A Green Extraction Process to Recover Polyphenols from Byproducts of Hemp Oil Processing
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Extraction Procedure
2.4. Determination of Total Polyphenol Yield (YTP)
2.5. Determination of the Antiradical Activity (AAR)
2.6. Kinetic Models
Peleg’s model
First-order kinetic model
Second order kinetic model
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield
3.2. Extraction Kinetics
4. Conclusions
Author Contributions
Conflict of Interest
Nomenclature
AAR | antiradical activity (μmol TRE/g dw) |
Ct | concentration of polyphenols in the extract (mg/mL) |
C0 | polyphenols concentration (mg/mL) at time t = 0 |
Cp | Mallows’ Cp statistic |
CCD | hydroxypropyl-β-cyclodextrin concentration (%, w/v) |
CTP | total polyphenol concentration (mg GAE/L) |
K1 | Peleg’s rate constant (min mL/mg) |
K2 | Peleg’s capacity constant (mL/mg). |
R2 | square coefficient of correlation |
S/L | solid-to-liquid ratio |
S | mean square error |
T | temperature (°C) |
YTP | yield in total polyphenols (mg GAE/g dw) |
Abbreviations | |
CD | hydroxypropyl-β-cyclodextrin |
DPPH• | 2,2-diphenyl-picrylhydrazyl |
GAE | gallic acid equivalents |
TRE | trolox equivalents |
References
- Previtera, L.; Fucci, G.; De Marco, A.; Romanucci, V.; Di Fabio, G.; Zarrelli, A. Chemical and organoleptic characteristics of tomato purée enriched with lyophilized tomato pomace. J. Sci. Food Agric. 2016, 96, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fabiano-Tixier, A.S.; Tomao, V.; Cravotto, G.; Chemat, F. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrason. Sonochem. 2013, 20, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Di Fabio, G.; Malgieri, G.; Isernia, C.; D’Onofrio, J.; Gaglione, M.; Messere, A.; Zarrelli, A.; De Napoli, L. A novel synthetic strategy for monosubstituted cyclodextrin derivatives. Chem. Commun. 2012, 48, 3875–3877. [Google Scholar] [CrossRef] [PubMed]
- Mourtzinos, I.; Anastasopoulou, E.; Petrou, A.; Grigorakis, S.; Makris, D.; Biliaderis, C.G. Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Tech. 2016, 53, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Diamanti, A.C.; Igoumenidis, P.E.; Mourtzinos, I.; Yannakopoulou, K.; Karathanos, V.T. Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins. Food Chem. 2017, 214, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Oreopoulou, V.; Tzia, C. Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants. In Utilization of By-Products and Treatment of Waste in the Food Industry; Oreopoulou, V., Russ, W., Eds.; Springer Science Business Media, LLC: New York, NY, USA, 2007; pp. 209–232. [Google Scholar]
- Pojić, M.; Mišan, A.; Sakač, M.; Dapčević, H.T.; Šarić, B.; Milovanović, I.; Hadnađev, M. Characterization of byproducts originating from hemp oil processing. J. Agric. Food Chem. 2014, 62, 12436–12442. [Google Scholar] [CrossRef] [PubMed]
- Shirsath, S.R.; Sable, S.S.; Gaikwad, S.G.; Sonawane, S.H.; Saini, D.R.; Gogate, P.R. Intensification of extraction of Curcumin from curcuma amada using ultrasound assisted approach: Effect of different operating parameters. Ultrason. Sonochem. 2017, 38, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Charpe, T.W.; Rathod, V.K. Extraction of glycyrrhizic acid from licorice root using ultrasound: Process intensification studies. Chem. Eng. Process. Process Intensif. 2012, 54, 37–41. [Google Scholar] [CrossRef]
- D’Alessandro, L.G.; Dimitrov, K.; Vauchel, P.; Nikov, I. Kinetics of ultrasound assisted extraction of anthocyanins from Aronia melanocarpa (black chokeberry) wastes. Chem. Eng. Res. Des. 2014, 92, 1818–1826. [Google Scholar] [CrossRef]
- Yue, L.; Zhang, F.; Wang, Z. Ultrasound-assisted extraction of capsaicin from red peppers and mathematical modeling. Sep. Sci. Technol. 2012, 47, 124–130. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Z.; Sun, D.W. Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of Acoustic Energy Density and Temperature. Ultrason. Sonochem. 2014, 21, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, Z.; Sun, D.W. Experimental and modeling studies of ultrasound assisted release of phenolics from oak chips into model wine. Ultrason. Sonochem. 2014, 21, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Milić, P.S.; Rajković, K.M.; Stamenković, O.S.; Veljkovic, V.B. Kinetic modeling and optimization of maceration and ultrasound extraction of resinoid from the aerial parts of white lady’s bedstraw (Galium mollugo L.). Ultrason. Sonochem. 2013, 20, 525–534. [Google Scholar] [CrossRef] [PubMed]
- González-Centeno, M.R.; Comas-Serra, F.; Femenia, A.; Rosselló, C.; Simal, S. Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): Experimental kinetics and modeling. Ultrason. Sonochem. 2015, 22, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Jokic, S.; Velic, D.; Bilic, M.; Bucic-Kojic, A.; Planinic, M.; Tomas, S. Modeling of the process of solid–liquid extraction of total polyphenols from soybeans. Czech J. Food Sci. 2010, 28, 206–212. [Google Scholar] [CrossRef]
- Karacabey, E.; Bayindirli, L.; Artik, N.; Mazza, G. Modeling solid–liquid extraction kinetics of trans-resveratrol and trans-ε-viniferin from grape cane. J. Food Process Eng. 2013, 36, 103–112. [Google Scholar] [CrossRef]
- Vetal, M.D.; Lade, V.G.; Rathod, V.K. Extraction of ursolic acid from Ocimum sanctum by ultrasound: Process intensification and kinetic studies. Chem. Eng. Process. 2013, 69, 24–30. [Google Scholar] [CrossRef]
- Poojary, M.M.; Passamonti, P. Extraction of lycopene from tomato processing waste: Kinetics and modelling. Food Chem. 2015, 173, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidou, K.; Mourtzinos, Ι.; Costas, G.; Biliaderis, C.G.; Makris, D.P. Optimization of a green extraction/inclusion complex formation process to recover antioxidant polyphenols from oak acorn husks (Quercus robur) using aqueous 2-hydroxypropyl-β-cyclodextrin/glycerol mixtures. Environments 2016, 3, 3. [Google Scholar] [CrossRef]
- Paleologou, I.; Vasiliou, A.; Grigorakis, S.; Makris, D.P. Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Convers. Biorefin. 2016, 6, 289–299. [Google Scholar] [CrossRef]
- Bassil, D.; Makris, D.P.; Kefalas, P. Oxidation of caffeic acid in the presence of L-cysteine: Isolation of 2-S-cysteinylcaffeic acid and evaluation of its antioxidant properties. Food Res. Int. 2005, 38, 395–402. [Google Scholar] [CrossRef]
- Goula, A.M. Ultrasound-assisted extraction of pomegranate seed oil—Kinetic modeling. J. Food Eng. 2013, 117, 492–498. [Google Scholar] [CrossRef]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem. 2012, 19, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Pan, Z.; Ma, H. Extraction modeling and activities of antioxidants from pomegranate marc. J. Food Eng. 2010, 99, 16–23. [Google Scholar] [CrossRef]
- Kiassos, E.; Mylonaki, S.; Makris, D.P.; Kefalas, P. Implementation of response surface methodology to optimise extraction of onion (Allium cepa) solid waste phenolics. Innov. Food Sci. Emerg. Technol. 2009, 10, 246–252. [Google Scholar] [CrossRef]
- Katsampa, P.; Valsamedou, E.; Grigorakis, S.; Makris, D.P. A green ultrasound-assisted extraction process for the recovery of antioxidant polyphenols and pigments from onion solid wastes using Box–Behnken experimental design and kinetics. Ind. Crops Prod. 2015, 77, 535–543. [Google Scholar] [CrossRef]
- Bonfigli, M.; Godoy, E.; Reinheimer, M.A.; Scenna, N.G. Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. J. Food Eng. 2017, 207, 56–72. [Google Scholar] [CrossRef]
- Ursache, F.-M.; Ghinea, I.O.; Turturică, M.; Aprodu, I.; Râpeanu, G.; Stănciuc, N. Phytochemicals content and antioxidant properties of sea buckthorn (Hippophae rhamnoides L.) as affected by heat treatment—Quantitative spectroscopic and kinetic approaches. Food Chem. 2017, 233, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jeong, S.M.; Park, W.P.; Nam, K.C.; Ahn, D.U.; Lee, C. Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem. 2006, 97, 472–479. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
- Karacabey, E.; Mazza, G. Optimization of solid–liquid extraction of resveratrol and other phenolic compounds from milled grape canes (Vitis vinifera). J. Agric. Food Chem. 2008, 56, 6318–6325. [Google Scholar] [CrossRef] [PubMed]
- Karathanos, V.T.; Mourtzinos, I.; Yannakopoulou, K.; Andrikopoulos, N.K. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem. 2007, 101, 652–658. [Google Scholar] [CrossRef]
- Korompokis, K.; Igoumenidis, P.E.; Mourtzinos, I.; Karathanos, V.T. Green extraction and simultaneous inclusion complex formation of Sideritis scardica polyphenols. Int. Food Res. J. 2017, 24, 1233–1238. [Google Scholar]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction optimisation using water/glycerol for the efficient recovery of polyphenolic antioxidants from two Artemisia species. Sep. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Prasad, K.N.; Hassan, F.A.; Yang, B.; Kong, K.W.; Ramanan, R.N.; Azlan, A.; Ismail, A. Response surface optimization for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera pajang Kosterm peels. Food Chem. 2011, 128, 1121–1127. [Google Scholar] [CrossRef] [Green Version]
- Albahari, P.; Jug, M.; Radić, K.; Jurmanović, S.; Brnčić, M.; Brnčić, S.R.; Vitali Čepo, D. Characterization of olive pomace extract obtained by cyclodextrin-enhanced pulsed ultrasound assisted extraction. Food Sci. Technol. 2018, 92, 22–31. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Mantegna, S.; Binello, A.; Boffa, L.; Giorgis, M.; Cena, C.; Cravotto, G. A one-pot ultrasound-assisted water extraction/cyclodextrin encapsulation of resveratrol from Polygonum cuspidatum. Food Chem. 2012, 130, 746–750. [Google Scholar] [CrossRef]
- Ghafoor, M.; Misra, N.N.; Mahadevan, K.; Tiwari, B.K. Ultrasound assisted hydration of navy beans (Phaseolus vulgaris). Ultrason. Sonochem. 2014, 21, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Rakotondramasy-Rabesiaka, L.; Havet, J.-L.; Porte, C.; Fauduet, H. Solid–liquid extraction of protopine from Fumaria officinalis L.-Kinetic modelling of influential parameters. Ind. Crops Prod. 2009, 29, 516–523. [Google Scholar] [CrossRef]
- Liu, G.; Xu, X.; Hao, Q.; Gao, Y. Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. Lebensm. Wiss. Technol. 2009, 42, 1491–1495. [Google Scholar] [CrossRef]
- Dong, J.E.; Liu, Y.B.; Liang, Z.S.; Wang, W.L. Investigation on ultrasound assisted extraction of salvianolic acid B from Salvia miltiorrhiza root. Ultrason. Sonochem. 2010, 17, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Goula, M.; Chasekioglou, N.; Lazarides, H.N. Drying and shrinkage kinetics of solid waste of olive oil processing. Dry. Technol. 2015, 33, 1728–1738. [Google Scholar] [CrossRef]
- Goula, A.M.; Ververi, M.; Adamopoulou, A.; Kaderides, K. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason. Sonochemi. 2017, 34, 821–830. [Google Scholar] [CrossRef] [PubMed]
Independent Variable | Coded Variable Level | ||||
---|---|---|---|---|---|
−1.68 | −1.00 | 0 | +1.00 | +1.68 | |
T (°C) | 20 | 28 | 40 | 52 | 60 |
CCD (%, w/v) | 1 | 8.9 | 20.5 | 32.1 | 40 |
S/L (g/mL) | 1/15.2 | 1/10.6 | 1/7.5 | 1/5.7 | 1/5.0 |
Design Point | Independent Variables | Responses | |||||
---|---|---|---|---|---|---|---|
YTP (mg GAE/g dw) | AAR (μmol TRE/g dw) | ||||||
T (°C) | CCD (%, w/v) | S/L (g/mL) | Measured | Predicted | Measured | Predicted | |
1 | 20 | 20.5 | 1/7.5 | 1.78 | 1.90 | 4.38 | 4.78 |
2 | 52 | 8.9 | 1/10.6 | 2.66 | 2.52 | 7.01 | 5.68 |
3 | 40 | 20.5 | 1/5.0 | 1.89 | 1.71 | 4.06 | 3.63 |
4 | 40 | 1.0 | 1/7.5 | 1.76 | 1.60 | 1.90 | 2.25 |
5 | 40 | 20.5 | 1/7.5 | 2.24 | 2.05 | 3.97 | 4.16 |
6 | 40 | 20.5 | 1/7.5 | 1.76 | 2.05 | 4.20 | 4.16 |
7 | 28 | 32.1 | 1/5.7 | 1.47 | 1.63 | 2.81 | 3.76 |
8 | 52 | 32.1 | 1/10.6 | 3.37 | 3.06 | 8.22 | 7.95 |
9 | 28 | 8.9 | 1/5.7 | 1.18 | 1.09 | 2.12 | 1.49 |
10 | 40 | 20.5 | 1/15.2 | 1.81 | 2.05 | 3.43 | 4.16 |
11 | 40 | 20.5 | 1/7.5 | 3.95 | 4.52 | 10.43 | 11.79 |
12 | 40 | 20.5 | 1/7.5 | 2.23 | 2.05 | 4.47 | 4.16 |
13 | 40 | 40.0 | 1/7.5 | 1.86 | 2.50 | 4.64 | 6.07 |
14 | 40 | 20.5 | 1/10.6 | 1.00 | 2.05 | 1.89 | 4.16 |
15 | 28 | 32.1 | 1/5.7 | 4.51 | 3.79 | 12.40 | 10.17 |
16 | 52 | 32.1 | 1/5.7 | 2.14 | 1.82 | 5.14 | 4.50 |
17 | 52 | 8.9 | 1/10.6 | 0.94 | 1.29 | 1.72 | 2.23 |
18 | 28 | 8.9 | 1/7.5 | 3.23 | 3.26 | 6.81 | 7.90 |
19 | 40 | 20.5 | 1/7.5 | 3.27 | 2.05 | 8.51 | 4.16 |
20 | 60 | 20.5 | 1/7.5 | 1.40 | 1.45 | 2.61 | 3.55 |
A/A | Peleg’s Model | First-Order Kinetic Model | Second-Order Kinetic Model | |||
---|---|---|---|---|---|---|
R2 | SEE | R2 | SEE | R2 | SEE | |
1 | 0.990 | 9.227 | 0.969 | 15.898 | 0.929 | 24.134 |
2 | 0.993 | 7.737 | 0.987 | 10.648 | 0.931 | 24.435 |
3 | 0.979 | 20.737 | 0.960 | 28.412 | 0.863 | 53.006 |
4 | 0.959 | 17.549 | 0.933 | 22.389 | 0.901 | 27.315 |
5 | 0.899 | 34.917 | 0.875 | 38.761 | 0.741 | 55.937 |
6 | 0.989 | 9.364 | 0.969 | 15.518 | 0.937 | 21.891 |
7 | 0.982 | 12.576 | 0.961 | 18.635 | 0.942 | 22.680 |
8 | 0.952 | 26.199 | 0.937 | 29.966 | 0.664 | 69.036 |
9 | 0.971 | 13.769 | 0.952 | 17.788 | 0.882 | 27.912 |
10 | 0.988 | 9.558 | 0.961 | 17.320 | 0.769 | 41.936 |
11 | 0.958 | 20.567 | 0.960 | 20.244 | 0.737 | 51.557 |
12 | 0.985 | 13.506 | 0.969 | 19.550 | 0.735 | 57.516 |
13 | 0.975 | 15.877 | 0.972 | 16.598 | 0.841 | 39.876 |
14 | 0.982 | 7.175 | 0.985 | 6.727 | 0.981 | 7.385 |
15 | 0.965 | 27.424 | 0.926 | 39.831 | 0.795 | 66.248 |
16 | 0.985 | 16.936 | 0.952 | 30.173 | 0.861 | 51.337 |
17 | 0.947 | 12.978 | 0.920 | 16.015 | 0.902 | 17.707 |
18 | 0.957 | 21.866 | 0.915 | 30.552 | 0.820 | 44.596 |
19 | 0.978 | 23.539 | 0.952 | 35.243 | 0.807 | 70.339 |
20 | 0.969 | 12.050 | 0.949 | 15.556 | 0.859 | 25.782 |
Average | 0.970 | 16.678 | 0.950 | 22.291 | 0.845 | 40.031 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourtzinos, I.; Menexis, N.; Iakovidis, D.; Makris, D.P.; Goula, A. A Green Extraction Process to Recover Polyphenols from Byproducts of Hemp Oil Processing. Recycling 2018, 3, 15. https://doi.org/10.3390/recycling3020015
Mourtzinos I, Menexis N, Iakovidis D, Makris DP, Goula A. A Green Extraction Process to Recover Polyphenols from Byproducts of Hemp Oil Processing. Recycling. 2018; 3(2):15. https://doi.org/10.3390/recycling3020015
Chicago/Turabian StyleMourtzinos, Ioannis, Nikolaos Menexis, Dimitrios Iakovidis, Dimitris P. Makris, and Athanasia Goula. 2018. "A Green Extraction Process to Recover Polyphenols from Byproducts of Hemp Oil Processing" Recycling 3, no. 2: 15. https://doi.org/10.3390/recycling3020015
APA StyleMourtzinos, I., Menexis, N., Iakovidis, D., Makris, D. P., & Goula, A. (2018). A Green Extraction Process to Recover Polyphenols from Byproducts of Hemp Oil Processing. Recycling, 3(2), 15. https://doi.org/10.3390/recycling3020015