 | 16.6 | 4.2 | 0.5 | 0.01 | 0 | 21.31 |
112.5–135.0 | 0 | 7.31 | 1.05 | 0.09 | 0 | 0 | 8.46 |
135.0–157.5 | 0 | 5.76 | 0.55 | 0.04 | 0.01 | 0 | 6.36 |
157.5–180.0 | 0 | 8.39 | 1.31 | 0.07 | 0 | 0 | 9.77 |
180.0–202.5 | 0 | 13.27 | 4.1 | 0.77 | 0.02 | 0 | 18.16 |
202.5–225.0 | 0 | 27.89 | 17.96 | 9.2 | 2.06 | 0 | 57.1 |
225.0–247.5 | 0 | 61.88 | 76.29 | 109.12 | 51.22 | 4.66 | 303.2 |
247.5–270.0 | 0 | 40.66 | 25.85 | 17.08 | 6.01 | 0.42 | 90.02 |
270.0–292.5 | 0 | 9.25 | 1.86 | 0.63 | 0.46 | 0 | 12.2 |
292.5–315.0 | 0 | 2.86 | 0.59 | 0.26 | 0.01 | 0 | 3.71 |
315.0–337.5 | 0 | 2.83 | 0.87 | 0.16 | 0.03 | 0 | 3.89 |
337.5–360.0 | 0 | 2.18 | 0.66 | 0.24 | 0.08 | 0 | 3.15 |
CALM | 11.7 | 0 | 0 | 0 | 0 | 0 | 11.7 |
Sum of the class weights | 11.7 | 298.71 | 252.85 | 261.65 | 148.98 | 26.11 | 1000 |
PAHs | |
---|---|
C [mg m−3] | 1.10 × 10−9–2.17 × 10−9 |
RfC [mg m−3] | 2 × 10−6 |
HQ | 5.5 × 10−4–1.08 × 10−3 |
Lead | |
C [mg m−3] | 1.99 × 10−10–3.73 × 10−10 |
NAAQ [mg m−3] | 15 × 10−3 |
HQ | 1.33 × 10−11–2.49 × 10−11 |
PAHs | |
---|---|
C [mg m−3] | 1.10 × 10−9–2.17 × 10−9 |
SF [mg kg−1 d−1]−1 | 3.9 |
LADD [mg kg−1 d−1] | 2.58 × 10−12–5.09 × 10−12 |
CR | 1.01 × 10−11–1.99 × 10−11 |
Lead | |
C [mg m−3] | 1.99 × 10−10–3.73 × 10−10 |
SF [mg kg−1 d−1]−1 | 0.042 |
LADD [mg kg−1 d−1] | 4.67 × 10−13–8.76 × 10−13 |
CR | 1.96 × 10−14–3.68 × 10−14 |
Fish | Fruit | Grain | Leaf | Root | Soil Intake | Milk and Dairy | Meat | |
---|---|---|---|---|---|---|---|---|
Dioxins | ||||||||
C [mg kgF−1] | 3.40 × 10−12 | 2.93 × 10−17 | 1.68 × 10−16 | 1.74 × 10−11 | 3.44 × 10−16 | 1.39 × 10−15 | 1.97 × 10−12 | 4.61 × 10−12 |
IR [kgF kgBW−1 d−1] ADULT | 0.0018 | 0.0009 | 0.0022 | 0.0025 | 0.0025 | 0.00002 | 0.0033 | 0.0018 |
IR [kgF kgBW−1 d−1] CHILDREN | 0.0039 | 0.0046 | 0.0062 | 0.0054 | 0.0054 | 0.00005 | 0.024 | 0.0039 |
ADULT | ||||||||
LADD [mg kg−1 d−1] | 8.74 × 10−17 | 3.76 × 10−22 | 5.27 × 10−21 | 6.2 × 10−16 | 1.23 × 10−20 | 3.96 × 10−22 | 9.31 × 10−17 | 1.18 × 10−16 |
CR | 1.14× 10−11 | 4.89 × 10−17 | 6.85 × 10−16 | 8.06 × 10−11 | 1.60 × 10−15 | 5.15 × 10−17 | 1.21 × 10−11 | 1.54 × 10−11 |
CHILDREN | ||||||||
LADD [mg kg−1 d−1] | 1.89 × 10−16 | 1.92 × 10−21 | 1.48 × 10−20 | 1.34× 10−15 | 2.66 × 10−20 | 9.91 × 10−22 | 6.77 × 10−16 | 2.57 × 10−16 |
CR | 2.46 × 10−11 | 2.50 × 10−16 | 1.93 × 10−15 | 1.74× 10−10 | 3.45 × 10−15 | 1.29 × 10−16 | 8.80 × 10−11 | 3.34 × 10−11 |
PCBDls | ||||||||
C [mg kgF−1] | 7.73 × 10−12 | 4.94 × 10−19 | 2.68 × 10−18 | 5.30 × 10−12 | 9.34 × 10−18 | 6.31 × 10−17 | 9.04 × 10−13 | 2.11 × 10−12 |
IR [kgF kgBW−1 d−1] ADULT | 0.0018 | 0.0009 | 0.0022 | 0.0025 | 0.0025 | 0.00002 | 0.0033 | 0.0018 |
IR [kgF kgBW−1 d−1] CHILDREN | 0.0039 | 0.0046 | 0.0062 | 0.0054 | 0.0054 | 0.00005 | 0.024 | 0.0039 |
ADULT | ||||||||
LADD [mg kg−1 d−1] | 1.99 × 10−16 | 6.35 × 10−24 | 8.42 × 10−23 | 1.89 × 10−16 | 3.33 × 10−22 | 1.80 × 10−23 | 4.26 × 10−17 | 5.42 × 10−17 |
CR | 3.97 × 10−16 | 1.27 × 10−23 | 1.68 × 10−22 | 3.78 × 10−16 | 6.67 × 10−22 | 3.61 × 10−23 | 8.52 × 10−17 | 1.08 × 10−16 |
CHILDREN | ||||||||
LADD [mg kg−1 d−1] | 4.31 × 10−16 | 3.24 × 10−23 | 2.37 × 10−22 | 4.09 × 10−16 | 7.20 × 10−22 | 4.51 × 10−23 | 3.10 × 10−16 | 1.18 × 10−16 |
CR | 8.61 × 10−16 | 6.49 × 10−23 | 4.74 × 10−22 | 8.17 × 10−16 | 1.44 × 10−21 | 9.02 × 10−23 | 6.20 × 10−16 | 2.35 × 10−16 |
Adults | Children | |
---|---|---|
PAHs | ||
RfD [mg kg−1 d−1] | 3.00 × 10−4 | |
LADD tot [mg kg−1 d−1] | 6.97 × 10−8–1.33 × 10−7 | 2.08 × 10−7–3.98 × 10−7 |
TRI | 2.32 × 10−4–4.44 × 10−4 | 6.95 × 10−4–1.33 × 10−3 |
Lead | ||
RfD [mg kg−1 d−1] | 4.00 × 10−3 | |
LADD tot [mg kg−1 d−1] | 1.95 × 10−10–3.69 × 10−10 | 4.91 × 10−10–9.31 × 10−10 |
TRI | 4.87 × 10−8–1.05 × 10−7 | 1.23 × 10−7–2.66 × 10−7 |
Fish | Fruit | Grain | Leaf | Root | Soil Intake | Milk and Dairy | Meat | |
---|---|---|---|---|---|---|---|---|
PAHs | ||||||||
C [mg kgF−1] | 1.31 × 10−5 | 1.05 × 10−10 | 6.80 × 10−11 | 1.55 × 10−5 | 5.08 × 10−11 | 2.63 × 10−9 | 2.22 × 10−6 | 5.17 × 10−6 |
IR [kgF kgBW−1 d−1] ADULT | 0.0018 | 0.0009 | 0.0022 | 0.0025 | 0.0025 | 0.00002 | 0.0033 | 0.0018 |
IR [kgF kgBW−1 d−1] CHILDREN | 0.0039 | 0.0046 | 0.0062 | 0.0054 | 0.0054 | 0.00005 | 0.024 | 0.0039 |
ADULT | ||||||||
LADD [mg kg−1 d−1] | 3.37 × 10−10 | 1.36 × 10−15 | 2.14 × 10−15 | 5.53 × 10−10 | 1.81 × 10−15 | 7.52 × 10−16 | 1.05 × 10−10 | 1.33 × 10−10 |
CR | 9.78 × 10−10 | 3.93 × 10−15 | 6.20 × 10−15 | 1.60 × 10−9 | 5.26 × 10−15 | 2.18 × 10−15 | 3.03 × 10−10 | 3.86 × 10−10 |
CHILDREN | ||||||||
LADD [mg kg−1 d−1] | 7.30 × 10−10 | 6.93 × 10−15 | 6.02 × 10−15 | 1.19 × 10−9 | 3.92 × 10−15 | 1.88 × 10−15 | 7.60 × 10−10 | 2.88 × 10−10 |
CR | 2.12 × 10−9 | 2.01 × 10−14 | 1.75 × 10−14 | 3.46 × 10−9 | 1.14 × 10−14 | 5.45 × 10−15 | 2.20 × 10−9 | 8.35 × 10−10 |
Lead | ||||||||
C [mg kgF−1] | 9.11 × 10−8 | 7.92 × 10−15 | 4.98 × 10−18 | 7.32 × 10−16 | 1.77 × 10−19 | 2.76 × 10−16 | 4.10 × 10−9 | 9.56 × 10−9 |
IR [kgF kgBW−1 d−1] ADULT | 0.0018 | 0.0009 | 0.0022 | 0.0025 | 0.0025 | 0.00002 | 0.0033 | 0.0018 |
IR [kgF kgBW−1 d−1] CHILDREN | 0.0039 | 0.0046 | 0.0062 | 0.0054 | 0.0054 | 0.00005 | 0.024 | 0.0039 |
ADULT | ||||||||
LADD [mg kg−1 d−1] | 6.45 × 10−9 | 2.59 × 10−14 | 4.06 × 10−14 | 1.06 × 10−8 | 3.45 × 10−14 | 1.43 × 10−14 | 1.99 × 10−9 | 2.54 × 10−9 |
CR | 1.87 × 10−8 | 7.50 × 10−14 | 1.18 × 10−13 | 3.06 × 10−8 | 9.99 × 10−14 | 4.15 × 10−14 | 5.79 × 10−9 | 7.37 × 10−9 |
CHILDREN | ||||||||
LADD [mg kg−1 d−1] | 1.40 × 10−8 | 1.32 × 10−13 | 1.14 × 10−13 | 2.28 × 10−8 | 7.44 × 10−14 | 3.58 × 10−14 | 1.45 × 10−8 | 5.51 × 10−9 |
CR | 4.05 × 10−8 | 3.83 × 10−13 | 3.32 × 10−13 | 6.62 × 10−8 | 2.16 × 10−13 | 1.04 × 10−13 | 4.21 × 10−8 | 1.60 × 10−8 |
Fish | Fruit | Grain | Leaf | Root | Soil Intake | Milk and Dairy | Meat | |
---|---|---|---|---|---|---|---|---|
PAHs | ||||||||
C [mg kgF−1] | 2.51 × 10−5 | 2.02 × 10−10 | 1.30 × 10−10 | 2.96 × 10−5 | 9.73 × 10−11 | 5.04 × 10−9 | 4.24 × 10−6 | 9.88 × 10−6 |
IR [kgF kgBW−1 d−1] ADULT | 0.0018 | 0.0009 | 0.0022 | 0.0025 | 0.0025 | 0.00002 | 0.0033 | 0.0018 |
IR [kgF kgBW−1 d−1] CHILDREN | 0.0039 | 0.0046 | 0.0062 | 0.0054 | 0.0054 | 0.00005 | 0.024 | 0.0039 |
ADULT | ||||||||
LADD [mg kg−1 d−1] | 6.45 × 10−10 | 2.59 × 10−15 | 4.10 × 10−15 | 1.06 × 10−9 | 3.47 × 10−15 | 1.44 × 10−15 | 1.99 × 10−10 | 2.54 × 10−10 |
CR | 1.87 × 10−9 | 7.52 × 10−15 | 1.19 × 10−14 | 3.06 × 10−9 | 1.01 × 10−14 | 4.18 × 10−15 | 5.79 × 10−10 | 7.37 × 10−10 |
CHILDREN | ||||||||
LADD [mg kg−1 d−1] | 1.40 × 10−9 | 1.33 × 10−14 | 1.15 × 10−14 | 2.28 × 10−9 | 7.51 × 10−15 | 3.60 × 10−15 | 1.45 × 10−9 | 5.51 × 10−10 |
CR | 4.05 × 10−9 | 3.84 × 10−14 | 3.35 × 10−14 | 6.62 × 10−9 | 2.18 × 10−14 | 1.04 × 10−14 | 4.21 × 10−9 | 1.60 × 10−9 |
Lead | ||||||||
C [mg kgF−1] | 1.73 × 10−7 | 1.11 × 10−14 | 2.50 × 10−18 | 5.43 × 10−16 | 2.93 × 10−19 | 5.39 × 10−16 | 7.77 × 10−9 | 1.81 × 10−8 |
IR [kgF kgBW−1 d−1] ADULT | 0.0018 | 0.0009 | 0.0022 | 0.0025 | 0.0025 | 0.00002 | 0.0033 | 0.0018 |
IR [kgF kgBW−1 d−1] CHILDREN | 0.0039 | 0.0046 | 0.0062 | 0.0054 | 0.0054 | 0.00005 | 0.024 | 0.0039 |
ADULT | ||||||||
LADD [mg kg−1 d−1] | 4.44 × 10−12 | 1.43 × 10−19 | 7.86 × 10−23 | 1.94 × 10−20 | 1.05 × 10−23 | 1.54 × 10−22 | 3.66 × 10−13 | 4.66 × 10−13 |
CR | 3.78 × 10−14 | 1.22 × 10−21 | 6.68 × 10−25 | 1.65 × 10−22 | 8.89 × 10−26 | 1.31 × 10−24 | 3.11 × 10−15 | 3.96 × 10−15 |
CHILDREN | ||||||||
LADD [mg kg−1 d−1] | 9.62 × 10−12 | 7.32 × 10−19 | 2.21 × 10−22 | 4.19 × 10−20 | 2.26 × 10−23 | 3.85 × 10−22 | 2.66 × 10−12 | 1.01 × 10−12 |
CR | 8.18 × 10−14 | 6.22 × 10−21 | 1.88 × 10−24 | 3.56 × 10−22 | 1.92 × 10−25 | 3.27 × 10−24 | 2.27 × 10−14 | 8.59 × 10−15 |
Substance | Continuous | U. M | TEF |
---|---|---|---|
2,3,4,4,5-PeCB (118) | 0.629 | [ng m−3] | 0.0001 |
2,3,3,44,5-HxCB (157) | 0.0035 | [ng m−3] | 0.0005 |
2,3,4,4,5-PeCB (114) | 0.017 | [ng m−3] | 0.0005 |
3,3,4,4,5,5-HxCB (169) | 0.0035 | [ng m−3] | 0.01 |
3,3,4,4-TeCB (77) | 0.062 | [ng m−3] | 0.0001 |
3,4,4,5-TeCB (81) | 0.0035 | [ng m−3] | 0.0001 |
2,3,3,4,4,5,5-HpCB (189) | 0.0035 | [ng m−3] | 0.0001 |
2,3,3,4,4,5-HxCB (156) | 0.028 | [ng m−3] | 0.0005 |
2,3,3,4,4-PeCB (105) | 0.202 | [ng m−3] | 0.0001 |
2,3,4,4,5,5-HxCB (167) | 0.0035 | [ng m−3] | 0.00001 |
2,3,4,4,5-PeCB (123) | 0.015 | [ng m−3] | 0.0001 |
3,3,4,4,5-PeCB (126) | 0.0035 | [ng m−3] | 0.1 |
TEQ | 0.000500785 | [ng m−3] |
Substance | Continuous | U. M. | TEF |
---|---|---|---|
2,3,7,8-tetraclorodibenzo-p-diossina | 0.0015 | [ng m−3] | 1 |
1,2,3,7,8-pentaclorodibenzo-p-diossina | 0.0015 | [ng m−3] | 1 |
1,2,3,6,7,8-esaclorodibenzo-p-diossina | 0.0015 | [ng m−3] | 0.1 |
1,2,3,4,6,7,8-eptaclorodibenzo-p-diossina | 0.0015 | [ng m−3] | 0.01 |
1,2,3,4,7,8-esaclorodibenzo-p-diossina | 0.0015 | [ng m−3] | 0.1 |
1,2,3,7,8,9-esaclorodibenzo-p-diosina | 0.0015 | [ng m−3] | 0.1 |
octaclorodibenzo-p-diossina | 0.0015 | [ng m−3] | 0.0001 |
2,3,7,8-tetraclorodibenzofurano | 0.0015 | [ng m−3] | 0.1 |
1,2,3,7,8-pentaclorodibenzofurano | 0.0015 | [ng m−3] | 0.05 |
2,3,4,7,8-pentaclorodibenzofurano | 0.0015 | [ng m−3] | 0.5 |
1,2,4,7,8-esaclorodibenzofurano | 0.0015 | [ng m−3] | 0.1 |
1,2,3,6,7,8-esaclorodibenzofurano | 0.0015 | [ng m−3] | 0.1 |
1,2,3,7,8,9-esaclorodibenzofurano | 0.0015 | [ng m−3] | 0.1 |
2,3,4,6,7,8-esaclorodibenzofurano | 0.0015 | [ng m−3] | 0.1 |
1,2,3,4,6,7,8-eptaclorodibenzofurano | 0.0015 | [ng m−3] | 0.01 |
1,2,3,4,7,8,9-eptaclorodibenzofurano | 0.0015 | [ng m−3] | 0.01 |
octaclorodibenzofurano | 0.0015 | [ng m−3] | 0.0001 |
TEQ | 0.0050703 | [ng m−3] |
PAHs | PS | PVC | PE (LDPE) | PE (HDPE) | PP | PET | TEF |
---|---|---|---|---|---|---|---|
Naphthalene | 1.92–3.6 | 3.496–6.555 | 1.72–3.225 | 1.144–2.145 | 1.08–2.025 | 0.808–1.515 | 0.001 |
Acenaphthylene | 0.312–0.585 | 0.672–1.26 | 0.352–0.66 | 0.232–0.435 | 0.72–1.35 | 0.736–1.38 | 0.001 |
Fluorene | 0.696–1.305 | 0.776–1.455 | 0.976–1.83 | 0.68–1.275 | 0.672–1.26 | 0.392–0.735 | 0.001 |
Phenanthrene | 0.816–1.53 | 0.768–1.44 | 0.744–1.395 | 0.84–1.575 | 0.552–1.035 | 0.312–0.585 | 0.001 |
Anthracene | 1.104–2.07 | 1.256–2.355 | 0.472–0.885 | 0.584–1.095 | 0.52–0.975 | 0.336–0.63 | 0.001 |
Benz(a)anthracene | 0.752–1.41 | 1.056–1.98 | 0.36–0.675 | 0.496–0.93 | 0.192–0.36 | 0–0 | 0.1 |
Chrysene | 0.4–0.75 | 1.176–2.205 | 0.568–1.065 | 0.376–0.705 | 0.312–0.585 | 0.192–0.36 | 0.01 |
Benzo(b)fluoranthene | 0.528–0.99 | 1.008–1.89 | 0.304–0.57 | 0.568–1.065 | 0.368–0.69 | 0.16–0.3 | 0.1 |
Benzo(k)fluoranthene | 1.328–2.49 | 0.552–1.035 | 0.24–0.45 | 0.616–1.155 | 0.584–1.095 | 0.128–0.24. | 0.1 |
Benzo(a)pyrene | 0.792–1.485 | 1.128–2.115 | 0.496–0.93 | 0.576–1.08 | 0.296–0.555 | 0.24–0.45 | 1 |
Dibenz(a,h)anthracene | 0.08–0.15 | 0.24–0.45 | 0.12–0.225 | 0.152–0.285 | - | - | 1 |
Pyrene | 0.824–1.545 | 0.768–1.44 | 0.416–0.78 | 0.536–1.005 | 0.304–0.57 | - | 0.001 |
TEQ | 1.142–2.142 | 1.649–3.092 | 0.716–1.344 | 0.904–1.695 | 0.417–0.782 | 0.273–0.512 | |
TEQ %wt plastic | 0.171–0.321 | 0.049–0.098 | 0.143–0.269 | 0.226–0.424 | 0.125–0.235 | 0.019–0.0359 | 0.734–1.377 |
Elements | PS | PVC | PE (LDPE) | PE (HDPE) | PP | PET | Equivalent Concentration |
---|---|---|---|---|---|---|---|
Pb | 0.548–1.0275 | 0.5672–1.0635 | 0.04968–0.09315 | 0.0464–0.087 | 0.02552–0.04785 | 0.0136–0.0255 | 0.129–0.243 |
Cr | 0.00656–0.0123 | 0.0764–0.14325 | 0.01656–0.03105 | 0.07064–0.13245 | 0.00552–0.01035 | 0.00272–0.0051 | 0.026–0.049 |
Cd | 0.00072–0.00135 | 0.0016–0.003 | 0.00012–0.000225 | 0.000168–0.000315 | 0.00008–0.00015 | 0.000032–0.00006. | 0.0002–0.0005 |
Zn | 0.01312–0.0246 | 0.1088–0.204 | 0.0308–0.05775 | 0.00616–0.01155 | 0.00472–0.00885 | 0.00928–0.0174 | 0.015–0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moranda, A.; Paladino, O. Controlled Combustion and Pyrolysis of Waste Plastics: A Comparison Based on Human Health Risk Assessment. Recycling 2023, 8, 38. https://doi.org/10.3390/recycling8020038
Moranda A, Paladino O. Controlled Combustion and Pyrolysis of Waste Plastics: A Comparison Based on Human Health Risk Assessment. Recycling. 2023; 8(2):38. https://doi.org/10.3390/recycling8020038
Chicago/Turabian StyleMoranda, Arianna, and Ombretta Paladino. 2023. "Controlled Combustion and Pyrolysis of Waste Plastics: A Comparison Based on Human Health Risk Assessment" Recycling 8, no. 2: 38. https://doi.org/10.3390/recycling8020038
APA StyleMoranda, A., & Paladino, O. (2023). Controlled Combustion and Pyrolysis of Waste Plastics: A Comparison Based on Human Health Risk Assessment. Recycling, 8(2), 38. https://doi.org/10.3390/recycling8020038