Sustainable Bio-Composites Obtained from Recycling Post-Industrial PLA and Fillers Derived from Coffee Production
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Compounding
2.3. Tests
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kosmalska, D.; Janczak, K.; Raszkowska-Kaczor, A.; Stasiek, A.; Ligor, T. Polylactide as a Substitute for Conventional Polymers Biopolymer Processing under Varying Extrusion Conditions. Environments 2022, 9, 57. [Google Scholar] [CrossRef]
- Boey, J.Y.; Mohamad, L.; Khok, Y.S.; Tay, G.S.; Baidurah, S. A review of the applications and biodegradation of polyhydroxyalkanoates and poly(Lactic acid) and its composites. Polymers 2021, 13, 1544. [Google Scholar] [CrossRef] [PubMed]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.; Jones, M.D. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. ChemSusChem 2021, 14, 4041–40705. [Google Scholar] [CrossRef]
- Tamoor, M.; Samak, N.A.; Jia, Y.; Mushtaq, M.U.; Sher, H.; Bibi, M.; Xing, J. Potential use of microbial enzymes for the conversion of plastic waste into value-added products: A viable solution. Front. Microbiol. 2021, 12, 777727. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.N.; Redhwi, H.H.; Al-Arfaj, A.A.; Achilias, D.S. Chemical recycling of PET in the presence of the bio-based polymers, PLA, PHB and PEF: A review. Sustainability 2021, 13, 10528. [Google Scholar] [CrossRef]
- Dedieu, I.; Peyron, S.; Gontard, N.; Aouf, C. The thermo-mechanical recyclability potential of biodegradable bio polyesters: Perspectives and limits for food packaging application. Polym. Test. 2022, 111, 107620. [Google Scholar] [CrossRef]
- Moustafa, H.; Youssef, A.M.; Darwish, N.A.; Abou-Kandil, A.I. Eco-friendly polymer composites for green packaging: Future vision and challenges. Comp. Part B Eng. 2019, 172, 16–25. [Google Scholar] [CrossRef]
- David, G.; Gontard, N.; Angellier-Coussy, H. Mitigating the impact of cellulose particles on the performance of biopolyester-based composites by gas-phase esterification. Polymers 2019, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Righetti, M.C.; Cinelli, P.; Mallegni, N.; Massa, C.A.; Bronco, S.; Stäbler, A.; Lazzeri, A. Thermal, mechanical, and rheological properties of biocomposites made of poly(Lactic acid) and potato pulp powder. Int. J. Mol. Sci. 2019, 20, 675. [Google Scholar] [CrossRef]
- Saccani, A.; Sisti, L.; Manzi, S.; Fiorini, M. PLA composites formulated recycling residuals of the winery industry. Pol. Comp. 2019, 40, 1378–1383. [Google Scholar] [CrossRef]
- Nekhamanurak, B. Property improvement of processed PLA/PBAT using chain extenders. Mater. Res. Express 2022, 9, 064002. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Infante, C.; de la Orden, M.U.; Martínez Urreaga, J. Mechanical recycling of poly(lactic acid): Evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic. J. Clean. Prod. 2019, 219, 46–56. [Google Scholar] [CrossRef]
- Ghalia, M.A.; Dahman, Y. Investigating the effect of multi-functional chain extenders on PLA/PEG copolymer properties. Int. J. Biol. Macromol. 2017, 95, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, M.H.M.; Siregar, J.P.; Rejab, M.R.M.; Bachtiar, D.; Jamiluddin, J.; Tezara, C. Effect of Maleated Anhydride on Mechanical Properties of Rice Husk Filler Reinforced PLA Matrix Polymer Composite. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 6, 113–124. [Google Scholar] [CrossRef]
- Rahem, Z.; Mayouf, I.; Guessoum, M.; Delaite, C.; Douibi, A.; Lallam, A. Compatibilization of biocomposites based on sponge-gourd natural fiber reinforced poly(lactic acid). Polym. Comp. 2019, 40, 4489–44991. [Google Scholar] [CrossRef]
- Robledo-Ortíz, J.R.; Martín Del Campo, A.S.; Blackaller, J.A.; González-López, M.E.; Pérez Fonseca, A.A. Valorization of sugarcane straw for the development of sustainable biopolymer-based composites. Polymers 2021, 13, 3335. [Google Scholar] [CrossRef]
- Dos Santos Filho, E.A.; Luna, C.B.B.; Siqueira, D.D.; Ferreira, E.D.S.B.; Araújo, E.M. Tailoring poly(Lactic acid) (PLA) properties: Effect of the impact modifiers EE-g-GMA and POE-g-GMA. Polymers 2022, 14, 136. [Google Scholar] [CrossRef]
- He, L.; Song, F.; Guo, Z.-W.; Yang, N.; Wang, X.-L.; Wang, Y.-Z. Toward strong and super-toughened PLA via incorporating a novel fully bio-based copolyester containing cyclic sugar. Comp. Part B Eng. 2021, 207, 108558. [Google Scholar] [CrossRef]
- Yildiz, S.; Karaaǧaç, B.; Ozkoc, G. Toughening of poly(lactic acid) with silicone rubber. Polym. Eng. Sci. 2014, 54, 2029–2036. [Google Scholar] [CrossRef]
- Gigante, V.; Canesi, I.; Cinelli, P.; Coltelli, M.B.; Lazzeri, A. Rubber Toughening of Polylactic Acid (PLA) with Poly(butylene adipate-co-terephthalate) (PBAT): Mechanical Properties, Fracture Mechanics and Analysis of Ductile-to-Brittle Behavior while Varying Temperature and Test Speed. Eur. Polym. J. 2019, 115, 125–137. [Google Scholar] [CrossRef]
- Kfoury, G.; Raquez, J.-M.; Hassouna, F.; Leclere, P.; Toniazzo, V.; Ruch, D.; Dubois, P. Toughening of poly(lactide) using polyethylene glycol methyl ether acrylate: Reactive versus physical blending. Polym. Eng. Sci. 2015, 55, 1408–1419. [Google Scholar] [CrossRef]
- Garcia, C.; Kim, Y. Spent coffee grounds and coffee silver skin as potential materials for packaging. J. Polym. Environ. 2021, 29, 2372–2384. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Review on the utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Rathi, S.; Kalish, J.P.; Coughlin, E.B.; Hsu, S.L. Utilization of oligo (lactic acid) for studies of chain conformation and chain packing in Poly(lactic acid). Macromolecules 2011, 44, 3410–3415. [Google Scholar] [CrossRef]
- Righetti, M.C.; Cinelli, P.; Mallegni, N.; Stäbler, A.; Lazzeri, A. Thermal and mechanical properties of biocomposites made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and potato pulp powder. Polymers 2019, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Morreale, M.; Liga, A.; Mistretta, M.C.; Ascione, L.; La Mantia, F.P. Mechanical, thermomechanical and reprocessing behavior of green composites from biodegradable polymer and wood flour. Materials 2015, 8, 7536–7548. [Google Scholar] [CrossRef] [Green Version]
- Battegazzore, D.; Noori, A.; Frache, A. Natural wastes as particle filler for poly(lactic acid)-based composites. J. Compos. Mater. 2019, 53, 783–797. [Google Scholar] [CrossRef]
- Sarasini, F.; Luzi, F.; Dominici, F.; Maffei, G.; Iannone, A.; Zuorro, A.; Lavecchia, R.; Torre, L.; Carbonell-Verdu, A.; Balart, R.; et al. Effect of different compatibilizers on sustainable composites based on a PHBV/PBAT matrix filled with coffee silverskin. Polymers 2018, 10, 1256. [Google Scholar] [CrossRef]
Sample | PLA | CE | CSS | T |
---|---|---|---|---|
PLA | 99.5 | 0.5 | 0 | 0 |
PLA_CSS | 79.5 | 0.5 | 20 | 0 |
PLA_CSS_T | 59.5 | 0.5 | 20 | 20 |
Sample | Tg (°C) 1 | Tm (°C) 1 | ΔHf (J/g) 1 | Χc % |
---|---|---|---|---|
PLA | 49 | 152.0 | 3.7 | 4.0 |
PLA_CSS | 51 | 152.8 | 1.1 | 1.5 |
PLA_CSS_T | 46 | 151.3 | 5.1 | 8.9 |
Sample | Tonset (°C) | Tmax (°C) | Residue (%) 1 |
---|---|---|---|
PLA | 354 | 376 | 0.0 |
PLA_CSS | 302 | 323 | 1.1 |
PLA_CSS_T | 290 | 317 | 6 |
Sample | E (MPa) | σmax (MPa) | εbreak (%) | IS (kJ/m2) |
---|---|---|---|---|
PLA | 3600 | 63.6 | 13.6 | 17.1 |
50 * | 3.2 * | 1.8 * | 1.7 * | |
PLA_CSS | 4400 | 49.5 | 2.1 | 10.9 |
100 * | 1.9 * | 0.2 * | 0.7 * | |
PLA_CSS_T | 3300 | 33.0 | 12.2 | 15.9 |
50 * | 0.4 * | 3.6 * | 0.8 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saccani, A.; Fiorini, M.; Burzotta, G. Sustainable Bio-Composites Obtained from Recycling Post-Industrial PLA and Fillers Derived from Coffee Production. Recycling 2022, 7, 89. https://doi.org/10.3390/recycling7060089
Saccani A, Fiorini M, Burzotta G. Sustainable Bio-Composites Obtained from Recycling Post-Industrial PLA and Fillers Derived from Coffee Production. Recycling. 2022; 7(6):89. https://doi.org/10.3390/recycling7060089
Chicago/Turabian StyleSaccani, Andrea, Maurizio Fiorini, and Gianfranco Burzotta. 2022. "Sustainable Bio-Composites Obtained from Recycling Post-Industrial PLA and Fillers Derived from Coffee Production" Recycling 7, no. 6: 89. https://doi.org/10.3390/recycling7060089
APA StyleSaccani, A., Fiorini, M., & Burzotta, G. (2022). Sustainable Bio-Composites Obtained from Recycling Post-Industrial PLA and Fillers Derived from Coffee Production. Recycling, 7(6), 89. https://doi.org/10.3390/recycling7060089