Phase Characterisation for Recycling of Shredded Waste Printed Circuit Boards
Abstract
1. Introduction
1.1. Waste Printed Circuit Board Recycling
1.2. Aims
2. Overview of E-Scrap Samples Analyzed
2.1. Provenance
2.2. Sub-Sampling
3. Analytical Methods and Sample Preparation
3.1. Binocular Microscopy and Manual SEM-EDS
3.2. Automated SEM-EDS
3.3. Micro XRF
4. Phase Characterization
4.1. Particle Morphology
4.2. Particle Types
4.3. Micro-XRF Elemental Mapping
5. Discussion—Does Phase Characterization Aid Waste PCB Recycling?
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Phase | Description |
---|---|
Silicon | Silicon (e.g., microchip substrate). |
Copper | Copper metal. |
Tin | Tin-rich phases; may contain Ag. Interpreted as primarily solder. |
Zinc | Zinc metal. |
Nickel | Nickel metal and alloys. |
Pb phases | Pb-rich phases; often contains small amounts of Sn. Interpreted as including Pb solder. |
Gold | Gold metal. |
Ag phases | Ag-rich phases such as silver solder. |
Aluminium | Aluminum metal. |
Brass | Cu-Ni alloys such as brass. |
Silica | Silica, including fine silica filler. May contain Sb. |
Ca glass | Ca-Al silicate glasses. |
Ca Mg glass | Mg and P- bearing Ca-rich glasses. Typically occurs as fibres. |
Na Ca glass | Na and Ca-bearing glasses. May include minerals such as plagioclase and orthoclase. |
Mg silicates | Mg silicates such as the mineral talc. Interpreted as a filler or other additive. |
Fe silicates | Fe silicates such as fayalite. May also include Fe-rich slag compositions. |
Ti oxides | Ti oxides. Typically occurs as a filler within organic/plastic fragments. |
Zn oxide | Zn oxides and carbonates. |
Barite | Ba sulfates. |
Al oxide | Al oxides and hydroxides. |
Fe oxide | Fe oxides and hydroxides. |
Mn Fe oxide | Mn-bearing Fe oxides and hydroxides. |
Ba Ni oxide | Ba and Ni-bearing oxides and BaTi oxides. |
Ca oxides & carbonate | Ca oxides and carbonates such as calcite and aragonite. |
Mg oxides & carbonates | Mg oxides and carbonates such as brucite and magnesite. |
Br plastic | Br-bearing fire-retardant plastics. |
Sb- Br- plastic | Br and Sb-bearing fire-retardant plastics. |
PVC | Cl-rich plastics such as PVC. May also contain PTFE. |
Al Si chloride | Al and Si-bearing chloride phases. May include PVC containing Al silicate filler. |
Cr steel | Chrome steel and stainless steel. |
Ti REE | REE-bearing Ti oxides and metal. Typically contains Nd. |
Ca sulphate | Ca sulfates such as gypsum and anhydrite. |
Sulphur | Sulphur and S-bearing plastics. |
Unclassified | Other phases not included above. |
References
- Mir, S.; Nikhil Dhawan, N. A comprehensive review on the recycling of discarded printed circuit boards for resource recovery. Resour. Conserv. Recycl. 2022, 178, 106027. [Google Scholar] [CrossRef]
- Guo, J.; Guo, J.; Xu, Z. Recycling of non-metallic fractions from waste printed circuit boards: A review. J. Hazard. Mater. 2009, 168, 567–590. [Google Scholar] [CrossRef] [PubMed]
- Fariborz Faraji, F.; Golmohammadzadeh, R.; Pickles, C.A. Potential and current practices of recycling waste printed circuit boards: A review of the recent progress in pyrometallurgy. J. Environ. Manag. 2022, 316, 115242. [Google Scholar] [CrossRef] [PubMed]
- Mairizal, A.Q.; Sembada, A.Y.; Tse, K.M.; Haque, N.; Rhamdhani, M.A. Techno-economic analysis of waste PCB recycling in Australia. Resour. Conserv. Recycl. 2023, 190, 106784. [Google Scholar] [CrossRef]
- Ghosh, B.; Ghosh, M.K.; Parhi, P.; Mukherjee, P.S.; Mishra, B.K. Waste Printed Circuit Boards recycling: An extensive assessment of current status. J. Clean. Prod. 2015, 94, 5–19. [Google Scholar] [CrossRef]
- Kang, K.D.; Saman, I.M.; Ilankoon, K.; Dushyantha, N.; Chong, M.N. Assessment of Pre-Treatment Techniques for Coarse Printed Circuit Boards (PCBs) Recycling. Minerals 2021, 11, 1134. [Google Scholar] [CrossRef]
- D’Adamo, I.; Ferella, F.; Gastaldi, M.; Maggiore, F.; Rosa, P.; Terzi, S. Towards sustainable recycling processes: Wasted printed circuit boards as a source of economic opportunities. Resour. Conserv. Recycl. 2019, 149, 455–467. [Google Scholar] [CrossRef]
- Kaya, M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag. 2016, 57, 64–90. [Google Scholar] [CrossRef]
- Raman, P.R.; Shanmugam, R.R.; Swaminathan, S. Review on the role of density-based separation in PCBs recycling. Chem. Eng. J. 2024, 496, 154339. [Google Scholar] [CrossRef]
- Vuppaladadiyam, S.S.V.; Bennet, S.T.; Kundu, C.; Vuppaladadiyam, A.K.; Duan, H.; Bhattacharya, S. Can E-waste recycling provide a solution to the scarcity of rare earth metals? An overview of E-waste recycling methods. Sci. Total Environ. 2024, 924, 171453. [Google Scholar] [CrossRef]
- Hadi, P.; Xu, M.; Lin, C.S.K.; Hui, C.-W.; McKay, G. Waste printed circuit board recycling techniques and product utilization. J. Hazard. Mater. 2015, 283, 234–243. [Google Scholar] [CrossRef]
- Rocchetti, L.; Amato, A.; Beolchini, F. Printed circuit board recycling: A patent review. J. Clean. Prod. 2018, 178, 814–832. [Google Scholar] [CrossRef]
- Arshadi, M.; Yaghmaei, S.; Mousavi, S.M. Content evaluation of different waste PCBs to enhance basic metals recycling. Resour. Conserv. Recycl. 2018, 139, 298–306. [Google Scholar] [CrossRef]
- Chao, G.; Hui, W.; Wei, L.; Jiangang, F.; Xin, Y. Liberation characteristic and physical separation of printed circuit board (PCB). Waste Manag. 2011, 31, 2161–2166. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Lee, J.-C.; Jeong, J.; Jha, M.K.; Kim, B.-S.; Singh, R. Recycling of printed circuit boards (PCBs) to generate enriched rare metal concentrate. J. Ind. Eng. Chem. 2015, 21, 805–813. [Google Scholar] [CrossRef]
- Quan, C.; Li, A.; Gao, N.; Dan, Z. Characterization of products recycling from PCB waste pyrolysis. J. Anal. Appl. Pyrolysis 2010, 89, 102–106. [Google Scholar] [CrossRef]
- Silvas, F.P.C.; Correa, M.M.J.; Caldas, M.P.K.; de Moraes, V.T.; Espinosa, D.C.R.; Tenório, J.A.S. Printed circuit board recycling: Physical processing and copper extraction by selective leaching. Waste Manag. 2015, 46, 503–510. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, C.; Zhao, Y.; Zhou, Y.; Ma, E.; Bai, J.; Wang, J. Recycling gold from printed circuit boards gold-plated layer of waste mobile phones in “mild aqua regia” system. J. Clean. Prod. 2021, 278, 123597. [Google Scholar] [CrossRef]
- Wu, C.; Awasthi, A.K.; Qin, W.; Liu, W.; Yang, C. Recycling value materials from waste PCBs focus on electronic components: Technologies, obstruction and prospects. J. Environ. Chem. Eng. 2022, 10, 108516. [Google Scholar] [CrossRef]
- Yao, Y.; Bai, Q.; He, J.; Zhu, L.; Zhou, K.; Zhao, Y. Reverse flotation efficiency and mechanism of various collectors for recycling waste printed circuit boards. Waste Manag. 2020, 103, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-N.; Zhang, H.; Nie, C.-C.; Liu, X.-Y.; Lyu, X.-Y.; Tao, Y.-J.; Qiu, J.; Li, L.; Zhang, G.-W. Recycling metals from -0.5 mm waste printed circuit boards by flotation technology assisted by ionic renewable collector. J. Clean. Prod. 2020, 258, 120628. [Google Scholar] [CrossRef]
- Butcher, A.R.; Dehaine, Q.; Menzies, A.H.; Michaux, S.P. Characterisation of ore properties for geometallurgy. Elements 2023, 19, 352–358. [Google Scholar] [CrossRef]
- Donnelly, L.; Pirrie, D.; Power, M.; Corfe, I.; Lahaye, Y.; Liu, X.; Dehaine, Q.; Jolis, E.M.; Kuva, J.; Butcher, A.R. The recycling of end-of-life lithium-ion batteries and the phase characterisation of black mass. Recycling 2023, 8, 59. [Google Scholar] [CrossRef]
- Esbensen, K. Theory of Sampling: Introduction to the Theory and Practice of Sampling; IM Publications Open: West Sussex, UK, 2020; ISBN 1906715297. [Google Scholar]
- Pirrie, D.; Rollinson, G.K. Unlocking the applications of automated mineral analysis. Geol. Today 2011, 27, 235–244. [Google Scholar] [CrossRef]
- Vanderbruggen, A.; Gugala, E.; Blannin, R.; Backmann, K.; Serna-Guerrero, R.; Rudolph, M. Automated mineralogy as a novel approach for the compositional and textural characterization of spent lithium-ion batteries. Miner. Eng. 2021, 169, 106924. [Google Scholar] [CrossRef]
- Schultz, B.; Sandmann, D.; Gilbricht, S. SEM-based automated mineralogy and its applications in geo- and material sciences. Mineral 2020, 10, 1004. [Google Scholar]
- Scheller, S.; Tagle, R.; Gloy, G.; Barraza, M.; Menzies, A. Advancements in minerals identification and characterization in geo-metallurgy: Comparing E-beam and micro-X-ray-Fluorescence technologies. Microsc. Microanal. 2016, 23, 2168–2169. [Google Scholar] [CrossRef]
- Liu, Y.; Gupta, R.; Sharma, A.; Wall, T.; Butcher, A.; Miller, G.; Gottlieb, P.; French, D. Mineral matter–organic matter association characterisation by QEMSCAN and applications in coal utilization. Fuel 2005, 10, 1259–1267. [Google Scholar] [CrossRef]
Sample | Description | No. Blocks |
---|---|---|
(A) | Oversized fraction from the hammer mill—light fraction from air sifter > 0.5 mm | 4 |
(B) | Oversized fraction from the hammer mill—light fraction from air sifter < 0.5 mm | 3 |
(C) | Magnetic fraction pre milled < 40 mm | 6 |
(D) | Non-ferrous discard fraction from eddy current separator < 40 mm | 6 |
(E) | Oversized fraction from hammer mill—heavy fraction from air sifter > 2 mm | 4 |
(F) | Undersized fraction from hammer mill—heavy fraction from air sifter < 0.5 mm | 3 |
(G) | Middle fraction from hammer mill—heavy fraction from air sifter 0.5 mm < 2 mm | 3 |
(H) | Medium undersize, raw | 2 |
(I) | 1 mm milled | 1 |
Measurement | Pixel Size (µm) | Pixel Dwell Time (ms) | Total No. Pixels Analyzed | Total Analysis Time | Analytical Time Per Sample |
---|---|---|---|---|---|
1 | 1000 | 10 | 68,400 | 32 min | 5.3 min |
2 | 500 | 10 | 273,600 | 97 min | 16.2 min |
3 | 500 | 5 | 273,600 | 66 min | 11 min |
4 | 200 | 30 | 1,710,000 | 948 min | 158 min |
5 | 200 | 2 | 1,710,000 | 164 min | 27.3 min |
A | B | C | D | E | F | G | H | I | |
---|---|---|---|---|---|---|---|---|---|
Cu | 25.59 | 10.89 | 10.65 | 21.53 | 17.34 | 52.47 | 34.00 | 3.67 | 4.99 |
Sn | 1.51 | 1.00 | 1.50 | 1.08 | 2.84 | 13.12 | 15.90 | 0.46 | 0.67 |
Zn | 0.00 | 0.08 | 0.06 | 0.00 | 0.00 | 0.03 | 0.50 | 0.00 | 0.74 |
Ni | 0.01 | 0.05 | 0.01 | 0.00 | 0.02 | 0.13 | 0.09 | 0.02 | 0.01 |
Pb Phases | 0.00 | 0.17 | 0.00 | 0.00 | 0.31 | 0.83 | 2.61 | 0.39 | 0.59 |
Gold | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.003 | 0.002 | 0.000 |
Ag Phases | 0.01 | 0.13 | 0.00 | 0.00 | 0.00 | 0.04 | 0.13 | 0.00 | 0.00 |
Al | 0.44 | 0.46 | 0.00 | 0.00 | 1.77 | 1.26 | 0.91 | 3.82 | 5.16 |
Brass | 0.00 | 0.06 | 0.00 | 0.00 | 0.53 | 0.50 | 1.83 | 0.00 | 0.04 |
Cr Steel | 0.00 | 0.12 | 18.03 | 0.00 | 0.72 | 0.00 | 0.00 | 0.00 | 0.48 |
Zn Oxide | 0.13 | 0.02 | 0.00 | 0.00 | 0.00 | 0.04 | 0.03 | 0.00 | 0.03 |
Al Oxide | 0.42 | 1.28 | 0.21 | 0.18 | 0.16 | 0.72 | 5.13 | 0.14 | 0.13 |
A | B | C | D | E | F | G | H | I | |
---|---|---|---|---|---|---|---|---|---|
Silicon | 0.00 | 0.34 | 0.00 | 0.00 | 0.21 | 0.01 | 0.00 | 0.01 | 0.02 |
Silica | 4.76 | 6.68 | 0.30 | 4.48 | 10.55 | 4.66 | 7.61 | 1.50 | 7.35 |
Ca Glass | 32.87 | 29.85 | 10.20 | 42.44 | 26.12 | 7.03 | 10.61 | 45.86 | 37.87 |
Ca Mg Glass | 3.62 | 1.26 | 0.00 | 3.86 | 1.48 | 1.03 | 0.89 | 1.06 | 0.19 |
Na Ca Glass | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.12 |
Mg Silicates | 3.45 | 2.04 | 1.20 | 1.54 | 0.71 | 1.96 | 1.48 | 0.03 | 0.04 |
Fe Silicate | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.60 | 0.00 | 0.00 |
Ti Oxides | 0.04 | 0.10 | 0.00 | 0.02 | 0.01 | 0.05 | 0.12 | 0.01 | 0.24 |
Barite | 1.45 | 5.32 | 0.60 | 2.93 | 0.76 | 2.76 | 0.30 | 2.30 | 1.92 |
Fe Oxide | 0.00 | 0.10 | 0.01 | 0.00 | 0.00 | 0.14 | 0.62 | 0.01 | 0.72 |
Mn Fe Oxide | 0.00 | 1.21 | 46.13 | 0.00 | 0.00 | 0.79 | 0.49 | 0.00 | 0.01 |
Ba Ni Oxide | 0.00 | 0.56 | 0.20 | 0.00 | 0.00 | 0.17 | 0.73 | 0.01 | 0.09 |
Ca Oxide and Carbonate | 0.01 | 0.07 | 0.67 | 0.04 | 0.02 | 0.02 | 1.07 | 0.07 | 0.56 |
Mg Oxide and Carbonate | 0.01 | 0.05 | 0.00 | 0.12 | 0.02 | 0.01 | 0.02 | 0.40 | 0.05 |
Br Plastic | 12.82 | 35.59 | 9.27 | 21.09 | 13.50 | 10.23 | 6.67 | 37.91 | 27.33 |
Sb- Br- Plastic | 12.74 | 2.36 | 0.36 | 0.61 | 21.92 | 1.74 | 5.39 | 1.69 | 9.23 |
PVC | 0.00 | 0.00 | 0.47 | 0.00 | 0.03 | 0.00 | 0.32 | 0.21 | 0.35 |
Al Si Chloride | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 1.01 | 0.01 | 0.03 |
Ti REE | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.63 | 0.00 | 0.01 |
Ca Sulfate | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 |
Sulfur | 0.00 | 0.05 | 0.00 | 0.00 | 0.76 | 0.02 | 0.00 | 0.01 | 0.20 |
Undifferentiated | 0.12 | 0.16 | 0.12 | 0.08 | 0.19 | 0.17 | 0.29 | 0.38 | 0.48 |
Cu Liberation | A | B | E | F |
---|---|---|---|---|
0–5% | 0.2 | 0.1 | 1.7 | 0.1 |
5–10% | 0.6 | 0.1 | 1.8 | 0.3 |
10–15% | 3.8 | 0.3 | 1.5 | 0.3 |
15–20% | 1.4 | 1.3 | 2.7 | 0.4 |
20–25% | 4.3 | 0.4 | 1.5 | 1.0 |
25–30% | 2.0 | 1.2 | 2.4 | 2.1 |
30–35% | 5.6 | 1.5 | 1.0 | 1.5 |
35–40% | 0.4 | 3.1 | 2.1 | 3.3 |
40–45% | 1.1 | 1.5 | 3.0 | 2.5 |
45–50% | 1.8 | 1.9 | 2.6 | 4.8 |
50–55% | 1.9 | 5.2 | 2.1 | 2.8 |
55–60% | 1.0 | 5.8 | 1.5 | 3.8 |
60–65% | 5.6 | 3.5 | 5.3 | 4.8 |
65–70% | 2.0 | 6.7 | 3.6 | 4.6 |
70–75% | 5.1 | 9.2 | 5.2 | 4.3 |
75–80% | 3.8 | 7.1 | 4.4 | 6.9 |
80–85% | 3.6 | 7.2 | 3.2 | 5.3 |
85–90% | 6.8 | 7.7 | 5.4 | 4.4 |
90–95% | 5.2 | 12.7 | 10.1 | 8.9 |
95–100% | 43.9 | 23.4 | 38.8 | 38.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donnelly, L.; Pirrie, D.; Power, M.; Menzies, A. Phase Characterisation for Recycling of Shredded Waste Printed Circuit Boards. Recycling 2025, 10, 157. https://doi.org/10.3390/recycling10040157
Donnelly L, Pirrie D, Power M, Menzies A. Phase Characterisation for Recycling of Shredded Waste Printed Circuit Boards. Recycling. 2025; 10(4):157. https://doi.org/10.3390/recycling10040157
Chicago/Turabian StyleDonnelly, Laurance, Duncan Pirrie, Matthew Power, and Andrew Menzies. 2025. "Phase Characterisation for Recycling of Shredded Waste Printed Circuit Boards" Recycling 10, no. 4: 157. https://doi.org/10.3390/recycling10040157
APA StyleDonnelly, L., Pirrie, D., Power, M., & Menzies, A. (2025). Phase Characterisation for Recycling of Shredded Waste Printed Circuit Boards. Recycling, 10(4), 157. https://doi.org/10.3390/recycling10040157