Upgrading of Mixed Food Industry Side-Streams by Solid-State Fermentation with P. ostreatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. P. ostreatus Growth on Mixed AISS by SSF
2.3. Autolysis of the SSF Product
2.4. Assays
3. Results and Discussion
3.1. Composition of the AISS
3.2. P. ostreatus Growth in the Mixed AISS
3.3. Composition of the SSF Product and Autolyzate
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tripodo, M.M.; Lanuzza, F.; Micali, G.; Coppolino, R.; Nucita, F. Citrus waste recovery: A new environmentally friendly procedure to obtain animal feed. Bioresour. Technol. 2004, 91, 111–115. [Google Scholar] [CrossRef]
- Plessas, S.; Koliopoulos, D.; Kourkoutas, Y.; Psarianos, C.; Alexopoulos, A.; Marchant, R.; Banat, I.M.; Koutinas, A.A. Upgrading of discarded oranges through fermentation using kefir in food industry. Food Chem. 2008, 106, 40–49. [Google Scholar] [CrossRef]
- Santos, M.; Jiménez, J.J.; Bartolomé, B.; Gómez-Cordovés, C.; Del Nozal, M.J. Variability of brewers’ spent grain within a brewery. Food Chem. 2003, 80, 17–21. [Google Scholar] [CrossRef]
- Branyik, T.; Vicente, A.A.; Machado-Cruz, J.M.; Teixeira, J.A. Spent grains—A new support for brewing yeast immobilization. Biotechnol. Lett. 2001, 23, 1073–1078. [Google Scholar] [CrossRef]
- Bekatorou, A.; Bountas, Y.; Banat, I.M.; Kanellaki, M. Upgrading brewer’s spent grains by treatment with Aspergillus species. Chem. Ind. Chem. Eng. Q. 2007, 13, 72–78. [Google Scholar] [CrossRef]
- Koutinas, A.A.; Papapostolou, H.; Dimitrellou, D.; Kopsahelis, N.; Katechaki, E.; Bekatorou, A.; Bosnea, L.A. Whey valorisation: A complete and novel technology development for dairy industry starter culture production. Bioresour. Technol. 2009, 100, 3734–3739. [Google Scholar] [CrossRef] [PubMed]
- Nigam, P.; Vogel, M. Bioconversion of sugar industry by-products—Molasses and sugar beet pulp for single cell protein production by yeasts. Biomass Bioenergy 1991, 1, 339–345. [Google Scholar] [CrossRef]
- Gélinas, P.; Barrette, J. Protein enrichment of potato processing waste through yeast fermentation. Bioresour. Technol. 2007, 98, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Aggelopoulos, T.; Bekatorou, A.; Pandey, A.; Kanellaki, M.; Koutinas, A.A. Discarded oranges and brewer’s spent grains as promoting ingredients for microbial growth by submerged and solid state fermentation of agro-industrial waste mixtures. Appl. Biochem. Biotechnol. 2013, 170, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Aggelopoulos, T.; Katsieris, K.; Bekatorou, A.; Pandey, A.; Banat, I.M.; Koutinas, A.A. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem. 2014, 145, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Jinap, S.; Hajeb, P. Glutamate: Its applications in food and contribution to health. Appetite 2010, 55, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.N.; Woessner, K.M. Monosodium glutamate allergy. Menace or myth? Clin. Exp. Allergy 2009, 39, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Leblanc, J.; et al. Re-evaluation of glutamic acid (E620), sodium glutamate (E621), potassium glutamate (E622), calcium glutamate (E623), ammonium glutamate (E624) and magnesium glutamate (E625) as food additives. EFSA J. 2017, 15, 4910. [Google Scholar]
- Tanguler, H.; Erten, H. Utilization of spent brewer’s yeast for yeast extract production by autolysis: The effect of temperature. Food Bioprod. Proc. 2008, 86, 317–321. [Google Scholar] [CrossRef]
- Cavallo, N.; De Angelis, M.; Calasso, M.; Quinto, M.; Mentana, A.; Minervini, F.; Cappelle, S.; Gobbetti, M. Microbial cell-free extracts affect the biochemical characteristics and sensorial quality of sourdough bread. Food Chem. 2017, 237, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Iluyemi, F.B.; Hanafi, M.M.; Radziah, O.; Kamarudin, M.S. Fungal solid state culture of palm kernel cake. Bioresour. Technol. 2006, 97, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Gardeli, C.; Papageorgiou, V.; Mallouchos, A.; Kibouris, T.; Komaitis, M. Essential oil composition of Pistacialentiscus L. and Myrtuscommunis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar] [CrossRef]
- Eaton, A.D.; Clesceri, L.S.; Greenberg, A.E.; Franson, M.A.H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Herbert, D.; Phipps, P.J.; Strange, R.E. Chapter III. Chemical analysis of microbial cells. Methods Microbiol. 1971, 5, 209–344. [Google Scholar]
- Liu, D.J.; Pomeranz, Y.; Robbins, G.S. Mineral content of developing and malted barley. Am. Assoc. Cereal Chem. 1975, 52, 678–686. [Google Scholar]
- Glass, L.; Hedrick, T.I. Nutritional composition of sweet-type and acid-type dry wheys. 1. Major factors including amino-acids. J. Dairy Sci. 1977, 60, 185–189. [Google Scholar] [CrossRef]
- Wong, N.P.; La Croix, D.E.; McDonough, F.E. Minerals in whey and whey fractions. J. Dairy Sci. 1978, 61, 1700–1703. [Google Scholar] [CrossRef]
- Mavropoulou, I.P.; Kosikowski, F.V. Composition, solubility and stability of whey powders. J. Dairy Sci. 1973, 56, 1128. [Google Scholar] [CrossRef]
- Goyal, N.; Gandhi, D.N. Comparative analysis of Indian paneer and cheese whey for electrolyte whey drink. World J. Dairy Food Sci. 2009, 4, 70–72. [Google Scholar]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Menezes, E.A.; Oliveira, A.F.; Franca, C.J.; Souza, G.B.; Nogueira, A.R.A. Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein in beef, pork and chicken after thermal processing. Food Chem. 2018, 240, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Malu, S.P.; Andrew, C.; Abah, J.; Oko, O.J. Determination of heavy metals in brewer’s spent grains obtained from Benue Brewery Limited (BBL), Makurdi, North Central Nigeria. J. Nat. Sci. Res. 2014, 4, 119–122. [Google Scholar]
- Simpkins, W.A.; Louie, H.; Wu, M.; Harrison, M.; Goldberg, D. Trace elements in Australian orange juice and other products. Food Chem. 2000, 71, 423–433. [Google Scholar] [CrossRef]
- Ozturk, E.; Atsan, E.; Polat, T.; Kara, K. Variation in heavy metal concentrations of potato (Solanum tuberosum L.) cultivars. J. Anim. Plant Sci. 2011, 21, 235–239. [Google Scholar]
- Arvanitoyannis, I.S.; Vaitsi, O.; Mavromatis, A. Physico-chemical and sensory attributes in conjunction with multivariate analysis of two potato (Solanum tuberosum L.) cultivars after 90 days of storage: An exploratory authentication study. Int. J. Food Sci. Tech. 2008, 43, 1960–1970. [Google Scholar] [CrossRef]
- Zadrazil, F. The ecology and industrial production of Pleurotus ostreatus, P. florida, P. cornucopiae and P. eryngii. Mushroom Sci. 1976, 9, 621–652. [Google Scholar]
- Kües, U.; Liu, Y. Fruiting body production in basidiomycetes. Appl. Microbiol. Biot. 2000, 54, 141–152. [Google Scholar] [CrossRef]
- Nyochembeng, L.M.; Beyl, C.A.; Pacumbaba, R.P. Optimizing edible fungal growth and biodegradation of inedible crop residues using various cropping methods. Bioresour. Technol. 2008, 99, 5645–5649. [Google Scholar] [CrossRef] [PubMed]
- Rajarathnam, S.; Shashirekha, M.N.; Bano, Z. Biodegradative and biosynthetic capacities of mushrooms: Present and future strategies. Crit. Rev. Biotechnol. 1998, 18, 91–236. [Google Scholar] [CrossRef] [PubMed]
- Mathot, P.; Debevere, C.; Walhain, P.; Baudart, E.; Théwis, A.; Brakel, J. Composition and nutritive value for rats of Aspergillus niger solid fermented barley. Anim. Feed Sci. Technol. 1992, 39, 227–237. [Google Scholar] [CrossRef]
- Joshi, V.K.; Sandhu, D.K. Preparation and evaluation of an animal feed byproduct produced by solid-state fermentation of apple pomace. Bioresour. Technol. 1996, 56, 251–255. [Google Scholar] [CrossRef]
- Bambidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Hu, D.D.; Zhang, Y.Y.; Goodwin, P.H.; Huang, C.Y.; Chen, Q.; Gao, W.; Wu, X.L.; Zou, Y.J.; Qu, J.B.; et al. Anoxia and anaerobic respiration are involved in “spawn-burning” syndrome for edible mushroom Pleurotus eryngii grown at high temperatures. Sci. Hortic. 2016, 199, 75–80. [Google Scholar] [CrossRef]
- Misharina, T.A.; Mukhutdinova, S.M.; Zharikova, G.G.; Terenina, M.B.; Krikunova, N.I.; Medvedeva, I.B. The composition of volatile components of dry cepe and oyster mushroom. Appl. Biochem. Microbiol. 2009, 45, 544–549. [Google Scholar] [CrossRef]
- Xiao, D.R.; Liu, R.S.; He, L.; Li, H.M.; Tang, Y.L.; Liang, X.H.; Chen, T.; Tang, Y.J. Aroma improvement by repeated freeze-thaw treatment during Tuber melanosporum fermentation. Sci. Rep. 2015, 5, 17120. [Google Scholar] [CrossRef] [PubMed]
- Sable, S.; Letellier, F.; Cottenceau, G. An analysis of the volatile flavour compounds in a soft raw goat milk cheese. Biotechnol. Lett. 1997, 19, 143–145. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Mangia, A.; Mattarozzi, M.; Musci, M.; Concina, I.; Falasconi, M.; Gobbi, E.; Pardo, M.; Sberveglieri, G. Differentiation of the volatile profile of microbiologically contaminated canned tomatoes by dynamic headspace extraction followed by gas chromatography-mass spectrometry analysis. Talanta 2009, 77, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, A.; Hayaloglu, A.A.; Atasoy, A.F. Evaluation of the volatile compounds of fresh ripened Capsicum annuum and its spice pepper (dried red pepper flakes and isot). LWT Food Sci. Technol. 2017, 84, 842–850. [Google Scholar] [CrossRef]
- Garruti, D.S.; Franco, M.R.B.; Aparecida, M.; da Silva, A.P.; Janzantti, N.S.; Alves, G.L. Assessment of aroma impact compounds in a cashew apple-based alcoholic beverage by GC-MS and GC-olfactometry. LWT Food Sci. Technol. 2006, 39, 373–378. [Google Scholar] [CrossRef]
- Belem, M.A.F.; Lee, B.H. Fed-batch fermentation to produce oligonucleotides from Kluyveromyces marxianus grown on whey. Process Biochem. 1999, 34, 501–509. [Google Scholar] [CrossRef]
Substrate | Substrate Composition | Fermented Substrate Composition | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molasses | MSR | BSG | Whey | Potato Pulp | Orange Pulp | Water | Initial Protein | Final Protein | Protein Increase | Initial Sugar | Final Sugar | Sugar Reduction | Moisture | |
mL | g | g | mL | mL | mL | mL | %w/w | %w/w | % | g/Kg | g/Kg | % | % | |
S1 | 5 | 5 | 50 | 5 | 5 | 5 | 20 | 19.3 | 44.2 | 24.9 | 8.9 | 0.4 | 95.5 | 86.7 |
S2 | 5 | 5 | 50 | 5 | 5 | 5 | 20 | 15.5 | 39.2 | 23.7 | 9.3 | 1.2 | 87.1 | 78.9 |
S3 | 5 | 12.5 | 5 | 5 | 5 | 5 | 20 | 15.5 | 32.6 | 17.1 | 17.1 | 0.4 | 97.7 | 84.7 |
S4 | 5 | 13 | 5 | 5 | 5 | 50 | 20 | 25.7 | 39.8 | 14.1 | 30.6 | 0.6 | 98.2 | 84.6 |
S5 | 5 | 5 | 5 | 5 | 50 | 5 | 20 | 40.4 | 58.8 | 18.4 | 22.4 | 1.5 | 93.3 | 90.5 |
S6 | 5 | 5 | 30 | 5 | 5 | 20 | 20 | 27.8 | 49.3 | 21.5 | 15.6 | 3.0 | 80.5 | 64.7 |
S7 | 20 | 5 | 30 | 5 | 20 | 5 | 20 | 16.8 | 43.2 | 26.4 | 34.0 | 0.0 | 100.0 | 58.4 |
S8 | - | - | 30 | - | - | 30 | 20 | 33.3 | 43.8 | 10.5 | 4.9 | 2.6 | 46.8 | 88.0 |
S9 | - | 30 | - | - | - | 30 | 20 | 32.9 | 34.6 | 1.7 | 5.5 | 0.9 | 83.3 | 87.3 |
S10 | 30 | - | - | - | - | 30 | 20 | 12.8 | 28.9 | 16.1 | 24.5 | 0.0 | 100.0 | 68.5 |
S11 | - | - | - | 10 | - | 30 | 20 | 30.7 | 35.2 | 4.5 | 9.2 | 3.3 | 64.0 | 88.0 |
S12 | - | - | - | - | 30 | 30 | 20 | 37.2 | 59.8 | 22.6 | 8.9 | 0.2 | 98.2 | 82.2 |
S13 | 30 | - | 30 | - | - | - | 20 | 13.7 | 13.8 | 0.1 | 30.6 | 17.6 | 42.4 | 72.1 |
S14 | 30 | 20 | - | - | - | - | 20 | 17.7 | 17.8 | 0.1 | 33.2 | 21.3 | 35.6 | 82.2 |
S15 | - | - | 30 | - | 30 | - | 20 | 31.0 | 31.6 | 0.6 | 3.6 | 0.0 | 99.4 | 82.5 |
S16 | - | 20 | 30 | - | - | - | 20 | 24.2 | 45.0 | 20.8 | 1.1 | 0.9 | 20.0 | 82.9 |
S17 | 20 | - | 45 | - | - | - | 20 | 24.3 | 31.5 | 7.2 | 22.9 | 0.0 | 100.0 | 77.2 |
S18 | - | - | 50 | 15 | - | - | 20 | 40.5 | 56.0 | 15.5 | 2.0 | 0.6 | 72.0 | 81.3 |
S19 | - | 20 | - | - | 10 | - | 20 | 40.3 | 42.6 | 2.3 | 0.2 | 0.2 | 8.7 | 81.9 |
S20 | 20 | 20 | - | - | - | - | 20 | 29.7 | 30.9 | 1.2 | 11.2 | 3.1 | 72.2 | 85.5 |
S21 | - | 20 | - | 60 | - | - | 20 | 27.9 | 34.4 | 6.5 | 5.7 | 2.1 | 62.3 | 81.1 |
S22 | - | - | 30 | 10 | 30 | - | 20 | 23.8 | 45.3 | 21.5 | 2.0 | 1.1 | 44.4 | 81.0 |
S23 | - | 20 | - | 70 | 35 | - | 20 | 32.3 | 53.7 | 21.4 | 3.6 | 0.4 | 88.8 | 81.8 |
S24 | - | 20 | 20 | 70 | - | - | 20 | 42.6 | 58.5 | 15.9 | 2.2 | 1.2 | 48.7 | 79.8 |
S25 | - | 20 | 20 | - | 30 | - | 20 | 32.8 | 51.4 | 18.6 | 1.2 | 0.6 | 48.7 | 82.2 |
Metal (mg/Kg) | MSR | BSG | Whey | Molasses | Orange Pulp | Potato Pulp |
---|---|---|---|---|---|---|
Μg | 3970 | 605.6 | 2000 | 14,200 | 0.19 | 320.63 |
Ca | 20.30 | 4.39 | 21.0 | 1636 | 285 | 1.10 |
Fe | 96.02 | 4.56 | 0 | 70.9 | - | - |
Cu | 19.38 | 24.62 | 3.66 | 6.03 | 3.21 | 3.34 |
pH | Temp. | Initial Sugar | Final Sugar | Final Protein | Yield | Final ash | Moisture |
---|---|---|---|---|---|---|---|
°C | g/Kg | g/Kg | %w/w | gmycelim/Kgsubstr | %w/w | % | |
4.0 | 25 | 30.04 | 0.15 | 27.96 | 59.44 | 1.10 | 63.2 |
5.5 | 25 | 29.85 | - | 33.94 | 57.71 | 0.83 | 59.5 |
7.0 | 25 | 31.17 | 0.20 | 38.35 | 39.50 | 0.82 | 62.6 |
4.0 | 15 | 21.04 | 8.75 | 27.96 | 41.84 | 0.70 | 87.5 |
4.0 | 25 | 21.04 | 0.20 | 32.65 | 71.84 | 0.76 | 88.7 |
4.0 | 37 | 21.04 | 7.13 | 30.58 | 37.65 | 0.94 | 85.3 |
Characteristic | Content | |
---|---|---|
SSF product | Moisture | 76.0±2.3 |
Dry matter | 24.0±2.1 | |
Protein (%w/w) | 30.3±1.9 | |
Ash (%w/w) | 0.93 ± 0.1 | |
Fat (%w/w dry matter) | 14.4±1.1 | |
Ca (mg/Kg) | 91.1±8.3 | |
Mg (mg/Kg) | 324.5±24.1 | |
Fe (mg/Kg) | 17.8±2.1 | |
Cu (mg/Kg) | 21.8±2.1 | |
Major volatile compounds (mg/Kg) (GC/FID) | ||
Acetaldehyde | 277.7±26.3 | |
Ethyl acetate | 142.4±18.7 | |
Propan-1-ol | 21.5±3.2 | |
Isobutyl alcohol | 31.9±4.3 | |
Amyl alcohols | 7.5±1.3 | |
SSF product after autolysis | RNA (mg/100 g dry extract) | 721.8±31.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggelopoulos, T.; Bekatorou, A.; Plessas, S.; Koutinas, A.A.; Nigam, P. Upgrading of Mixed Food Industry Side-Streams by Solid-State Fermentation with P. ostreatus. Recycling 2018, 3, 12. https://doi.org/10.3390/recycling3020012
Aggelopoulos T, Bekatorou A, Plessas S, Koutinas AA, Nigam P. Upgrading of Mixed Food Industry Side-Streams by Solid-State Fermentation with P. ostreatus. Recycling. 2018; 3(2):12. https://doi.org/10.3390/recycling3020012
Chicago/Turabian StyleAggelopoulos, Theodoros, Argyro Bekatorou, Stavros Plessas, Athanasios A. Koutinas, and Poonam Nigam. 2018. "Upgrading of Mixed Food Industry Side-Streams by Solid-State Fermentation with P. ostreatus" Recycling 3, no. 2: 12. https://doi.org/10.3390/recycling3020012
APA StyleAggelopoulos, T., Bekatorou, A., Plessas, S., Koutinas, A. A., & Nigam, P. (2018). Upgrading of Mixed Food Industry Side-Streams by Solid-State Fermentation with P. ostreatus. Recycling, 3(2), 12. https://doi.org/10.3390/recycling3020012