Blending Recycled High-Density Polyethylene HDPE (rHDPE) with Virgin (vHDPE) as an Effective Approach to Improve the Mechanical Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology Analysis of v/rHDPE Blends
2.2. Thermal Properties
2.2.1. Differential Scanning Calorimetry (DSC) Analysis and Melting Flow Index (MFI)
2.2.2. Thermogravimetric Analysis (TGA)
2.3. Tensile Test
2.4. Dynamic Fatigue Characterization
2.4.1. Strain–Life Curve
2.4.2. Crack Propagation
2.4.3. Loss Factor (tanδ)
2.5. Energy Generation and Surface Temperature
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Environment and Climate Change Canada. Economic Study of the Canadian Plastic Industry, Markets and Waste: Summary Report to Environment and Climate Change Canada; Environment and Climate Change Canada: Montréal, QC, Canada, 2019; ISBN 9780660304472.
- Milbrandt, A.; Coney, K.; Badgett, A.; Beckham, G.T. Quantification and Evaluation of Plastic Waste in the United States. Resour. Conserv. Recycl. 2022, 183, 106363. [Google Scholar] [CrossRef]
- Zheng, J.; Suh, S. Strategies to Reduce the Global Carbon Footprint of Plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- SDG—SDG Indicators. Available online: https://unstats.un.org/sdgs/report/2021/goal-13/ (accessed on 29 July 2022).
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Maniadi, A. Sustainable Additive Manufacturing: Mechanical Response of High-Density Polyethylene over Multiple Recycling Processes. Recycling 2021, 6, 4. [Google Scholar] [CrossRef]
- Jin, H.; Gonzalez-Gutierrez, J.; Oblak, P.; Zupančič, B.; Emri, I. The Effect of Extensive Mechanical Recycling on the Properties of Low Density Polyethylene. Polym. Degrad. Stab. 2012, 97, 2262–2272. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Lorenzo, V.; Acosta, J.; de la Orden, M.U.; Martínez Urreaga, J. Effect of Simulated Mechanical Recycling Processes on the Structure and Properties of Poly(Lactic Acid). J. Environ. Manag. 2018, 216, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Aurrekoetxea, J.; Sarrionandia, M.A.; Urrutibeascoa, I.; Maspoch, M.L. Effects of Recycling on the Microstructure and the Mechanical Properties of Isotactic Polypropylene. J. Mater. Sci. 2001, 36, 2607–2613. [Google Scholar] [CrossRef]
- Zhang, J.; Hirschberg, V.; Rodrigue, D. Mechanical Fatigue of Recycled and Virgin High-/Low-density Polyethylene. J. Appl. Polym. Sci. 2022, 140, e53312. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Lv, X.D.; Ni, H.G. Solvent-Based Separation and Recycling of Waste Plastics: A Review. Chemosphere 2018, 209, 707–720. [Google Scholar] [CrossRef]
- Karlsson, S. Recycled Polyolefins. Material Properties and Means for Quality Determination. In Long Term Properties of Polyolefins. Advances in Polymer Science; Albertsson, A.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 169, pp. 201–230. [Google Scholar] [CrossRef]
- Stangenberg, F.; Gren, S.A.; Karlsson, S. Quality Assessments of Recycled Plastics by Spectroscopy and Chromatography. Chromatographia 2004, 59, 101–106. [Google Scholar] [CrossRef]
- Basedow, A.M.; Ebert, K.H.; Hunger, H. Effects of Mechanical Stress on the Reactivity of Polymers: Shear Degradation of Polyacrylamide and Dextran. Macromol. Chem. Phys. 1979, 180, 411–427. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- Díaz, F.A.; Torné, J.P.; Prada, A.; Perez, G. Shear Degradation Model of HPAM Solutions for the Design of Regulator Valves in Polymer Flooding EOR. J. Pet. Explor. Prod. Technol. 2020, 10, 2587–2599. [Google Scholar] [CrossRef]
- Pinheiro, L.A.; Chinelatto, M.A.; Canevarolo, S.V. The Role of Chain Scission and Chain Branching in High Density Polyethylene during Thermo-Mechanical Degradation. Polym. Degrad. Stab. 2004, 86, 445–453. [Google Scholar] [CrossRef]
- Goecke, A. Rheological Investigation of Mechanically Recycled PE and Investigation of PE Pyrolysis Condensates with a 1 H-NMR Spectrometer. Master Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2022. [Google Scholar]
- Cuadri, A.A.; Martín-Alfonso, J.E. The Effect of Thermal and Thermo-Oxidative Degradation Conditions on Rheological, Chemical and Thermal Properties of HDPE. Polym. Degrad. Stab. 2017, 141, 11–18. [Google Scholar] [CrossRef]
- Loultcheva, M.K.; Proietto, M.; Jilovb, N.; La Mantis, F.P. Recycling of High Density Polyethylene Containers. Polym. Degrad. Stab. 1997, 57, 77–81. [Google Scholar] [CrossRef]
- Abedini, H.; Yousefi, S.; Khonakdar, H.A. A Simplified Moment Model for Prediction of Long-Chain Branching during Peroxide Modification of HDPE. Mater. Des. 2017, 130, 16–25. [Google Scholar] [CrossRef]
- Andersson, T.; Stålbom, B.; Wesslén, B. Degradation of Polyethylene during Extrusion. II. Degradation of Low-Density Polyethylene, Linear Low-Density Polyethylene, and High-Density Polyethylene in Film Extrusion. J. Appl. Polym. Sci. 2004, 91, 1525–1537. [Google Scholar] [CrossRef]
- Oblak, P.; Gonzalez-Gutierrez, J.; Zupančič, B.; Aulova, A.; Emri, I. Processability and Mechanical Properties of Extensively Recycled High Density Polyethylene. Polym. Degrad. Stab. 2015, 114, 133–145. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, B.K. Crosslinking of HDPE during Reactive Extrusion: Rheology, Thermal, and Mechanical Properties. J. Appl. Polym. Sci. 1993, 48, 981–986. [Google Scholar] [CrossRef]
- Eriksen, M.K.; Christiansen, J.D.; Daugaard, A.E.; Astrup, T.F. Closing the Loop for PET, PE and PP Waste from Households: Influence of Material Properties and Product Design for Plastic Recycling. Waste Manag. 2019, 96, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Brachet, P.; Høydal, L.T.; Hinrichsen, E.L.; Melum, F. Modification of Mechanical Properties of Recycled Polypropylene from Post-Consumer Containers. Waste Manag. 2008, 28, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Remili, C.; Kaci, M.; Benhamida, A.; Bruzaud, S.; Grohens, Y. The Effects of Reprocessing Cycles on the Structure and Properties of Polystyrene/Cloisite15A Nanocomposites. Polym. Degrad. Stab. 2011, 96, 1489–1496. [Google Scholar] [CrossRef]
- Nunes, M.A.B.S.; Galvão, L.S.; Ferreira, T.P.M.; Luiz, E.J.F.T.; Bastos, Y.L.M.; Santos, A.S.F. Reprocessability of High Impact Polystyrene/Clay Nanocomposites in Extrusion. Polym. Degrad. Stab. 2016, 125, 87–96. [Google Scholar] [CrossRef]
- Wencuanc’, M.A.; La Mantiazt, F.P. Processing and Mechanical Properties of Recycled PVC and of Homopolymer Blends with Virgin PVC. J. App. Polym. Sci. 1996, 59, 759–767. [Google Scholar] [CrossRef]
- Vilaplana, F.; Karlsson, S. Quality Concepts for the Improved Use of Recycled Polymeric Materials: A Review. Macromol. Mater. Eng. 2008, 293, 274–297. [Google Scholar] [CrossRef]
- Ramírez-Vargas, E.; Sandoval-Arellano, Z.; Hernández-Valdez, J.S.; Martínez-Colunga, J.G.; Sánchez-Valdés, S. Compatibility of HDPE/Postconsumer HDPE Blends Using Compatibilizing Agents. J. Appl. Polym. Sci. 2006, 100, 3696–3706. [Google Scholar] [CrossRef]
- Cestari, S.P.; Martin, P.J.; Hanna, P.R.; P. Kearns, M.; Mendes, L.C.; Millar, B. Use of Virgin/Recycled Polyethylene Blends in Rotational Moulding. J. Polym. Eng. 2021, 41, 509–516. [Google Scholar] [CrossRef]
- Tesfaw, S.; Fatoba, O.; Mulatie, T. Evaluation of Tensile and Flexural Strength Properties of Virgin and Recycled High-Density Polyethylene (HDPE) for Pipe Fitting Application. Mater. Today. Proc. 2022, 62, 3103–3113. [Google Scholar] [CrossRef]
- Kakroodi, A.R.; Rodrigue, D. Highly Filled Thermoplastic Elastomers from Ground Tire Rubber, Maleated Polyethylene and High Density Polyethylene. Plast. Rubber Compos. 2013, 42, 115–122. [Google Scholar] [CrossRef]
- Hamdi, A.; Fathallah, R.; Belkhiria, S.; Fathallah, R. Strain-Based Criterion for Uniaxial Fatigue Life Prediction for an SBR Rubber: Comparative Study and Development. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 2020, 234, 897–909. [Google Scholar] [CrossRef]
- Hirschberg, V.; Schwab, L.; Cziep, M.; Wilhelm, M.; Rodrigue, D. Influence of Molecular Properties on the Mechanical Fatigue of Polystyrene (PS) Analyzed via Wöhler Curves and Fourier Transform Rheology. Polymer 2018, 138, 1–7. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Phase Morphology, Mechanical, and Thermal Properties of Fiber-Reinforced Thermoplastic Elastomer: Effects of Blend Composition and Compatibilization. J. Reinf. Plast. Compos. 2019, 2022, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hirschberg, V.; Rodrigue, D. Mechanical Fatigue of Biodegradable Polymers: A Study on Polylactic Acid (PLA), Polybutylene Succinate (PBS) and Polybutylene Adipate Terephthalate (PBAT). Int. J. Fatigue 2022, 159, 106798. [Google Scholar] [CrossRef]
- Hirschberg, V.; Wilhelm, M.; Rodrigue, D. Fatigue Behavior of Polystyrene (PS) Analyzed from the Fourier Transform (FT) of Stress Response: First Evidence of I2/1(N) and I3/1(N) as New Fingerprints. Polym. Test 2017, 60, 343–350. [Google Scholar] [CrossRef]
- Hirschberg, V.; Wilhelm, M.; Rodrigue, D. Fatigue Life Prediction via the Time-Dependent Evolution of Linear and Nonlinear Mechanical Parameters Determined via Fourier Transform of the Stress. J. Appl. Polym. Sci. 2018, 135, 46634. [Google Scholar] [CrossRef]
- Hirschberg, V.; Faust, L.; Rodrigue, D.; Wilhelm, M. Effect of Topology and Molecular Properties on the Rheology and Fatigue Behavior of Solid Polystyrene/Polyisoprene Di- and Triblock Copolymers. Macromolecules 2020, 53, 5572–5587. [Google Scholar] [CrossRef]
- Hirschberg, V.; Lacroix, F.; Wilhelm, M.; Rodrigue, D. Fatigue Analysis of Brittle Polymers via Fourier Transform of the Stress. Mech. Mater. 2019, 137, 103100. [Google Scholar] [CrossRef]
- Hirschberg, V.; Wilhelm, M.; Rodrigue, D. Combining Mechanical and Thermal Surface Fourier Transform Analysis to Follow the Dynamic Fatigue Behavior of Polymers. Polym. Test 2021, 96, 107070. [Google Scholar] [CrossRef]
- Hirschberg, V.; Faust, L.; Wilhelm, M.; Rodrigue, D. Universal Strain-Life Curve Exponents for Thermoplastics and Elastomers under Tension-Tension and Torsion. Macromol. Mater. Eng. 2021, 306, 2100165. [Google Scholar] [CrossRef]
Resin | Tm (°C) | Tc (°C) | χ (%) | MFI (g/10 min) |
---|---|---|---|---|
vHDPE | 130.8 | 118.7 | 72.8 | 0.67 |
rHDPE | 128.2 | 115.9 | 55.7 | 6.7 |
Cm (wt.%) | Parameter | 0 | 25 | 50 | 60 | 70 | 80 | 90 | 100 |
---|---|---|---|---|---|---|---|---|---|
PM | m | −0.396 | −0.382 | −0.456 | −0.417 | −0.474 | −0.466 | −0.449 | −0.474 |
m’ | −0.439 (−0.44) | ||||||||
A | 53.41 | 59.32 | 61.44 | 66.82 | 65.08 | 70.69 | 77.99 | 83.02 | |
EM | m | −0.394 | −0.365 | −0.455 | −0.388 | −0.435 | −0.461 | −0.531 | −0.504 |
m’ | −0.442 (−0.44) | ||||||||
A | 38.04 | 51.32 | 57.21 | 72.75 | 71.85 | 58.53 | 55.02 | 59.2 |
Concentration (wt.%) | Mfr. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
rHDPE | Services Conseil Sinclair | 100 | 75 | 50 | 40 | 30 | 20 | 10 | 0 |
vHDPE | Solvay, A60-7019 | 0 | 25 | 50 | 60 | 70 | 80 | 90 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Hirschberg, V.; Rodrigue, D. Blending Recycled High-Density Polyethylene HDPE (rHDPE) with Virgin (vHDPE) as an Effective Approach to Improve the Mechanical Properties. Recycling 2023, 8, 2. https://doi.org/10.3390/recycling8010002
Zhang J, Hirschberg V, Rodrigue D. Blending Recycled High-Density Polyethylene HDPE (rHDPE) with Virgin (vHDPE) as an Effective Approach to Improve the Mechanical Properties. Recycling. 2023; 8(1):2. https://doi.org/10.3390/recycling8010002
Chicago/Turabian StyleZhang, Jian, Valerian Hirschberg, and Denis Rodrigue. 2023. "Blending Recycled High-Density Polyethylene HDPE (rHDPE) with Virgin (vHDPE) as an Effective Approach to Improve the Mechanical Properties" Recycling 8, no. 1: 2. https://doi.org/10.3390/recycling8010002
APA StyleZhang, J., Hirschberg, V., & Rodrigue, D. (2023). Blending Recycled High-Density Polyethylene HDPE (rHDPE) with Virgin (vHDPE) as an Effective Approach to Improve the Mechanical Properties. Recycling, 8(1), 2. https://doi.org/10.3390/recycling8010002