Minimizing Onsite Organic Household Left-Over Waste: The Emission Benefits of Keeping Pet Rabbits.
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Ripa, M.; Fiorentino, G.; Vacca, V.; Ulgiati, S. The relevance of site-specific data in Life Cycle Assessment (LCA). The case of the municipal solid waste management in the metropolitan city of Naples (Italy). J. Clean. Prod. 2017, 142, 445–460. [Google Scholar] [CrossRef]
- Lehmann, S. Optimizing urban material flows and waste streams in urban development through principles of zero waste and sustainable consumption. Sustainability 2011, 3, 155–183. [Google Scholar] [CrossRef]
- Motamedia, A.; Jafarpoura, M.; Askari-Khorasgania, O.; Pessaraklic, M. Assessing the potential of pomegranate meal and potato waste as new organic amendments for vermicompost. Commun. Soil Sci. Plant Anal. 2016, 47, 1771–1781. [Google Scholar] [CrossRef]
- Gajdos, R. Bioconversion of organic waste by the year 2010: To recycle elements and save energy resources. Conserv. Recycl. 1998, 23, 67–86. [Google Scholar] [CrossRef]
- Jara-Samaniego, J.; Perez-Murcia, M.D.; Bustamante, M.A.; Perez-Espinosa, A.; Paredes, C.; Lopez, M.; Lopez-Lluch, D.B.; Gavilanes-Teran, I.; Moral, R. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. J. Clean. Prod. 2017, 141, 1349–1358. [Google Scholar] [CrossRef]
- Fauziah, S.H.; Agamuthu, P. Sustainable household organic waste management via vermicomposting. Malays. J. Sci. 2009, 28, 135–142. [Google Scholar]
- Ansari, A.A. Worm powered environmental biotechnology in organic waste management. Int. J. Soil Sci. 2011, 6, 25–30. [Google Scholar] [CrossRef]
- Abeliotis, K.; Lasaridi, K.; Chroni, C. Life cycle assessment of food waste home composting in Greece. Toxicol. Environ. Chem. 2015, 98, 1200–1210. [Google Scholar] [CrossRef]
- Gavilanes-Terán, I.; Paredes, C.; Pérez-Espinosa, A.; Ángeles Bustamante, M.; Gálvez-Sola, L.; Jara-Samaniego, J. Opportunities and challenges of organic waste management from the agroindustrial sector in South America: Chimborazo province case Study. Commun. Soil Sci. Plant Anal. 2015, 46, 137–156. [Google Scholar] [CrossRef]
- Buratti, C.; Barbanera, M.; Testarmata, F.; Fantozzi, F. Life Cycle assessment of organic waste management strategies: An Italian case study. J. Clean. Prod. 2015, 89, 125–136. [Google Scholar] [CrossRef]
- Regattieri, A.; Piana, F.; Gamberi, M.; Bortolini, M.; Ferrari, E.; Massanova, F. Biogas production from organic waste: Design and field-test of a pilot plant for developing regions. In Proceedings of the 23rd International Conference for Production Research, (ICPR 2015), Pasay City, Philippines, 2–6 August 2015; p. 116101. [Google Scholar]
- Surendra, K.C.; Olivier, R.; Tomberlin, J.K.; Jha, R.; Khanal, S.K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy 2016, 98, 197–202. [Google Scholar] [CrossRef]
- Huang, W.; Wang, J.; Dai, X.; Li, M.; Harder, M.K. More than financial investment is needed: Food waste recycling pilots in Shanghai, China. J. Clean. Prod. 2014, 67, 107–116. [Google Scholar] [CrossRef]
- Xu, D.Y.; Lin, Z.Y.; Gordon, M.P.R.; Robinson, N.K.L.; Harder, M.K. Perceived key elements of a successful residential food waste sorting program in urban apartments: Stakeholder views. J. Clean. Prod. 2016, 134, 362–370. [Google Scholar] [CrossRef]
- Refsgaard, K.; Magnussen, K. Household behaviour and attitudes with respect to recycling food waste—Experiences from focus groups. J. Environ. Manag. 2009, 90, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.; Scott Matthews, H.; Morawski, C. Review and meta-analysis of 82 studies on end-of-life management methods for source separated organics. Waste Manag. 2013, 33, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Lalander, C.H.; Komakech, A.J.; Vinneras, B. Vermicomposting as manure management strategy for urban small-holder animal farms—Kampala case study. Waste Manag. 2015, 39, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B.; Møller, J.; Scheutz, C. Comparison of the organic waste management systems in the Danish–German border region using life cycle assessment (LCA). Waste Manag. 2016, 49, 491–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabris, I.; Cormier, D.; Gerhard, J.I.; Bartczak, T.; Kortschot, M.; Torero, J.L.; Cheng, Y.L. Continuous, self-sustaining smouldering destruction of simulated faeces. Fuel 2017, 190, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Bindra, N.; Dubey, B.; Dutta, A. Technological and life cycle assessment of organics processing odour control technologies. Sci. Total Environ. 2015, 527, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.G.; Yusoff, S. Assessment of GHG emission reduction potential from Source-separated Organic Waste (SOW) management: Case study in a higher educational institution in Malaysia. Sains Malays. 2015, 44, 193–201. [Google Scholar]
- Ermolaev, E.; Sundberg, C.; Pell, M.; Jönsson, H. Greenhouse gas emissions from home composting in practice. Bioresour. Technol. 2014, 151, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.C.; Sinha, R.K.; Wang, W. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Manag. Res. 2011, 29, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Gidarakos, E.; Havas, G.; Ntzamilis, P. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete. Waste Manag. 2006, 26, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, H.K.; Guvenc, S.Y.; Guvenc, L.; Demir, G. Municipal solid waste characterization according to different income levels: A case study. Sustainability 2016, 8, 1044. [Google Scholar] [CrossRef]
- Karak, T.; Bhagat, R.M.; Bhattacharyya, P. Municipal solid waste generation, composition, and management: The world scenario. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1509–1630. [Google Scholar] [CrossRef]
- Hoornweg, D.; Bhada-Tata, P. What a waste: A global review of solid waste management. Urban Dev. Ser. Knowl. Pap. 2012, 15, 1–98. [Google Scholar]
- Bom, U.; Belbase, S.; Bibriven Lila, R. Public perceptions and practices of solid waste recycling in the city of laramie in Wyoming, U.S.A. Recycling 2017, 2, 11. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, X.; Luo, J. Determining socio-psychological drivers for rural household recycling behavior in developing countries. Environ. Behav. 2010, 43, 848–877. [Google Scholar] [CrossRef]
- Rousta, K.; Bolton, K.; Dahlén, L. A procedure to transform recycling behavior for source separation of household waste. Recycling 2016, 1, 147. [Google Scholar] [CrossRef]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ perspective on circular economy strategy for reducing food waste. Sustainability 2017, 9, 141. [Google Scholar] [CrossRef]
- Mukama, T.; Ndejjo, R.; Musoke, D.; Musinguzi, G.; Halage, A.A.; Carpenter, D.O.; Ssempebwa, J.C. Practices, concerns, and willingness to participate in solid waste management in two urban slums in central Uganda. J. Environ. Public Health 2016. [Google Scholar] [CrossRef] [PubMed]
- Welch, T.; Coe, J.B.; Niel, L.; McCobb, E. A survey exploring factors associated with 2890 companion-rabbit owners’ knowledge of rabbit care and the neuter status of their companion rabbit. Prev. Vet. Med. 2017, 137, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Schepers, F.; Koene, P.; Beerda, B. Welfare assessment in pet rabbits. Anim. Welf. 2009, 18, 477–485. [Google Scholar]
- Howell, T.J.; Mornement, K.; Bennett, P.C. Companion rabbit and companion bird management practices among a representative sample of guardians in Victoria, Australia. J. Appl. Anim. Welf. Sci. 2015, 18, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Rooney, N.J.; Blackwell, E.J.; Mullan, S.M.; Saunders, R.; Baker, P.E.; Hill, J.M.; Sealey, C.E.; Turner, M.J.; Held, S.D. The current state of welfare, housing and husbandry of the English pet rabbit population. BMC Res. Notes 2014, 7, 942. [Google Scholar] [CrossRef] [PubMed]
- My House Rabbit. 7 Ways Rabbits Are Eco-Friendly Pets. Available online: http://myhouserabbit.com/new-to-rabbits/7-ways-rabbits-are-eco-friendly-pets/ (accessed on 1 August 2017).
- SFGate. The Environmental Impact of Pets, Part 2: What You Can Do. Available online: http://www.sfgate.com/pets/yourwholepet/article/The-environmental-impact-of-pets-Part-2-what-2489055.php (accessed on 1 August 2017).
- Rise and Shine Rabbitry. The Benefits and Uses or Rabbit Manure. Available online: https://riseandshinerabbitry.com/tag/rabbit-manure/ (accessed on 1 August 2017).
- Swanson, K.S.; Carter, R.A.; Yount, T.P.; Aretz, J.; Buff, P.R. Nutritional sustainability of pet foods. Adv. Nutr. Int. Rev. J. 2013, 4, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Islas-Valdez, S.; Lucho-Constantino, C.A.; Beltrán-Hernández, R.I.; René Gómez-Mercado, R.; Vázquez-Rodríguez, G.A.; Herrera, J.M. Effectiveness of rabbit manure biofertilizer in barley crop yield. Environ. Pollut. Res. 2015, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, B.; Papajova, I.; Tamborrino, R.; Ventrella, D.; Vitti, C. Characterization of composting mixtures and compost of rabbit by-products to obtain a quality product and plant proposal for industrial production. Vet. Ital. 2015, 51, 51–61. [Google Scholar] [PubMed]
- Ciesielczuk, T.; Poluszyńska, J.; Rosik-Dulewska, C. Homemade slow-action fertilizers, as an economic solution for organic food production. J. Ecol. Eng. 2017, 18, 78–85. [Google Scholar] [CrossRef]
- Saygin, O.; Gunes, K.; Ayaz, S.C. Using animals for reduction of biomass wastes at home. Fresenius Environ. Bull. 1996, 5, 248–252. [Google Scholar]
- Yin, R.K. The case study as a serious research strategy. Sci. Commun. 1981, 3, 97–114. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (EPA). WARM: Waste Reduction Model Version 14. 2016. Available online: https://www.epa.gov/warm/versions-waste-reduction-model-warm#WARM (accessed on 1 August 2017).
- Environmental Protection Agency. Solid Waste Management and greEnhouse Gases: A Life-Cycle Assessment of Emissions and Sinks, 3rd ed.; EPA: Washington, DC, 2006. Available online: nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=60000AVO.TXT (accessed on 28 August 2017).
- HSWMA. Municipal Solid Waste Composition, Hellenic Solid Waste Management Assosiation. Available online: www.eedsa.gr/Contents.aspx?Catld=95 (accessed on 28 August 2017).
- Eurostat. Municipal Waste by Waste Operations. Available online: http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 27 July 2017).
- Schuetze, T.; Lee, J.W.; Lee, T.G. Sustainable urban (re-)development with building integrated energy, water and waste systems. Sustainability 2013, 5, 1114–1127. [Google Scholar] [CrossRef]
- Paredes, C.; Pérez-Murcia, M.D.; Bustamante, M.A.; Pérez-Espinosa, A.; Agulló, E.; Moreno-Caselles, J. Valorization of mediterranean livestock manures: Composting of rabbit and goat manure and quality assessment of the compost obtained. Commun. Soil Sci. Plant Anal. 2015, 46, 248–255. [Google Scholar] [CrossRef]
- Li-Li, B.; Tie-Jun, Y.; Bin, W.; Lin, B.; De-Gui, T.; Xiang-Chao, F. Evaluation and comparison of composting rabbit manure mixed with mushroom residue and rice straw. J. Agric. Sci. Technol. 2013, 15, 1069–1081. [Google Scholar]
- Canet, R.; Pomares, F.; Cabot, B.; Chaves, C.; Ferrer, E.; Ribó, M.; Albiach, M.R. Composting olive mill pomace and other residues from rural southeastern Spain. Waste Manag. 2008, 28, 2585–2592. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho, E.M.; De Almeida, A.C.; Colen, F.; De Souza, R.M.; Menezes, I.R.; Vieira, V.A.; Oliveira, L.N.; Da Fonseca, M.P.; Santos, H.O.; Brandi, I.V.; et al. Composting as alternative treatment of solid wastes from laboratory animal care facilities. Acta Vet. Bras. 2011, 5, 184–191. [Google Scholar]
- Blengini, G.A. Applying lca to organic waste management in piedmont, Italy. Manag. Environ. Qual. 2008, 19, 533–549. [Google Scholar] [CrossRef]
- Bernstad, A.; la Cour Jansen, J. Review of comparative LCAs of food waste management systems—Current status and potential improvements. Waste Manag. 2012, 32, 2439–2455. [Google Scholar] [CrossRef] [PubMed]
- Di Maria, F.; Micale, C. Life cycle analysis of incineration compared to anaerobic digestion followed by composting for managing organic waste: The influence of system components for an Italian district. Int. J. Life Cycle Assess. 2015, 20, 377–388. [Google Scholar] [CrossRef]
- Di Maria, F.; Micale, C.; Contini, S. A novel approach for uncertainty propagation applied to two different bio-waste management options. Int. J. Life Cycle Assess. 2016, 21, 1529–1537. [Google Scholar] [CrossRef]
- Khoo, H.H.; Lim, T.Z.; Tan, R.B.H. Food waste conversion options in Singapore: Environmental impacts based on an LCA perspective. Sci. Total Environ. 2010, 408, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Blengini, G.A. Using lca to evaluate impacts and resources conservation potential of composting: A case study of the Asti district in Italy. Resour. Conserv. Recycl. 2008, 52, 1373–1381. [Google Scholar] [CrossRef]
Statistics | Rabbit Food (kg) | Compost (kg) |
---|---|---|
Mean | 0.604 | 0.247 |
Std. Deviation | 0.323 | 0.235 |
Skewness | 0.525 | 2.247 |
Kurtosis | −0.191 | 6.352 |
Minimum | 0 | 0 |
25th percentile | 0.369 | 0.097 |
Median | 0.557 | 0.184 |
75th percentile | 0.834 | 0.305 |
Maximum | 1.651 | 1.546 |
Scenario | Quantities (kg) | MTCO2E/Year Saved | ||
---|---|---|---|---|
To Landfill | To Rabbit Food | To Composting | ||
One household | ||||
Baseline | 237.293 | 0 | 0 | 0 |
Alternative 1 | 0 | 168.491 | 68.802 | 0.417 |
Alternative 2 | 0 | 0 | 237.293 | 0.373 |
30 households | ||||
Baseline | 7.119 × 103 | 0 | 0 | |
Alternative 1 | 0 | 5.055 × 103 | 2.064 × 103 | 12.510 |
Alternative 2 | 0 | 0 | 7.119 × 103 | 11.190 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsagarakis, K.P. Minimizing Onsite Organic Household Left-Over Waste: The Emission Benefits of Keeping Pet Rabbits. Recycling 2017, 2, 15. https://doi.org/10.3390/recycling2030015
Tsagarakis KP. Minimizing Onsite Organic Household Left-Over Waste: The Emission Benefits of Keeping Pet Rabbits. Recycling. 2017; 2(3):15. https://doi.org/10.3390/recycling2030015
Chicago/Turabian StyleTsagarakis, Konstantinos P. 2017. "Minimizing Onsite Organic Household Left-Over Waste: The Emission Benefits of Keeping Pet Rabbits." Recycling 2, no. 3: 15. https://doi.org/10.3390/recycling2030015
APA StyleTsagarakis, K. P. (2017). Minimizing Onsite Organic Household Left-Over Waste: The Emission Benefits of Keeping Pet Rabbits. Recycling, 2(3), 15. https://doi.org/10.3390/recycling2030015