A Study of the Feasibility of Using Grey Sedge Residue to Facilitate Zero Waste Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Measurement of the Moisture Content (AOAC 1999)
- W1 = weight of sample with crucible before drying (g)
- W2 = weight of sample with crucible after drying (g).
2.2.2. Tensile Strength Determination
- ΔL is the range length for each sample,
- L0 is the original span length,
- Y is Young’s modulus for each sample,
- σ is stress, and ε is strain.
2.2.3. Microbial Examination and Identification
Microbial Observation and Identification from Krajood Strips and Papers Made from Krajood
Microbial Observation and Identification from KSRL and LS
Molecular Identification
2.2.4. pH Measure of LS, KS and KSRL
2.2.5. Elemental Analysis
Sample Preparation and Analysis Method
2.2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govaerts, R.H.A.; Simpson, D.A.; Bruhl, J.J.; Egorova, T.; Goetghebeur, P.; Wilson, K.L. World Checklist of Cyperaceae: Sedge; Royal Botanic Gardens, Kew: Richmond, UK, 2007; p. 765. [Google Scholar]
- Cheewaphongphan, P.; Garivait, S. Bottom up approach to estimate air pollution of rice residue open burning in Thailand. APJAS 2013, 49, 139–149. [Google Scholar] [CrossRef]
- Meehan, M.A.; DeKeyser, E.S.; Sedivec, K.K.; Norland, J.E. Nutrition composition of Sprengel’s sedge (Carex sprengelii). Can. J. Plant Sci. 2012, 92, 867–871. [Google Scholar] [CrossRef]
- Janyszek-Soltysiak, M.; Grzelak, M.; Gajewski, P.; Jagodzinski, A.M.; Gawel, E.; Wronska-Pilarek, D. Mineral contents in Aboveground Biomass of Sedges (Carex L., Cyperaceae). Energies 2021, 14, 8007. [Google Scholar] [CrossRef]
- Srisutham, M.; Nontasri, T.; Polthanee, A. Influence of adding various organic residues on some soil properties, growth and yield of Chilli Padi (Capsicum flutescens Linn.) grown under greenhouse conditions. Khon Kaen Agric. J. 2020, 48, 879–886. [Google Scholar] [CrossRef]
- Babu, S.; Rana, D.S.; Yadav, G.S.; Singh, R.; Yadav, S.K. A Review on Recycling of Sunflower Residue for Sustaining Soil Health (Review article). Int. J. Agron. 2014, 2014, 601049. [Google Scholar] [CrossRef]
- Wurochekke, A.A.; Harun, N.A.; Mohamed, R.M.S.R.; Kassim, A.H.B.M. Constructed Wetland of Lepironia Articulata for household greywater treatment. APCBEE Procedia 2014, 10, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Othman, R.; Ramya, R.; Hassan, N.M.; Kamoona, S. GCTOF-MS and HPLC Identification of Phenolic Compounds with Different Fractional Extracts of Lepironia articulata. J. Pharm. Nutr. Sci. 2020, 10, 1–6. [Google Scholar] [CrossRef]
- Djafari Petroudy, S.R. Physical and mechanical properties of natural fibres. In Advanced High Strength Natural Composites in Construction, 2nd ed.; Gwen, J., Ed.; Matthew Deans: Cambridge, UK, 2017; pp. 59–83. [Google Scholar]
- Biswas, S.; Ahsan, Q.; Cenna, A.; Hasan, M.; Hassan, A. Physical and mechanical properties of jute, bamboo and coir natural fiber. Fibres Polym. 2013, 14, 1762–1767. [Google Scholar] [CrossRef]
- Manter, D.K.; Vivanco, J.M. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J. Microbiol. Methods 2007, 71, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Durney, B.C.; Crihfield, C.L.; Holland, L.A. Capillary electrophoresis applied to DNA: Determining and harnessing sequence and structure to advance bioanalyses (2009–2014). Anal. Bioanal. Chem. 2015, 407, 6923–6938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faithfull, N.T. Methods in Agricultural Chemical Analysis: A Practical Handbook; CABI Publishing: New York, NY, USA, 2002; p. 266. [Google Scholar]
- Momen, A.A.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A. Use of fractional factorial design for optimization of digestion procedures followed by multi-element determination of essential and non-essential elements in nuts using ICP-OES technique. Talanta 2007, 71, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Mizera, C.; Herak, D.; Hrabe, P.; Kabutey, A. Effect of temperature and moisture content on tensile behaviour of false banana fibre. Int. Agrophysics 2017, 31, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Aydin, T.Y.; Ozveren, A. Effects of moisture content on elastic constants of fir wood. Eur. J. Wood Wood Prod. 2019, 77, 63–70. [Google Scholar] [CrossRef]
- Cardinale, T.; D’Amato, M.; Sulla, R.; Cardinale, N. Mechanical and physical characterization of papercrete as new eco-friendly construction. Mater. Appl. Sci. 2021, 11, 1011. [Google Scholar] [CrossRef]
- Rokbi, M.; Osmani, H.; Imad, A.; Benseddiq, N. Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Procedia Eng. 2011, 10, 2092–2097. [Google Scholar] [CrossRef]
- Salaman, A.J. Tensile and impact properties of polystyrene matrix composites reinforced by Palm natural fibers and carbon fibers. Acad. Res. Int. 2012, 3, 114–116. [Google Scholar]
- Verma, D.; Gope, P.C.; Shandilya, A.; Gupta, A.; Maheshwari, M.K. Coir Fiber Reinforcement and Application in Polymer Composites: A Review. J. Mater. Environ. Sci. 2013, 4, 263–276. [Google Scholar]
- Rohit, K.; Dixit, S. A Review-Future Aspect of Natural Fiber Reinforced Composite. Polym. Renew. Resour. 2016, 7, 43–60. [Google Scholar] [CrossRef]
- Elanchezhiana, C.; Ramnathb, V.B.; Ramakrishnanc, G.; Rajendrakumard, M.; Naveenkumare, V.; Saravanakumar, M.K. Review on mechanical properties of natural fibre composites. Mater. Today Proc. 2018, 5, 1785–1790. [Google Scholar] [CrossRef]
- Azman, M.A.; Asyraf, M.R.M.; Khalina, A.; Petru, M.; Ruzaidi, C.M.; Sapuan, S.M.; Wan Nik, W.B.; Ishak, M.R.; Ilyas, R.A.; Suriani, M.J. Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers 2021, 13, 1917. [Google Scholar] [CrossRef] [PubMed]
Source | %Moisture Content Mean ± SD |
---|---|
Krajood strips (KS) | 11.40 ± 0.17 a |
Paper made from Krajood (PK) | 9.10 ± 0.17 c |
Bag made of paper (BP) | 7.4 ± 0.10 d |
Shirt backing paper (SP) | 6.56 ± 0.05 e |
Residue of plain weave pattern (RPP) | 9.80 ± 0.00 b |
Residue of cross weave pattern (RCP) | 9.66 ± 0.05 b |
Source | Number of Filamentous Molds (CFU/g) |
---|---|
Krajood strips | 266.67 ± 23.09 a |
Paper made from Krajood | 136.67 ± 11.54 b |
Source | Number of Total Bacteria (CFU/g) |
---|---|
loam soil | 8.7 × 106 ± 1,345,362.4 |
Krajood strip residue in combination with loam soil (KSRL) | 1.5 × 107 ± 0.0 |
Source | pH Mean ± SD |
---|---|
Loam soil (LS) | 5.87 ± 0.04 b |
Krajood strip residue in combination with loam soil (KSRL) | 6.40 ± 0.14 a |
Krajood strips (KS) | 5.26 ± 0.02 c |
Element | Loam Soil | KSRL | Krajood Strip Residue |
---|---|---|---|
N | 0.2 ± 0.02 c | 0.5833 ± 0.01 b | 0.6333 ± 0.00 a |
P | 252.9340 ± 20.66 b | 1000.9933 ± 45.93 a | 243.0070 ± 12.31 b |
K | 23.1810 ± 1.79 c | 1288.4010 ± 42.46 b | 7027.0037 ± 38.23 a |
Ca | 2234.3300 ± 107.75 b | 5906.1717 ± 94.44 a | 1126.7867 ± 22.71 c |
Mg | 250.9030 ± 9.38 c | 1255.9370 ± 12.68 a | 773.0190 ± 12.10 b |
S | 211.1603 ± 15.00 c | 1159.2240 ± 9.37 b | 1279.8153 ± 16.28 a |
Fe | 691.7480 ± 8.91 b | 2251.3607 ± 17.94 a | 499.6757 ± 17.94 c |
Mn | 22.5617 ± 1.46 c | 700.8847 ± 13.19 a | 118.0743 ± 3.37 b |
Cu | 0.4277 ± 0.05 b | 0.6560 ± 0.07 b | 3.3110 ± 0.44 a |
Zn | 1.3460 ± 0.06 c | 5.7947 ± 0.08 b | 14.3553 ± 0.46 a |
B | ND | 1.1430 ± 0.23 b | 2.1213 ± 0.03 a |
Al | 2099.3830 ± 167.59 b | 4154.4640 ± 58.87 a | 1351.4187 ± 41.93 c |
Na | 109.7053 ± 5.38 c | 942.3593 ± 22.88 b | 2359.4313 ± 30.93 a |
Co | ND | 0.6770 ± 0.12 a | 0.3087 ± 0.09 b |
Cr | 2.9167 ± 0.21 c | 46.1923 ± 0.30 a | 4.8343 ± 0.17 b |
Ni | 1.0323 ± 0.10 b | 13.6957 ± 0.80 a | 1.5533 ± 0.04 b |
Pb | 5.5357 ± 0.83 a | 4.3370 ± 0.32 b | 0.6100 ± 0.45 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chucheep, K.; Suwanpayak, N.; Phanchindawan, N. A Study of the Feasibility of Using Grey Sedge Residue to Facilitate Zero Waste Production. Recycling 2022, 7, 34. https://doi.org/10.3390/recycling7030034
Chucheep K, Suwanpayak N, Phanchindawan N. A Study of the Feasibility of Using Grey Sedge Residue to Facilitate Zero Waste Production. Recycling. 2022; 7(3):34. https://doi.org/10.3390/recycling7030034
Chicago/Turabian StyleChucheep, Kamonwan, Nathaporn Suwanpayak, and Naree Phanchindawan. 2022. "A Study of the Feasibility of Using Grey Sedge Residue to Facilitate Zero Waste Production" Recycling 7, no. 3: 34. https://doi.org/10.3390/recycling7030034
APA StyleChucheep, K., Suwanpayak, N., & Phanchindawan, N. (2022). A Study of the Feasibility of Using Grey Sedge Residue to Facilitate Zero Waste Production. Recycling, 7(3), 34. https://doi.org/10.3390/recycling7030034