Redispersibility of Paper Under Low Agitation and How It Deteriorates over Time
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties and Their Changes over Aging Time
Water Uptake Properties
2.2. Aging Mechanisms Related to Water-Fiber Interaction
3. Materials and Methods
3.1. Materials
Design of Experiments
3.2. Methods
3.2.1. Low Agitation Paper Disintegration Test
3.2.2. Tensile Strength (Wet and Dry)
3.2.3. Water Retention Value
3.2.4. K-Value–Penetration Velocity
3.2.5. Contact Angle
3.2.6. Aging Under Different Storage Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Senarathna, W.G.C.; Sulaksha, L.G.; Weerarathn, D.; Jayathma, W.M.V.; Gamage, D.G.M.; Thennakoon, T.M.T.; Hewage, H.T.; Panagoda, L.P.S.; Sandunika, D.M.; Perera, M.D. Paper Recycling for a Sustainable Future: Global Trends. J. Res. Technol. Eng. 2023, 4, 169–186. [Google Scholar]
- Villanueva, A.; Wenzel, H. Paper Waste—Recycling, Incineration or Landfilling? A Review of Existing Life Cycle Assessments. Waste Manag. 2007, 27, 29–46. [Google Scholar] [CrossRef]
- Mirković, I.B.; Bolanča, Z.; Medek, G. Impact of Aging and Recycling on Optical Properties of Cardboard for Circular Economy. Recycling 2024, 9, 112. [Google Scholar] [CrossRef]
- Di Foggia, G.; Beccarello, M. An Overview of Packaging Waste Models in Some European Countries. Recycling 2022, 7, 38. [Google Scholar] [CrossRef]
- European Environment Agency. Reaching 2030’s Residual Municipal Waste Target: Why Recycling Is Not Enough; European Environment Agency: Copenhagen, Denmark, 2022; pp. 1–15. [Google Scholar]
- Naithani, V.; Lucia, L.; Banerjee, S. High-Bulk Water Dispersible Paper-Based Composites. ACS Sustain. Chem. Eng. 2017, 5, 11334–11338. [Google Scholar] [CrossRef]
- Saito, K. Water-Dispersible Wrapping Paper and Wrapping Paper. Patent No. JP3472494B2, 2 December 1998. [Google Scholar]
- Caspar, T.; Gaspareto, D.; Gaultney, L.D.; Ross, G.; Hallahan, B.; Hallahan, D.; Johnson, B.D.; Jones, B.H.; Kratz, K.; Lakshmanan, P.; et al. Plant Artificial Seeds and Methods for the Production Thereof. Australian Patent AU2012358929B2, 27 June 2013. [Google Scholar]
- Green, B. Water-Dispersible and Biodegradable Films for the Packaging of Liquids and Moisture-Sensitive Materials. Patent No. US20210032002A1, 4 February 2021. [Google Scholar]
- Banks, M.S. Water Disintegratable Soap Package. Patent No. US2539395A, 6 November 1946. [Google Scholar]
- Koyama, M.; Kishimoto, M.; Ishino, Y. Water-Dispersible Paper. Patent No. US 9,388,532 B2, 12 July 2016. [Google Scholar]
- Pfennich, A.C.; Schoeffmann, E.A.; Lammer, H.; Hirn, U. Water-Soluble Paper for Packaging Applications—Balancing Material Strength and Dispersibility. Nord. Pulp. Pap. Res. J. 2023, 8, 521–532. [Google Scholar] [CrossRef]
- Blechschmidt, J.; Dobschall, E.; Blechschmidt, J.; Heinemann, S.; Fischer, K.; Bäurich, C.; Naujock, V.P.H.; Gliese, T.; Kleemann, S.; Naujock, H.; et al. Taschenbuch Der Papiertechnik; Hanser: München, Germany, 2021; 7 (167–195) and 9 (252–294); ISBN 9783446438026. [Google Scholar]
- Tervahartiala, T.; Hildebrandt, N.C.; Piltonen, P.; Schabel, S.; Valkama, J.P. Potential of All-Cellulose Composites in Corrugated Board Applications: Comparison of Chemical Pulp Raw Materials. Packag. Technol. Sci. 2018, 31, 173–183. [Google Scholar] [CrossRef]
- Gigac, J.; Fišerová, M. Influence of Pulp Refining on Tissue Paper Properties. Tappi J. 2008, 7, 27–32. [Google Scholar] [CrossRef]
- Yang, R.; Luettgen, C. Repulping of Wet Strength Paper Towel with Potassium Monopersulfate. Tappi J. 2020, 19, 463–470. [Google Scholar] [CrossRef]
- Su, J.; Mosse, W.K.J.; Sharman, S.; Batchelor, W.; Garnier, G. Paper Strength Development and Recyclability with Polyamideamine-Epichlorohydrin (PAE). BioResources 2012, 7, 913–924. [Google Scholar] [CrossRef]
- Adel, A.M.; Dupont, A.L.; Abou-Yousef, H.; El-Gendy, A.; Paris, S.; El-Shinnawy, N. A Study of Wet and Dry Strength Properties of Unaged and Hygrothermally Aged Paper Sheets Reinforced with Biopolymer Composites. J. Appl. Polym. Sci. 2014, 131, 9212–9224. [Google Scholar] [CrossRef]
- Bhardwaj, N.K.; Rajan, V. Wet Strength Paper Repulping: Effect of Process Variables. Appita J. 2004, 57, 305–310. [Google Scholar]
- Cho, B.U.; Ryu, J.Y.; Song, B.K. Factors Influencing Deflaking Kinetics in Repulping to Produce Molded Pulp. J. Ind. Eng. Chem. 2009, 15, 119–123. [Google Scholar] [CrossRef]
- Hirn, U.; Schennach, R. Comprehensive Analysis of Individual Pulp Fiber Bonds Quantifies the Mechanisms of Fiber Bonding in Paper. Sci. Rep. 2015, 5, 10503. [Google Scholar] [CrossRef]
- Jayme, G. Micro-Swelling Measurement in Cellulosic Pulp. Wochenbl. Pap. 1944, 6, 187–194. [Google Scholar]
- Lindström, T. The Porous Lamellar Structure of the Cell Wall; Marcel Dekker: New York, NY, USA, 1986; pp. 99–109. [Google Scholar]
- Salmén, L.; Stevanic, J.S. Effect of Drying Conditions on Cellulose Microfibril Aggregation and “Hornification”. Cellulose 2018, 25, 6333–6344. [Google Scholar] [CrossRef]
- Scallan, A.M.; Laivins, G.V. The Mechanism of Hornification of Wood Pulps. In Products of Papermaking; FRC: Manchester, UK, 2018; pp. 1235–1260. [Google Scholar] [CrossRef]
- Kato, K.L.; Cameron, R.E. A Review of the Relationship between Thermally-Accelerated Ageing of Paper and Hornification. Cellulose 1999, 6, 23–40. [Google Scholar] [CrossRef]
- Małachowska, E.; Pawcenis, D.; Dańczak, J.; Paczkowska, J.; Przybysz, K. Paper Ageing: The Effect of Paper Chemical Composition on Hydrolysis and Oxidation. Polymers 2021, 13, 1029. [Google Scholar] [CrossRef]
- Koura, A.; Krause, T. Warum Altert Papier? In Die Alterung von Papier, Teil II. der Einfluß der Mahlung auf die Alterung ligninfreier Faserstoffe; Papier: Camden, UK, 1978; pp. 189–194. [Google Scholar]
- Carter, H.A. The Chemistry of Paper Preservation: Part 1. The Aging of Paper and Conservation Techniques. J. Chem. Educ. 1996, 73, 417–420. [Google Scholar] [CrossRef]
- Zervos, S. Natural and Accelerated Ageing of Cellulose and Paper: A Literature Review. In Cellulose: Structure and Properties, Derivatives and Industrial Uses; Nova Publishing: New York, NY, USA, 2010; pp. 155–203. [Google Scholar]
- Area, M.C.; Cheradame, H. Paper Aging and Degradation: Recent Findings and Research Methods. BioResources 2011, 6, 5307–5337. [Google Scholar] [CrossRef]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Łojewska, J.; Przybysz, P. Influence of Lignin Content in Cellulose Pulp on Paper Durability. Sci. Rep. 2020, 10, 19998. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, J.; Frazier, R. Review: The Softness of Hygiene Tissue. BioResources 2022, 17, 3509–3550. [Google Scholar] [CrossRef]
- Lahti, J.; Kouko, J.; Hirn, U. Time-Dependent Mechanical Response of Paper during Web-Fed High-Speed Inkjet Printing. Nord. Pulp. Pap. Res. J. 2019, 34, 107–116. [Google Scholar] [CrossRef]
- Waldner, C.; Mayrhofer, A.; Hirn, U. Measuring Liquid Penetration in Thin, Porous Sheets with Ultrasound and Drop Absorption—Scope and Limitations. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 650, 129551. [Google Scholar] [CrossRef]
- Dodson, C.T.J. A Survey of Paper Mechanics in Fundamental Terms. In The Fundamental Properties of Paper Related to Its Uses; FRC: Manchester, UK, 1973; pp. 202–226. [Google Scholar] [CrossRef]
- Fellers, C.; Iversen, T.; Lindstrom, T.; Nilsson, T.; Rigdahl, M. Ageing/Degradation of Paper, a Literature Survey. FoU-Proj. Papperskonservering 1989, 139, 47–48. [Google Scholar]
- Harter, T.; Bernt, I.; Winkler, S.; Hirn, U. Reduced Dispersibility of Flushable Wet Wipes after Wet Storage. Sci. Rep. 2021, 11, 7942. [Google Scholar] [CrossRef] [PubMed]
- Geffert, A.; Geffertova, J.; Stevulova, N.; Seman, B. The Change of Swelling of Pulp Fibres under Recycling. Solid State Phenom. 2016, 244, 161–167. [Google Scholar] [CrossRef]
- Okayama, T. The Effects of Recycling on Pulp and Paper Properties. Kami Pa Gikyoshi/Jpn. Tappi J. 2002, 56, 62–68. [Google Scholar] [CrossRef]
- Cildir, H.; Howarth, P. The Effect of Re-Use on Paper Strength. Pap. Technol. 13 1972, 10, 333. Available online: https://cir.nii.ac.jp/crid/1570572700078753152 (accessed on 20 march 2025).
- Gratton, M.F. The Recycling Potential of Calendared Newsprint Fibers. In Proceedings of the 1991 CPPA Recycling Forum, Montreal, QC, Canda, 29–31 October 1991; CPPA Press: Sacramento, CA, USA, 1991; p. 65. [Google Scholar]
- Trovagunta, R.; Marquez, R.; Tolosa, L.; Barrios, N.; Zambrano, F.; Suarez, A.; Pal, L.; Gonzalez, R.; Hubbe, M.A. Lignin Self-Assembly Phenomena and Valorization Strategies for Pulping, Biorefining, and Materials Development: Part 1. The Physical Chemistry of Lignin Self-Assembly. Adv. Colloid Interface Sci. 2024, 332, 103247. [Google Scholar] [CrossRef]
- Jain, S.K.; Biswas, O.; Pandey, P. To Improve the Disintegration Potential of Toilet Grade Tissue Paper. Nord. Pulp. Pap. Res. J. 2022, 37, 609–614. [Google Scholar] [CrossRef]
- Sealey, I.J.E.; Us, S.C.; Miller, B.T.; Us, S.C. SOFT, Low Lint, Through Air Dried Tissue and Method of Forming the Same. Patent No.: US 10,941,525 B2, 26 February 2017. [Google Scholar]
- Waldner, C.; Hirn, U. Ultrasonic Liquid Penetration Measurement in Thin Sheets—Physical Mechanisms and Interpretation. Materials 2020, 13, 2754. [Google Scholar] [CrossRef] [PubMed]
- Krainer, S.; Hirn, U. Contact Angle Measurement on Porous Substrates: Effect of Liquid Absorption and Drop Size. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 619, 126503. [Google Scholar] [CrossRef]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Przybysz, P. Accelerated Ageing of Paper: Effect of Lignin Content and Humidity on Tensile Properties. Herit. Sci. 2021, 9, 132. [Google Scholar] [CrossRef]
Pulp | Non-Ionic Surfactant [%] | Cationic Starch [%] | PFI Refining [Revolutions] |
---|---|---|---|
Unbleached pulp | 0 | 0.4 | 1500 |
0.2 | 0.4 | 1500 | |
0 | 0.4 | 0 | |
0 | 0 | 0 | |
0 | 0 | 1500 | |
Bleached pulp | 0 | 1 | 2000 |
0.2 | 1 | 2000 | |
0 | 1 | 0 | |
0 | 0 | 0 | |
0 | 0 | 2000 |
Unbleached Paper | Bleached Paper | |
---|---|---|
Test 1 | Day 0 | Day 0 |
Test 2 | 1 week | 2 weeks |
Test 3 | 3 weeks | 1 month |
Test 4 | 5 weeks | 2 months |
Test 5 | 2 months | 3.5 months |
Test 6 | 3 months | 6 months |
Test 7 | 4 months | 9 months |
Test 8 | 6 months | |
Test 9 | 9 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfennich, A.C.; Hirn, U. Redispersibility of Paper Under Low Agitation and How It Deteriorates over Time. Recycling 2025, 10, 92. https://doi.org/10.3390/recycling10030092
Pfennich AC, Hirn U. Redispersibility of Paper Under Low Agitation and How It Deteriorates over Time. Recycling. 2025; 10(3):92. https://doi.org/10.3390/recycling10030092
Chicago/Turabian StylePfennich, Andrea Christine, and Ulrich Hirn. 2025. "Redispersibility of Paper Under Low Agitation and How It Deteriorates over Time" Recycling 10, no. 3: 92. https://doi.org/10.3390/recycling10030092
APA StylePfennich, A. C., & Hirn, U. (2025). Redispersibility of Paper Under Low Agitation and How It Deteriorates over Time. Recycling, 10(3), 92. https://doi.org/10.3390/recycling10030092