Potential of Briquetting as a Waste-Management Option for Handling Market-Generated Vegetable Waste in Port Harcourt, Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data-Collection Methods
2.3. Briquette Preparation
2.4. Moisture Content Determination
2.5. Density Determination
2.6. Water-Boiling Test
2.7. Statistical Analysis
3. Results
3.1. Respondents’ Demographics
3.2. Fruit and Vegetable Waste Availability and Management Methods
3.3. Energy Needs, Sources and Estimated Cost
3.4. Selection of Waste Materials for Briquetting
3.5. Effects of Pre-Treatment on Briquetting
3.6. Moisture Content and Densities of Briquettes
3.7. Water-Boiling Test
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations Environment Programme. Solid Waste Management; UNEP International Environmental Technology Centre in Coordination with CalRecovery Incorporated: Nairobi, Kenya, 2005. [Google Scholar]
- Obi, O.F.; Adebayo, B.S.; Aneke, N.N. Biomass briquetting and rural development in Nigeria. Int. J. Sci. Environ. Technol. 2014, 3, 1043–1052. [Google Scholar]
- Jekayinfa, S.O.; Scholz, V. Potential availability of energetically usable crop residues in Nigeria. Energy Source Part A 2009, 33, 687–697. [Google Scholar] [CrossRef]
- Oladeji, J.T. Theoretical aspects of biomass briquetting: A review study. J. Energy Technol. Policy 2015, 5, 72–81. [Google Scholar]
- Adegbulugbe, A.O. Energy-environment issues in Nigeria. Int. J. Glob. Energy Issues 1994, 6, 7–18. [Google Scholar]
- National Energy Policy. The Presidency Energy Commission of Nigeria. 2003. Available online: http://www.energy.gov.ng/index.php?option=com_docman&task=cat_view&gid=34&Itemid=49 (accessed on 9 October 2016).
- Olorunnisola, A. Production of fuel briquettes from waste paper and coconut husk admixtures. Int. Comm. Agric. Eng. 2007, 9, 1–11. [Google Scholar]
- Oladeji, J.T. Agricultural and forestry wastes and opportunities for their use as an energy sources in Nigeria: An overview. World Rural Obs. 2011, 3, 107–112. [Google Scholar]
- Li, M.; Luo, N.; Lu, Y. Biomass energy technological paradigm (BETP): Trends in this sector. Sustainability 2017, 9, 567. [Google Scholar] [CrossRef]
- Veringa, H.J. Advanced Techniques for Generation of Energy from Biomass and Waste. ECN Biomass: 2009. Available online: https://www.ecn.nl/fileadmin/ecn/units/bio/Overig/pdf/Biomassa_voordelen.pdf (accessed on 20 March 2018).
- Tungal, R.; Shende, R. Catalytic subcritical hydropyrolysis of waste biomass into gasoline range hydrocarbons. NSTI-Nanotech 2011, 3, 675–678. [Google Scholar]
- Qiao, W.; Yan, X.; Ye, J.; Sun, Y.; Wang, W.; Zhang, Z. Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew. Energy 2011, 36, 3313–3318. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuel Bioprod. Biorefin. 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Factors affecting strength and durability of densified products. In Proceedings of the ASABE (American Society of Agricultural and Biological Engineers) Annual International Meeting, Portland, OR, USA, 9–12 July 2006. [Google Scholar]
- Omari, A.M.; Kichonge, B.N.; John, G.R.; Njau, K.N.; Mtui, P.L. Potential of municipal solid waste, as renewable energy source: A case study of Arusha, Tanzia. Int. J. Renew. Energy Technol. Res. 2014, 3, 1–9. [Google Scholar]
- Raju, C.A.; Ramya, J.K.; Satya, M.; Praveena, U. Studies on development of fuel briquettes for household and industrial purpose. Int. J. Res. Eng. Technol. 2014, 3, 54–63. [Google Scholar]
- Srivastava, N.S.L.; Narnaware, S.L.; Makwana, J.P.; Singh, S.N.; Vahora, S. Investigating the energy use of vegetable market waste by briquetting. Renew. Energy 2014, 68, 270–275. [Google Scholar] [CrossRef]
- Bergman, P.C.A. Combined Torrefaction and Pelletization: The TOP Process; ECN Report # ECN-C-05-073; ECN Biomass: Petten, The Netherlands, 2005. [Google Scholar]
- Felfli, F.F.; Luengo, C.A.; Suarez, J.A.; Beaton, P.A. Wood briquette torrefaction. Energy Sustain. Dev. 2005, 9, 19–22. [Google Scholar] [CrossRef]
- Ikebude, C.F. Feasibility study on solid waste management in Port Harcourt Metropolis: Causes, effect and possible solutions. Niger. J. Technol. 2017, 36, 276–281. [Google Scholar]
- Igwe, C.; Isirimah, N.O.; Teme, S.C. Distribution and characteristics of solid wastes and waste disposal sites in Port Harcourt Municipality Rivers State, Nigeria. J. Environ. Pollut. Health 2002, 1, 51–60. [Google Scholar]
- Ayotamuno, J.M.; Gobo, A.E. Municipal solid waste management in Port Harcourt, Nigeria: Obstacles and prospects. Manag. Environ. Qual. Int. J. 2004, 4, 389–398. [Google Scholar] [CrossRef]
- Igoni, A.H.; Abowel, M.F.N.; Ayotamuno, J.M.; Eze, C.L. Effect of total solids concentration of municipal solid waste in anaerobic batch digestion on the biogas produced. J. Food Agric. Environ. 2007, 5, 333–337. [Google Scholar]
- Babatunde, B.B.; Vicent-Akpu, I.F.; Woke, G.N.; Atarhinyo, E.; Aharanwa, U.C.; Green, A.F.; Isaac-Joe, O. Comparative analysis of municipal solid waste (MSW) composition in three local government areas in Rivers State, Nigeria. Afr. J. Environ. Sci. Technol. 2013, 7, 874–881. [Google Scholar]
- Onukak, I.E.; Mohammed-Dabo, I.A.; Ameh, A.O.; Okoduwa, S.I.R.; Fasanya, O.O. Production and characterization of biomass briquettes from tannery solid waste. Recycling 2017, 2, 17. [Google Scholar] [CrossRef]
- Moni, M.N.Z.; Sulaiman, S.A.; Raja, Y.S.; Karunamurthy, K.; Inayat, M.; Bou-Rabee, M.A. Investigation of the relationship between moisture content and density of selected Malaysian biomass. J. Mech. Eng. Sci. 2016, 10, 2112–2126. [Google Scholar]
- Onuegbu, T.U.; Ekpunobi, U.E.; Ogbu, I.M.; Ekeoma, M.O.; Obumselu, F.O. Comparative studies of ignition time and water boiling test of coal and biomass briquettes blend. IJRRAS 2011, 7, 153–159. [Google Scholar]
- Longvah, T.; Ananthan, R.; Bhaskarachary, K.; Venkaiah, K. Indian Food Composition Tables; Longvah, T., Ed.; National Institute of Nutrition; Indian Council of Medical Research; Department of Health Research; Ministry of Health & Family Welfare; Government of India: Hyderabad, Telanga, India, 2017.
- Gopalan, C.; Sastri, R.B.V.; Balasubramanian, S.C. Nutritive Value of Indian Foods; National Institute of Nutrition, Indian Council of Medical Research (ICMR): Hyderabad, India, 1989. [Google Scholar]
- Islam, R.M.; Paul, D.K.; Shaba, R.K. Nutritional importance of some leafy vegetables available in Bangladesh. Pak. J. Biol. Sci. 2004, 7, 1380–1384. [Google Scholar]
- Binafeigha, T.R.; Enwin, A. The state of solid waste management in Port Harcourt City, Nigeria. Am. J. Civ. Eng. Archit. 2017, 5, 160–166. [Google Scholar]
- King, D.J.A.; Michener, D.H.; Bayne, H.G.; Mihara, K.L. Microbial studies of shelf life of cabbage and coleslaw. Appl. Environ. Microbiol. 1976, 31, 404–407. [Google Scholar] [PubMed]
- Ngu, N.T.; Ledin, I. Effects of feeding wastes from Brassica species on growth of goats and pesticide/insecticide residues in goat meat. J. Anim. Sci. 2005, 18, 197–202. [Google Scholar] [CrossRef]
- Grover, P.D.; Mishra, S.K. Biomass Briquetting: Technology and Practices; The FAO Regional Wood Energy Development Programme in Asia: Banglok, Thailand, 1996; pp. 1–43. [Google Scholar]
- Koppejan, J.; Sokhansanj, S.; Melin, S.; Madrali, S. Status Overview of Torrefaction Technologies. IEA Bioenergy Task 32 Report: Final Report. 2012. Available online: http://www.ieabcc.nl/publications/IEA_Bioenergy_T32_Torrefaction_review.pdf (accessed on 28 December 2017).
- Bikash, B.; Bhowmik, R.; Madhurjya, S. Challenges of wet briquetting from locally available biomass. Int. J. Mod. Eng. Res. 2013, 3, 1707–1711. [Google Scholar]
- Davies, R.M.; Abolude, D.S. Ignition and burning rate of water hyacinth briquettes. J. Sci. Res. Rep. 2013, 2, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.M.; Ahmad, S.W.; Kazmi, M.; Muhammad, M.; Feroze, N. Impact of torrefaction technique on the moisture contents, bulk density and calorific value of briquetted biomass. Pol. J. Chem. Technol. 2015, 17, 23–28. [Google Scholar] [CrossRef]
- Gravalos, I.; Kateris, D.; Xyradakis, P.; Gialamas, T.; Loutridis, S.; Augousti, A.; Georgiades, A.; Tsiropoulos, Z. A study on calorific energy values of biomass residue pellets for heating purpose. In Proceedings of the Forest Engineering: Meeting the Needs of the Society and the Environment, Padova, Italy, 11–14 July 2010. [Google Scholar]
- Rhen, C.; Gref, R.; Sjöström, M.; Wästerlund, I. Effects of raw material moisture content: Densification pressure and temperature on some properties of Norway spruce pellets. Fuel Process. Technol. 2005, 87, 11–16. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Specific energy requirements for compacting corn stover. Bioresour Technol. 2006, 97, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Omoniyi, T.E.; Igbo, P.K. Physico-mechanical characteristics of rice husk briquettes using different binders. Agric. Eng. Int. CIGR J. 2016, 18, 70–81. [Google Scholar]
- Oyelaran, O.A.; Bolaji, B.O.; Waheed, M.A.; Adekunle, M.F. Performance evaluation of the effect of waste paper on groundnut shell briquette. Int. J. Renew. Energy Dev. 2015, 4, 95–101. [Google Scholar] [CrossRef]
- Ucuncu, A.U.; Vesilind, P.A. Energy Recovery from Mixed Waste Paper. Waste Manag. Res. 1993, 11, 507–513. [Google Scholar] [CrossRef]
- Dhital, H.C.; Bajaracharya, T.R. A research on torrefaction and briquetting of biomass in Nepal. In Proceedings of the IOE Graduate Conference, Tribhuvan University, Kirtipur, Nepal, 29 November 2013; Volume 1, pp. 103–107. [Google Scholar]
Age Group | Male % | Female % |
---|---|---|
20 and below | 15.4% | 23.6% |
21–30 | 38.4% | 17.6% |
31–40 | 23.1% | 29.4% |
41–50 | 15.4% | 29.4% |
Over 50 | 7.7% | 0% |
Total | 100% | 100% |
Cost (₦) | Frequency | Percent | Cumulative Percent |
---|---|---|---|
1000–4999 | 11 | 36.7 | 36.7 |
5000–9999 | 11 | 36.7 | 73.3 |
10,000–14,999 | 3 | 10.0 | 83.3 |
15,000–19,999 | 4 | 13.3 | 96.7 |
Missing value | 1 | 3.3 | 100.0 |
Total | 30 | 100.0 |
Residue | Availability (Summed Rank) | Energy Content (kJ/100 g) | Ash Content (g/100 g) | Observed Availability |
---|---|---|---|---|
Cabbage | 49 | 126 | 0.81 | Abundant |
Lettuce | 40 | 91 | 1.11 | Scarce |
Green beans | 34 | 102 | 1.05 | Scarce |
Carrot leaves | 26 | 322 | 1.2 | Abundant |
Briquette Code | Briquette Type | MC (%) | Density (g/cm3) | Degree of Compaction (%) |
---|---|---|---|---|
BO10 | 10:90 paper: sun-dried cabbage | 8.37 ± 1.91 | 0.86 ± 0.13 | 391 |
BO15 | 15:85 paper: sun-dried cabbage | 8.47 ± 0.40 | 0.96 ± 0.16 | 436 |
BO20 | 20:80 paper: sun-dried cabbage | 4.61 ± 1.42 | 0.85 ± 0.04 | 386 |
BO25 | 25:75 paper: sun-dried cabbage | 4.71 ± 1.67 | 0.83 ± 0.06 | 377 |
TBO10 | 10:90 paper: torrefied cabbage | 3.03 ± 1.40 | 0.84 ± 0.04 | 382 |
TBO15 | 15:85 paper: torrefied cabbage | 3.25 ± 0.88 | 0.79 ± 0.06 | 359 |
TBO20 | 20:80 paper: torrefied cabbage | 3.14 ± 0.51 | 0.81 ± 0.06 | 368 |
TBO25 | 25:75 paper: torrefied cabbage | 3.74 ± 1.36 | 0.89 ± 0.09 | 405 |
DC10 | 10:90 paper: sun-dried carrot | 6.13 ± 0.21 | 0.79 ± 0.13 | 343 |
DC15 | 15:85 paper: sun-dried carrot | 5.47 ± 0.36 | 0.90 ± 0.13 | 391 |
DC20 | 20:80 paper: sun-dried carrot | 7.92 ± 4.73 | 0.87 ± 0.13 | 378 |
DC25 | 25:75 paper: sun-dried carrot | 3.53 ± 0.07 | 0.87 ± 0.06 | 378 |
TDC10 | 10:90 paper: torrefied carrot | 3.16 ± 0.06 | 0.87 ± 0.06 | 378 |
TDC15 | 15:85 paper: torrefied carrot | 4.11 ± 0.10 | 0.90 ± 0.07 | 391 |
TDC20 | 20:80 paper: torrefied carrot | 5.47 ± 2.16 | 0.89 ± 0.09 | 387 |
TDC25 | 25:75 paper: torrefied carrot | 3.20 ± 0.06 | 0.86 ± 0.13 | 391 |
Briquette Code | Briquette Type | Mass of Briquette Consumed (g) | Ignition Time (min) | Water Boiling Time (min) | Burning Rate (g/min) |
---|---|---|---|---|---|
BO10 | 10:90 paper: sun-dried cabbage | 61 | 0.32 | 32.32 | 1.89 |
BO15 | 15:85 paper: sun-dried cabbage | 66 | 0.45 | 25.03 | 2.64 |
BO20 | 20:80 paper: sun-dried cabbage | 65 | 1.06 | 18.13 | 3.59 |
BO25 | 25:75 paper: sun-dried cabbage | 68 | 1.43 | 14.37 | 4.73 |
TBO10 | 10:90 paper: torrefied cabbage | 36 | 1.19 | 19.35 | 1.86 |
TBO15 | 15:85 paper: torrefied cabbage | 41 | 1.41 | 16.30 | 2.52 |
TBO20 | 20:80 paper: torrefied cabbage | 39 | 2.57 | 14.16 | 2.75 |
TBO25 | 25:75 paper: torrefied cabbage | 60 | 1.51 | 12.42 | 4.83 |
DC10 | 10:90 paper: sundried carrot | 78 | 4.12 | 26.52 | 2.94 |
DC15 | 15:85 paper: sundried carrot | 65 | 3.00 | 19.34 | 3.36 |
DC20 | 20:80 paper: sundried carrot | 62 | 1.40 | 19.11 | 3.24 |
DC25 | 25:75 paper: sundried carrot | 73 | 1.32 | 21.47 | 3.40 |
TDC10 | 10:90 paper: torrefied carrot | 39 | 2.44 | 22.25 | 1.75 |
TDC15 | 15:85 paper: torrefied carrot | 43 | 1.35 | 14.24 | 3.02 |
TDC20 | 20:80 paper: torrefied carrot | 46 | 1.52 | 12.13 | 3.79 |
TDC25 | 25:75 paper: torrefied carrot | 45 | 1.47 | 9.21 | 4.89 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akande, O.M.; Olorunnisola, A.O. Potential of Briquetting as a Waste-Management Option for Handling Market-Generated Vegetable Waste in Port Harcourt, Nigeria. Recycling 2018, 3, 11. https://doi.org/10.3390/recycling3020011
Akande OM, Olorunnisola AO. Potential of Briquetting as a Waste-Management Option for Handling Market-Generated Vegetable Waste in Port Harcourt, Nigeria. Recycling. 2018; 3(2):11. https://doi.org/10.3390/recycling3020011
Chicago/Turabian StyleAkande, Olugbemiro M., and Abel O. Olorunnisola. 2018. "Potential of Briquetting as a Waste-Management Option for Handling Market-Generated Vegetable Waste in Port Harcourt, Nigeria" Recycling 3, no. 2: 11. https://doi.org/10.3390/recycling3020011
APA StyleAkande, O. M., & Olorunnisola, A. O. (2018). Potential of Briquetting as a Waste-Management Option for Handling Market-Generated Vegetable Waste in Port Harcourt, Nigeria. Recycling, 3(2), 11. https://doi.org/10.3390/recycling3020011