Multistage Constructed Wetland in the Treatment of Greywater under Tropical Conditions: Performance, Operation, and Maintenance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Set up and Design
2.3. Plants
2.4. Mode of Operation
2.5. Monitoring and Analytical Methods
2.6. Operation and Maintenance
2.7. Statistical Analysis
3. Results
3.1. GW Qualitative Characteristics
3.2. GW Quantitative Parameters and CW Treatment Performance
3.3. Correlation Analysis, Principal Component Analysis (PCA), and Cluster Analysis
3.4. Operation and Maintenance (O&M) Aspects
4. Discussion
4.1. BOD
4.2. COD
4.3. pH, E. coli, and Turbidity
4.4. GW Production
4.5. Hydraulic and Organic Loadings
4.6. Multivariate Analysis
4.7. O&M Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masi, F.; El Hamouri, B.; Abdel Shafi, H.; Baban, A.; Ghrabi, A.; Regelsberger, M. Treatment of segregated black/grey domestic wastewater using constructed wetlands in the Mediterranean basin: The zero-m experience. Water Sci. Technol. 2010, 61, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Dotro, G.; Langergraber, G.; Molle, P.; Nivala, J.; Puigagut, J.; Stein, O.; von Sperling, M. Treatment Wetlands; IWA Publishing: London, UK, 2017; Volume 16. [Google Scholar] [CrossRef] [Green Version]
- Randerson, P.F. Constructed wetlands and vegetation filters: An ecological approach to wastewater treatment. Environ. Biotechnol. 2006, 2, 78–89. [Google Scholar]
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Vymazal, J. Constructed wetlands for wastewater treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Otterpohl, R. Black, brown, yellow, grey-the new colors of sanitation. Water 2001, 21, 37–41. [Google Scholar]
- Morel, A.; Diener, S. Greywater Management in Low and Middle-Income Countries, Review of Different Treatment Systems for Households or Neighbourhoods; Swiss Federal Institute of Aquatic Science and Technology (Eawag): Dübendorf, Switzerland, 2006. [Google Scholar]
- Paulo, P.L.; Boncz, M.A.; Asmus, A.; Jonsson, H.; Ide, C.N. Greywater Treatment in Constructed Wetland at Household Level. Gewasserschutz Wasser Abwasser 2007, 206, 1–7. [Google Scholar]
- Paulo, P.L.; Begosso, L.; Pansonato, N.; Shrestha, R.R.; Boncz, M.A. Design and configuration criteria for wetland systems treating greywater. Water Sci. Technol. 2009, 60, 2001–2007. [Google Scholar] [CrossRef]
- Hoffmann, H.C.; Platzer, M.; Winker, E.; von Muench, E. Technology Review of Constructed Wetlands; Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ) GmbH: Eschborn, Germany, 2011. [Google Scholar]
- Silva, J.B.; Oliveira, P.J.A.; Boncz, M.A.; Paulo, P.L. A modified constructed wetland system for greywater treatment. Desalin. Water Treat. 2017, 91, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Rengers, E.E.; Silva, J.B.; Paulo, P.L.; Janzen, J.G. Hydraulic performance of a modified constructed wetland system through a CFD-based approach. J. Hydro-Environ. Res. 2016, 12, 91–104. [Google Scholar] [CrossRef]
- Magalhães Filho, F.J.C.M.; Sobrinho, T.A.; Steffen, J.L.; Arias, C.A.; Paulo, P.L. Hydraulic and hydrological aspects of an evapotranspiration-constructed wetland combined system for household greywater treatment. J. Environ. Sci. Heal. Part A 2018, 53, 493–500. [Google Scholar] [CrossRef]
- Raude, J.M.; Mutua, B.M.; Kamau, D.N. Simulation of the Hydraulics and Treatment Performance of Horizontal Subsurface Flow Constructed Wetland Treating Greywater. Int. J. Ecotoxicol. Ecobiol. 2018, 3, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Ramprasad, C.; Smith, C.S.; Memon, F.A.; Philip, L. Removal of chemical and microbial contaminants from greywater using a novel constructed wetland: GROW. Ecol. Eng. 2017, 106, 55–65. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, M.; Atalla, A.A.; Frihling, B.E.F.; Cavalheri, P.S.; Migliolo, L.; Magalhães Filho, F.J.C. Ibuprofen and caffeine removal in vertical flow and free-floating macrophyte constructed wetlands with Heliconia rostrata and Eichornia crassipes. Chem. Eng. J. 2019, 373, 458–467. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, T.; Carvalho, P.N.; Zhang, L.; Arias, C.A.; Chen, Z.; Brix, H. Ibuprofen and iohexol removal in saturated constructed wetland mesocosms. Ecol. Eng. 2017, 98, 394–402. [Google Scholar] [CrossRef]
- Ramprasad, C.; Philip, L. Surfactants and personal care products removal in pilot scale horizontal and vertical flow constructed wetlands while treating greywater. Chem. Eng. J. 2016, 284, 458–468. [Google Scholar] [CrossRef]
- Babaei, F.; Ehrampoush, M.H.; Eslami, H.; Ghaneian, M.T.; Fallahzadeh, H.; Talebi, P.; Fard, R.F.; Ebrahimi, A.A. Removal of linear alkylbenzene sulfonate and turbidity from greywater by a hybrid multi-layer slow sand filter microfiltration ultrafiltration system. J. Clean. Prod. 2019, 211, 922–931. [Google Scholar] [CrossRef]
- Arden, S.; Ma, X. Constructed wetlands for greywater recycle and reuse: A review. Sci. Total Environ. 2018, 630, 587–599. [Google Scholar] [CrossRef]
- Comino, E.; Riggio, V.; Rosso, M. Grey water treated by an hybrid constructed wetland pilot plant under several stress conditions. Ecol. Eng. 2013, 53, 120–125. [Google Scholar] [CrossRef]
- Nolde, E. Greywater reuse systems for toilet flushing in multi-storey buildings—Over ten years experience in Berlin. Urban Water 1999, 1, 275–284. [Google Scholar] [CrossRef]
- Nolde, E. Greywater recycling systems in Germany-results, experiences and guidelines. Water Sci. Technol. 2005, 51, 203–210. [Google Scholar] [CrossRef]
- DWA. Standard DWA-A 262E: Principles for Dimensioning, Construction and Operation of Wastewater Treatment Plants with Planted and Unplanted Filters for Treatment of Domestic and Municipal Wastewater; German Association for Water, Wastewater and Waste (DWA): Hennef, Germany, 2017. [Google Scholar]
- Nivala, J.; van Afferden, M.; Hasselbach, R.; Langergraber, G.; Molle, P.; Rustige, H.; Nowak, J. The new German standard on constructed wetland systems for treatment of domestic and municipal wastewater. Water Sci. Technol. 2018, 78, 2414–2426. [Google Scholar] [CrossRef] [Green Version]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, N.; Pisoeiro, J.; Rizzo, A.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2019, 2019, 134731. [Google Scholar] [CrossRef] [PubMed]
- Wood, A. Constructed wetlands in water pollution control: Fundamentals to their understanding. Water Sci. Technol. 1995, 32, 21–29. [Google Scholar] [CrossRef]
- Ridderstolpe, P. Introduction to Greywater Management; Report. 2004-4; Stockholm Environment Institute: Stockholm, Sweden, 2004. [Google Scholar]
- Shrestha, R.R.; Haberl, R.; Laber, J.; Manandhar, R.; Mader, J. Application of constructed wetlands for wastewater treatment in Nepal. Water Sci. Technol. 2001, 44, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, P.D. An Urban Ecological Sanitation Pilot Study in Humid Tropical Climate; Report No. UEMS_TEC_02_47; Natural Resources and Environmental Board Sarawak: Sarawak, Malaysia, 2005. [Google Scholar]
- Li, X.; Ding, A.; Zheng, L.; Anderson, B.C.; Kong, L.; Wu, A.; Xing, L. Relationship between design parameters and removal efficiency for constructed wetlands in China. Ecol. Eng. 2018, 123, 135–140. [Google Scholar] [CrossRef]
- Bang, W.H.; Jung, Y.; Park, J.W.; Lee, S.; Maeng, S.K. Effects of hydraulic loading rate and organic load on the performance of a pilot-scale hybrid VF-HF constructed wetland in treating secondary effluent. Chemosphere 2019, 218, 232–240. [Google Scholar] [CrossRef]
- Nivala, J.; Boog, J.; Headley, T.; Aubron, T.; Wallace, S.; Brix, H.; Mothes, S.; van Afferden, M.; Müller, R.A. Side-by-side comparison of 15 pilot-scale conventional and intensified subsurface flow wetlands for treatment of domestic wastewater. Sci. Total Environ. 2019, 658, 1500–1513. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.I.; Beretta, M.; Fragoso, R.; Duarte, E. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. J. Environ. Manag. 2017, 187, 560–570. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, M.A.; Konnerup, D.; Brix, H.; Arias, C.A. Constructed Wetlands in Latin America and the Caribbean: A Review of Experiences during the Last Decade. Water 2020, 12, 1744. [Google Scholar] [CrossRef]
- von Sperling, M.; Sezerino, P.H. Dimensionamento de Wetlands Construídos No Brasil. Boletim Wetlands Brasil, Edição Especial, dezembro/2018. p. 65, ISSN 2359-0548. Available online: https://gesad.ufsc.br/boletins/ (accessed on 7 July 2021).
- Rousseau, D.P.L.; Vanrolleghem, P.A.; de Pauw, N. Model-based design of horizontal subsurface flow constructed treatment wetlands: A review. Water Res. 2004, 38, 1484–1493. [Google Scholar] [CrossRef]
- Platzer, C.; Hoffmann, H.; Cardia, W. O wetland como componente de ecosan—Experiências com o uso e dimensionamento no clima subtropical. In Proceedings of the International Conference on Sustainable Sanitation: Food and Water Security for Latin America, Fortaleza, Brazil, 26–28 November 2007. [Google Scholar]
- von Sperling, M.; Verbyla, M.E.; Oliveira, S.M.A.C. Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners; IWA Publishing: London, UK, 2020. [Google Scholar] [CrossRef]
- APHA; AWWA; WPCF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; p. 953. [Google Scholar]
- de Souza Pereira, M.A.; Cavalheri, P.S.; de Oliveira, M.Â.C.; Filho, F.J.C.M. A multivariate statistical approach to the integration of different land-uses, seasons, and water quality as water resources management tool. Environ. Monit. Assess. 2019, 191, 539. [Google Scholar] [CrossRef] [PubMed]
- Atalla, A.; Pelissari, C.; de Oliveira, M.; de Souza Pereira, M.A.; Cavalheri, P.S.; Sezerino, P.H.; Filho, F.J.C.M. Influence of earthworm presence and hydraulic loading rate on the performance of vertical flow constructed wetlands. Environ. Technol. 2019, 2019, 1710572. [Google Scholar] [CrossRef] [PubMed]
- Burnat, J.M.Y.; Mahmoud, N. Evaluation of On-Site Gray Wastewater Treatment Plants Performance in Bilien and Biet-Diko Villages/Palestine; Environment Protection Committee (EPC): Tripoli, Lebanon, 2005. [Google Scholar]
- Alderlieste, M.C.; Langeveld, J.G. Wastewater planning in Djenné, Mali. A pilot project for the local infiltration of domestic wastewater. Water Sci. Technol. 2005, 51, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Adendorff, J.; Stimie, C. Food from used water—Making the previously impossible happen. In The Water Whell; South African Water Research Commission (WRC): Gezina, South Africa, 2005; Volume 3, pp. 26–29. [Google Scholar]
- Faruqui, N.; Al-Jayyousi, O. Greywater reuse in urban agriculture for poverty alleviation—A case study in Jordan. Water Int. 2002, 27, 387–394. [Google Scholar] [CrossRef]
- Al-Jayyousi, O.R. Greywater reuse: Towards sustainable water management. Desalination 2003, 156, 181–192. [Google Scholar] [CrossRef]
- Busser, S. Studies on Domestic Wastewater Flows in Urban and Peri-Urban Hanoi. Semester Work Thesis, ETH Zurich, Zurich, Switzerland, 2006. [Google Scholar]
- Friedler, E. Quality of individual domestic greywater streams and its implication for onsite treatment and reuse possibilities. Environ. Technol. 2004, 25, 997–1008. [Google Scholar] [CrossRef]
- Martin, C. Ecological Sanitation Greywater Demonstration Project at Hui Sing Garden, Kuching, Sarawak, Malaysia; Urban Environmental Management System (UEMS) Project Natural Resources and Environment Board (NREB): Sarawak, Malaysia, 2005. [Google Scholar]
- Dallas, S.; Ho, G. Subsurface flow reedbeds using alternative media for the treatment of domestic greywater in Monteverde, Costa Rica, Central America. Water Sci. Technol. 2005, 52, 119–128. [Google Scholar] [CrossRef]
- Hernandez Leal, L.; Zeeman, G.; Temmink, H.; Buisman, C. Characterisation and biological treatment of greywater. Water Sci. Technol. 2007, 56, 193–200. [Google Scholar] [CrossRef]
- Harindra Corea, E.J. Appropriate Disposal of Sewage in Urban and Suburban Sri Lanka. Ph.D. Thesis, The University of Leeds, Leeds, UK, 2001; p. 270. [Google Scholar]
- Li, F.W.K.; Otterpohl, R. Review of the technological approaches for grey water treatment and reuses. Sci. Total Environ. 2009, 407, 3439–3449. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.; Shmueli, O.; Ronen, Z.; Raveh, E. Recycled vertical flow constructed wetland (RVFCW)-a novel method of recycling greywater for irrigation in small communities and households. Chemosphere 2007, 66, 916–923. [Google Scholar] [CrossRef]
- WHO. Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture; Report of a WHO Scientific Group; WHO Technical Report Series, No. 778; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- EAWAG/SANDEC. Solar Water Disinfection: A Guide for the Application of Sodis; SANDEC: Dübendorf, Switzerland, 2002. [Google Scholar]
- Gonçalves, R.F.; Keller, R.P.; Franci, T.K. Comparative analysis of greywater reuse practices in German and Brazilian urban buildings. Rev. DAE 2019, 217, 75–89. [Google Scholar] [CrossRef]
- Crites, R.; Tchobanoglous, G. Small and decentralized wastewater management systems. In Water Resources and Environmental Engineering, 1st ed.; WCB/McGraw-Hill: Boston, MA, USA, 1998; p. 1084. [Google Scholar]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands; Lewis Publishers: Boca Raton, FL, USA, 1996; p. 893. [Google Scholar]
- Sasse, L. DEWATS—Decentralised Wastewater Treatment in Developing Countries; BORDA: Bremen, Germany, 1998. [Google Scholar]
- Werner, C.; Klingel, F.; Bracken, P.; Schlick, J.; Freese, T.; Rong, W. Kurzbericht ecosan Projekt—Koulikoro, Mali; Deutsche Gesellschaft für Technische Zusam-Menarbeit (GTZ): Eschborn, Germany, 2001. [Google Scholar]
- Paulo, P.L.; Azevedo, C.; Begosso, L.; Galbiati, A.F.; Boncz, M.A. Natural systems treating greywater and blackwater on-site: Integrating treatment, reuse and landscaping. Ecol. Eng. 2013, 50, 95–100. [Google Scholar] [CrossRef]
Batches per Day (Vertical Flow) | Hydraulic Loading Rate | Organic Loading Rate | HF Cross-Sectional Organic Loading Rate (gBOD m−2 d−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
Phase | L PE−1 d−1 * | HF | VF | HF | VF | HF | VF | ||
(mm d−1) | (gBOD m−2 d−1) | (gCOD m−2 d−1) | |||||||
1 (39) | 57.9 ± 28.8 | 4 | 114.1 ± 48.6 | 233.3 ± 99.3 | 47.1 ± 35.7 | 27.5 ± 26.8 | 79.16 ± 46.6 | 60.0 ± 45.0 | 264.0 ± 104.7 |
2 (18) | 61.4 ± 27.6 | 4 | 111.6 ± 44.7 | 228.1 ± 91.4 | 65.4 ± 25.3 | - | 97.8 ± 52.0 | 16.1 ± 48.1 | 369.7 ± 96.1 |
3 (12) | 39.5 ± 39.2 | 6 | 35.4 ± 38.8 | 72.3 ± 79.3 | 13.4 ± 5.6 + | 2.6 ± 3.2 | 12.1 ± 15.2 + | 9.2 ± 16.8 | 97.1 ± 40.4 |
Phase | COD (mg L−1) | BOD (mg L−1) | COD:BOD | TP (mg L−1) | NH4+ (mg L−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | ||
1 (39) | 708.5 ± 296.3 | 246.5 ± 141.7 | 39.0 ± 42.4 | 425.5 ± 211.2 | 110.4 ± 68.3 | 7.1 ± 11.5 | 2.10 ± 1.17 | 5.0 ± 2.2 | 4.3 ± 1.9 | 3.0 ± 1.9 | 2.2 ± 1.5 | 3.7 ± 1.9 | 0.5 ± 1.1 |
2 (18) | 888.1 ± 567.4 | 154.6 ± 161.6 | 10.3 ± 6.4 | 542.6 ± 205.4 | - | - | 1.51 ± 0.73 | 5.4 ± 1.3 | - | 3.7 ± 2.1 | - | - | - |
3 (12) | 675.3 ± 344.0 | 242.1 ± 186.5 | 66.9 ± 71.8 | 149.6 ± 64.7 + | 13.3 ± 14.7 + | 7.8 ± 8.6 | 7.36 ± 6.36 + | 2.5 ± 1.4 | 2.2 ± 1.3 | 1.7 ± 1.5 | 11.5 ± 7.2 | 5.3 ± 1.3 | 0.68 ± 1.3 |
Phase | Temperature (°C) | pH | BOD:N:P | Turbidity (NTU) | E. coli(MPN 100 mL−1) | ||||||||
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | P1 ×106 | P2 ×104 | P3 ×103 | ||
1 (39) | 23.2 ± 2.2 | 22.7 ± 2.5 | 22.4 ± 2.7 | 5.8 ± 0.5 | 6.9 ± 0.2 | 7.1 ± 0.3 | 100:0.1:1.14 | 271.6 ± 176.6 | 78.6 ± 54.5 | 5.0 ± 5.6 | 0.6 ± 1.0 | 7.2 ± 11.0 | 3.2 ± 4.1 |
2 (18) | 23.5 ± 2.4 | 22.4 ± 2.5 | 21.3 ± 3.5 | 5.5 ± 0.5 | 6.6 ± 0.3 | 7.0 ± 0.3 | - | 377.2 ± 219.4 | 26.7 ± 17.8 | 2.5 ± 2.1 | 1.6 ± 4.4 | 8.0 ± 8.9 | 20.0 ± 52.0 |
3 (12) | 25.2 ± 1.5 | 23.7 ± 2.3 | 22.9 ± 2.3 | 7.2 ± 0.4 | 7.1 ± 0.4 | 7.7 ± 0.5 | 100:2.23:3.21 | 148.7 ± 81.2 | 34.9 ± 38.1 | 2.7 ± 1.4 | 72.0 ± 150 | - | 4.1 ± 8.1 |
Characteristics | Present Work GWL/GW | References | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
GWL | GW | GWL/GW | ||||||||||
L.PE−1 d−1 * | 39/60 | 30 | 20 | 50 | 30 | ~80–110 | 98 | 72 | 225 | 100 | 60–100 | 35/60 |
peak-flow ** | 2.4/4.0 | 2.4 | 2.0 | |||||||||
COD (mg L−1) | 675/888 | 1270 | 822 | 177–687 | 212 | 300 | ||||||
BOD (mg L−1) | 149/425 | 300–700 | 590 | 275–2287 | 100–250 | 477 | 100–400 | 129 | 100–500 | |||
TP (mg L−1) | 1.7/5.4 | 5–30 | 4.4 | 1–15 | 1–5 | 2.4 | 16 |
Design Parameters | Present Work GWL/GW | References | ||||||
---|---|---|---|---|---|---|---|---|
1 2 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
HF-HLR (mm d−1) | 35/114 | 60–80 | 62–120 | 50–90 | ||||
HF-OLR (g.m−2 d−1) | 12/97 (COD) 13/65 (BOD) | 16 (BOD) | 25 (COD) | 5–90 (COD) | ||||
HF-cross-sectional OLR (gBOD m−2 d−1) | 97/316 | 250 | 250 | |||||
VF-HLR (mm d−1) | 72/233 | 200 | 83 | 80 | ||||
VF-OLR (g.m−2 d−1) | 9/60 (COD) 3/30 (BOD) | 60 (BOD) | 60–70 (COD) | 8–12 (BOD) |
Procedures and Activities | Phase 1–2 GW | Phase 3 GWL |
---|---|---|
Pruning | every two months | every two months |
Sedimentation tank desludging | every week | every 18 months |
Grease tap cleaning | every week | - |
Scum formation and accumulation | every two weeks | every three months |
Cleaning around the system | every six months | every six months |
Siphon system cleaning | every two weeks | every 18 months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães Filho, F.J.C.; de Souza Filho, J.C.M.; Paulo, P.L. Multistage Constructed Wetland in the Treatment of Greywater under Tropical Conditions: Performance, Operation, and Maintenance. Recycling 2021, 6, 63. https://doi.org/10.3390/recycling6040063
Magalhães Filho FJC, de Souza Filho JCM, Paulo PL. Multistage Constructed Wetland in the Treatment of Greywater under Tropical Conditions: Performance, Operation, and Maintenance. Recycling. 2021; 6(4):63. https://doi.org/10.3390/recycling6040063
Chicago/Turabian StyleMagalhães Filho, Fernando J. C., José C. M. de Souza Filho, and Paula L. Paulo. 2021. "Multistage Constructed Wetland in the Treatment of Greywater under Tropical Conditions: Performance, Operation, and Maintenance" Recycling 6, no. 4: 63. https://doi.org/10.3390/recycling6040063
APA StyleMagalhães Filho, F. J. C., de Souza Filho, J. C. M., & Paulo, P. L. (2021). Multistage Constructed Wetland in the Treatment of Greywater under Tropical Conditions: Performance, Operation, and Maintenance. Recycling, 6(4), 63. https://doi.org/10.3390/recycling6040063