A Review of Global Municipal Solid Waste Management and Valorization Pathways
Abstract
:1. Introduction
2. Methodology
2.1. Research Trend Analysis
2.2. TEE, SWOT, and PESTEL Analyses
3. Global Research Trend in MSW
3.1. Year- and Country-Wise Publication
3.2. Management and Valorization Pathways
3.3. Waste and Source Types of MSW
3.4. Software and Tools Used in MSW Research
3.5. Sustainability and Circularity in MSW Research
3.6. Global MSW Management Timeline
4. MSW Management and Valorization Pathways
4.1. Open Dumping and Burning
4.2. Recycling and Material Recovery
4.3. Landfill and Gas Recovery
4.4. Mechanical and Physical Conversion
4.5. Thermochemical Conversion
4.6. Biochemical Conversion
4.7. Chemical Conversion
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
AI | Artificial Intelligence |
CRL | Customer readiness level |
CO2e | Carbon dioxide equivalent |
EC | Electrical conductivity |
GAMS | General algebraic modeling system |
GHG | Greenhouse gas |
GIS | Geographic Information Systems |
HTL | Hydrothermal liquefaction |
IEA | International Energy Agency |
LCA | Life cycle assessment |
MSW | Municipal solid waste |
NASA | National Aeronautics and Space Administration |
PAHs | Polyaromatic hydrocarbons |
PCBs | Polychlorinated biphenyls |
PCDFs | Polychlorinated dibenzofurans |
PESTEL | Political, economic, social, technological, environmental, and legal |
RDF | Refused derived fuel |
SRF | Solid recovered fuel |
SRL | Societal readiness level |
SWOT | Strengths, weaknesses, opportunities, and threats |
SWOLF | Solid waste optimization lifecycle framework |
TDS | Total dissolved solids |
TEE | Techno-economic and environmental |
TRL | Technology readiness level |
USA | United States of America |
USD | United States Dollar |
WARM | Waste reduction model |
Appendix A
Syntax | Accessed Date |
---|---|
TITLE (“Municipal Waste” OR “Solid Waste” OR “Urban Waste” OR “City Waste”) AND PUBYEAR > 1903 AND PUBYEAR < 2024 AND (LIMIT-TO (SRCTYPE, “j”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) | 21 July 2024 |
Period | Number | Number/Year | Top 5 Countries by Number (Rank) |
---|---|---|---|
Before 1990 | 962 | 11 | USA, Canada, Italy, Japan, and UK |
1990–1999 | 1210 | 121 | USA, Spain, Italy, Japan, and UK |
2000–2009 | 2499 | 250 | India, USA, China, Japan, and Spain |
2010–2019 | 6062 | 606 | China, India, USA, Italy, and Spain |
2020–2023 | 4913 | 1229 | China, India, USA, Italy, and Iran |
Management Pathways | Conversion Process | Strength | Weakness | Opportunities | Threats | References |
---|---|---|---|---|---|---|
Recycling and materials recovery |
|
|
|
| [81,88] | |
|
|
| ||||
|
| |||||
Landfill and gas recovery |
|
|
|
| [50,92] | |
|
|
| ||||
| ||||||
Mechanical and Physical |
|
|
|
| [101] | |
|
|
|
| |||
|
|
| ||||
Thermochemical | Pyrolysis |
|
|
|
| [147,148] |
|
|
|
| |||
|
| |||||
Gasification |
|
|
|
| [149,150] | |
|
|
|
| |||
| ||||||
Incineration |
|
|
|
| [151,152] | |
|
|
| ||||
Hydrothermal |
|
|
|
| [153,154] | |
Liquefaction |
|
|
|
| ||
|
| |||||
Biochemical | Anaerobic digestion |
|
|
|
| [122,124] |
|
|
|
| |||
Fermentation |
|
|
|
| [129,130] | |
|
| |||||
Composting |
|
|
|
| [131,155] | |
Chemical | Esterification |
|
|
|
| [144,156] |
|
Aspect | Recycling and Materials Recovery | Landfill and Gas Recovery | Mechanical and Physical Processes | Thermochemical Methods | Biological Processes | Chemical Processes |
---|---|---|---|---|---|---|
Political |
|
|
|
|
|
|
|
|
|
|
|
| |
Economic |
|
|
|
|
|
|
|
|
|
|
|
| |
Social |
|
|
|
|
|
|
|
|
|
|
| ||
Technological |
|
|
|
|
|
|
|
|
|
|
|
| |
Environmental |
|
|
|
|
|
|
|
|
|
|
| ||
Legal |
|
|
|
|
|
|
|
|
|
|
|
| |
References | [157,158] | [159,160] | [159,161] | [18,162] | [161,163] | [163] |
References
- UNDESA The World’s Cities in 2018—Data Booklet. United Nations, Dep. Econ. Soc. Aff. Popul. Division (2018). 2018. Available online: https://digitallibrary.un.org/record/3799524/files/the_worlds_cities_in_2018_data_booklet.pdf (accessed on 23 August 2024).
- Khatib, I.A. Municipal solid waste management in developing countries: Future challenges and possible opportunities. In Integrated Waste Management; Kumar, S., Ed.; InTech: London, UK, 2011; Volume 2, pp. 35–48. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; The World Bank: Washington, DC, USA, 2018; ISBN 9788578110796. [Google Scholar]
- Gautam, A.; Malla, D.; Thapa, B.; Khatiwada, A.; Kafley, G.; Shah, S.K.; Kafle, S. Effects of Open Dumping Site on Surrounding Air, Soil, and Water: A Case Study of Biratnagar Metropolitan City. Bibechana 2024, 21, 171–179. [Google Scholar] [CrossRef]
- Guerrero, L.A.; Maas, G.; Hogland, W. Solid Waste Management Challenges for Cities in Developing Countries. Waste Manag. 2013, 33, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Medina-mijangos, R.; Seguí-amórtegui, L. Research Trends in the Economic Analysis of Municipal Solid Waste Management Systems: A Bibliometric Analysis from 1980 to 2019. Sustainability 2020, 12, 8509. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, W.; Yang, Y.; Yang, Y.; Man, X. Global Trends of Municipal Solid Waste Research from 1997 to 2014 Using Bibliometric Analysis. J. Air Waste Manag. Assoc. 2015, 65, 1161–1170. [Google Scholar] [CrossRef]
- Li, N.; Han, R.; Lu, X. Bibliometric Analysis of Research Trends on Solid Waste Reuse and Recycling during 1992–2016. Resour. Conserv. Recycl. 2018, 130, 109–117. [Google Scholar] [CrossRef]
- Fu, H.Z.; Ho, Y.S.; Sui, Y.M.; Li, Z.S. A Bibliometric Analysis of Solid Waste Research during the Period 1993–2008. Waste Manag. 2010, 30, 2410–2417. [Google Scholar] [CrossRef]
- Otero Meza, D.D.; Sagastume Gutiérrez, A.; Cabello Eras, J.J.; Salcedo Mendoza, J.; Hernández Ruydíaz, J. Techno-Economic and Environmental Assessment of the Landfill Gas to Energy Potential of Major Colombian Cities. Energy Convers. Manag. 2023, 293, 117522. [Google Scholar] [CrossRef]
- Leme, M.M.V.; Rocha, M.H.; Lora, E.E.S.; Venturini, O.J.; Lopes, B.M.; Ferreira, C.H. Techno-Economic Analysis and Environmental Impact Assessment of Energy Recovery from Municipal Solid Waste (MSW) in Brazil. Resour. Conserv. Recycl. 2014, 87, 8–20. [Google Scholar] [CrossRef]
- El Ibrahimi, M.; Khay, I.; El Maakoul, A.; Bakhouya, M. Techno-Economic and Environmental Assessment of Anaerobic Co-Digestion Plants under Different Energy Scenarios: A Case Study in Morocco. Energy Convers. Manag. 2021, 245, 114553. [Google Scholar] [CrossRef]
- Zorpas, A.A. Strategy Development in the Framework of Waste Management. Sci. Total Environ. 2020, 716, 137088. [Google Scholar] [CrossRef]
- Paes, L.A.B.; Bezerra, B.S.; Deus, R.M.; Jugend, D.; Battistelle, R.A.G. Organic Solid Waste Management in a Circular Economy Perspective—A Systematic Review and SWOT Analysis. J. Clean. Prod. 2019, 239, 118086. [Google Scholar] [CrossRef]
- Faisal, F.; Rasul, M.G.; Jahirul, M.I.; Schaller, D. Pyrolytic Conversion of Waste Plastics to Energy Products: A Review on Yields, Properties, and Production Costs. Sci. Total Environ. 2023, 861, 160721. [Google Scholar] [CrossRef]
- Chaher, N.E.H.; Nassour, A.; Nelles, M. Cross-Mediterranean Insights: Governance in Action for Circular Economy and Sustainable Waste Management Solutions in Tunisia’s Tourism. Recycling 2025, 10, 9. [Google Scholar] [CrossRef]
- Thakur, V. Framework for PESTEL Dimensions of Sustainable Healthcare Waste Management: Learnings from COVID-19 Outbreak. J. Clean. Prod. 2021, 287, 125562. [Google Scholar] [CrossRef]
- Song, J.; Sun, Y.; Jin, L. PESTEL Analysis of the Development of the Waste-to-Energy Incineration Industry in China. Renew. Sustain. Energy Rev. 2017, 80, 276–289. [Google Scholar] [CrossRef]
- Kumarasiri, B.; Dissanayake, P. Barriers to Implementing Waste-to-Energy Projects in Sri Lanka: A PESTEL Analysis. Built Environ. Proj. Asset Manag. 2021, 11, 544–558. [Google Scholar] [CrossRef]
- Turkyilmaz, A.; Guney, M.; Karaca, F.; Bagdatkyzy, Z.; Sandybayeva, A.; Sirenova, G. A Comprehensive Construction and Demolition Waste Management Model Using PESTEL and 3R for Construction Companies Operating in Central Asia. Sustainability 2019, 11, 1593. [Google Scholar] [CrossRef]
- Kafle, S.; Sapkota, S.; Higgins, B.T.; Adhikari, S. Research Trends in Life Cycle Assessment of Hydrogen Production: Methodological Review on Thermochemical Conversion Processes. Int. J. Hydrog. Energy 2025, 106, 432–443. [Google Scholar] [CrossRef]
- Catherine, G. Manning Technology Readiness Levels. Available online: https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/ (accessed on 8 September 2024).
- IEA. ETP Clean Energy Technology Guide. Available online: https://www.iea.org/data-and-statistics/data-tools/etp-clean-energy-technology-guide (accessed on 8 September 2024).
- Brander, M.; Greenhouse Gases, CO2, CO2e, and Carbon: What Do All These Terms Mean? Econometrica, White Papers. 2012, 2–3. Available online: https://bluemangrove.fund/wp-content/uploads/2021/03/Glossary-on-different-CO2-terms.pdf (accessed on 8 September 2024).
- William, F. Morse The Utilization and Disposal of Municipal Waste. J. Frankl. Inst. 1904, 79, 401–423. [Google Scholar] [CrossRef]
- Rhoads, R.A.; Wang, X.; Shi, X.; Chang, Y. China’s Rising Research Universities: A New Era of Global Ambition; JHU Press: Baltimore, MD, USA, 2014; ISBN 1421414546. [Google Scholar]
- Owens, B.B. China Seeks to Showcase Research Clout by Building Its Own Publishing Realm. Nature 2023, 630, 5–7. [Google Scholar]
- Paudel, P.P.; Kafle, S.; Park, S.; Kim, S.J.; Cho, L.; Kim, D.H. Advancements in Sustainable Thermochemical Conversion of Agricultural Crop Residues: A Systematic Review of Technical Progress, Applications, Perspectives, and Challenges. Renew. Sustain. Energy Rev. 2024, 202, 114723. [Google Scholar] [CrossRef]
- Nandhini, R.; Berslin, D.; Sivaprakash, B.; Rajamohan, N.; Vo, D.V.N. Thermochemical Conversion of Municipal Solid Waste into Energy and Hydrogen: A Review. Environ. Chem. Lett. 2022, 20, 1645–1669. [Google Scholar] [CrossRef]
- Tansel, B. From Electronic Consumer Products to E-Wastes: Global Outlook, Waste Quantities, Recycling Challenges. Environ. Int. 2017, 98, 35–45. [Google Scholar] [CrossRef]
- Abubakar, A.; Zangina, A.S.; Maigari, A.I.; Badamasi, M.M.; Ishak, M.Y.; Abdullahi, A.S.; Haruna, J.A. Pollution of Heavy Metal Threat Posed by E-Waste Burning and Its Assessment of Human Health Risk. Environ. Sci. Pollut. Res. 2022, 29, 61065–61079. [Google Scholar] [CrossRef]
- Singh, N.; Ogunseitan, O.A.; Tang, Y. Technology Medical Waste: Current Challenges and Future Opportunities for Sustainable Management Medical Waste: Current Challenges and Future. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2000–2022. [Google Scholar] [CrossRef]
- Jacob, M.; Jacob, M.; Basile, N.S.; Munjal, S. Bio-Medical Waste and COVID-19 Pandemic. In Pandemic. In Pandemic Perspectives: Praxis, Policy and Pedagogies; Taylor & Francis: New York, NY, USA, 2024; p. 133. [Google Scholar]
- Tafesse, S.; Girma, Y.E.; Dessalegn, E. Analysis of the Socio-Economic and Environmental Impacts of Construction Waste and Management Practices. Heliyon 2022, 8, e09169. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O. Policy Imperatives for Diverting Construction Waste from Landfill: Experts’ Recommendations for UK Policy Expansion. J. Clean. Prod. 2017, 147, 57–65. [Google Scholar] [CrossRef]
- Cummings, L.E. Hospitality Solid Waste Minimization: A Global Frame. Int. J. Hosp. Manag. 1992, 11, 255–267. [Google Scholar] [CrossRef]
- David, J.E. Groundwater Exploitation and Recharge, and Contamination by Industry, Agriculture and Municipal Waste. Int. J. Ecol. Environ. Sci. 1992, 18, 179–193. [Google Scholar]
- Callas, M.D.; Kerzee, R.G.; Bing-Canar, J.; Mensah, E.K.; Croke, K.G.; Swager, R.R. An Indicator of Solid Waste Generation Potential for Illinois Using Principal Components Analysis and Geographic Information Systems. J. Air Waste Manag. Assoc. 1996, 46, 414–421. [Google Scholar] [CrossRef]
- Basri, H.B.; Stentiford, E.I. Expert Systems in Solid Waste Management. Waste Manag. Res. 1995, 13, 67–89. [Google Scholar] [CrossRef]
- Abbasi, M.; El Hanandeh, A. Forecasting Municipal Solid Waste Generation Using Artificial Intelligence Modelling Approaches. Waste Manag. 2016, 56, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudkhani, R.; Valizadeh, B.; Khastoo, H. Greenhouse Gases Life Cycle Assessment (GHGLCA) as a Decision Support Tool for Municipal Solid Waste Management in Iran. J. Environ. Health Sci. Eng. 2014, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Levis, J.W.; Barlaz, M.A.; Decarolis, J.F.; Ranjithan, S.R. Systematic Exploration of Efficient Strategies to Manage Solid Waste in U.S Municipalities: Perspectives from the Solid Waste Optimization Life-Cycle Framework (SWOLF). Environ. Sci. Technol. 2014, 48, 3625–3631. [Google Scholar] [CrossRef] [PubMed]
- Asefi, H.; Lim, S. A Novel Multi-Dimensional Modeling Approach to Integrated Municipal Solid Waste Management. J. Clean. Prod. 2017, 166, 1131–1143. [Google Scholar] [CrossRef]
- Levis, J.W.; Barlaz, M.A.; DeCarolis, J.F.; Ranjithan, S.R. A Generalized Multistage Optimization Modeling Framework for Life Cycle Assessment-Based Integrated Solid Waste Management. Environ. Model. Softw. 2013, 50, 51–65. [Google Scholar] [CrossRef]
- Ooi, J.K.; Woon, K.S. Simultaneous Greenhouse Gas Reduction and Cost Optimisation of Municipal Solid Waste Management System in Malaysia. Chem. Eng. Trans. 2021, 83, 487–492. [Google Scholar] [CrossRef]
- de Medeiros Engelmann, P.; dos Santos, V.H.J.M.; da Rocha, P.R.; dos Santos, G.H.A.; Lourega, R.V.; de Lima, J.E.A.; Pires, M.J.R. Analysis of Solid Waste Management Scenarios Using the WARM Model: Case Study. J. Clean. Prod. 2022, 345, 130687. [Google Scholar] [CrossRef]
- Jian, C.; Ya, C.; Yu, J.; Miaoyi, C. Application of EPR System on Solid Waste Management in Advanced Economies and Its Enlightenment to Mainland China. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2012, 30, 999–1006. [Google Scholar]
- Meier zu Selhausen, F. Growing Cities: Urbanization in Africa; African Economic History Network (AEHN): Roma, Lesotho, 2020; ISBN 9789464476521. Available online: https://www.aehnetwork.org/wp-content/uploads/2016/01/Meier-zu-Selhausen.Growing-Cities.pdf (accessed on 18 November 2024).
- Vaverková, M.D. Landfill Impacts on the Environment—Review. Geosciences 2019, 9, 431. [Google Scholar] [CrossRef]
- Martus, E. Municipal Solid Waste Management in Russia: Protest, Policy, and Politics. Russ. Anal. Dig. 2020, 23, 2–6. [Google Scholar] [CrossRef]
- Bell, J.M. Sanitary Landfill Method of Solid Waste Disposal. Engng Bull. Purdue Univ. Ext. Ser. 1973, 141, 110–130. [Google Scholar]
- Haxo, H.E.; White, R.M.; Haxo, P.D.; Fong, M.A. Liner Materials Exposed to Municipal Solid Waste Leachate. Waste Manag. Res. 1985, 3, 41–54. [Google Scholar] [CrossRef]
- Slezak, R.; Krzystek, L.; Ledakowicz, S. Degradation of Municipal Solid Waste in Simulated Landfill Bioreactors under Aerobic Conditions. Waste Manag. 2015, 43, 293–299. [Google Scholar] [CrossRef]
- Themelis, N.J.; Reshadi, S. Potential for Reducing the Capital Costs of WTE Facilities. In Proceedings of the 17th Annual North American Waste-to-Energy Conference NAWTEC 17, Chantilly, VA, USA, 18–20 May 2009; pp. 245–251. [Google Scholar] [CrossRef]
- Munir, M.T.; Mohaddespour, A.; Nasr, A.T.; Carter, S. Municipal Solid Waste-to-Energy Processing for a Circular Economy in New Zealand. Renew. Sustain. Energy Rev. 2021, 145, 111080. [Google Scholar] [CrossRef]
- Jafri, Y.; Waldheim, L.; Lundgren, J. Emerging Gasification Technologies for Waste & Biomass; IEA Bioenergy Task 33: Paris, France, 2020; ISBN 978-1-910154-84-7. Available online: https://www.ieabioenergy.com/wp-content/uploads/2021/02/Emerging-Gasification-Technologies_final.pdf (accessed on 8 November 2024).
- Kowalski, Z.; Kulczycka, J.; Verhé, R.; Desender, L.; De Clercq, G.; Makara, A.; Generowicz, N.; Harazin, P. Second-Generation Biofuel Production from the Organic Fraction of Municipal Solid Waste. Front. Energy Res. 2022, 10, 919415. [Google Scholar] [CrossRef]
- Prateep Na Talang, R.; Sirivithayapakorn, S. Environmental and Financial Assessments of Open Burning, Open Dumping and Integrated Municipal Solid Waste Disposal Schemes among Different Income Groups. J. Clean. Prod. 2021, 312, 127761. [Google Scholar] [CrossRef]
- Satiada, M.A.; Calderon, A. Comparative Analysis of Existing Waste-to-Energy Reference Plants for Municipal Solid Waste. Clean. Environ. Syst. 2021, 3, 100063. [Google Scholar] [CrossRef]
- Esmaeili, H. A Critical Review on the Economic Aspects and Life Cycle Assessment of Biodiesel Production Using Heterogeneous Nanocatalysts. Fuel Process. Technol. 2022, 230, 107224. [Google Scholar] [CrossRef]
- Rahman, W.-U.; Patel, M.; Kurian, V.; Kumar, A. A Comparative Techno-Economic Assessment of Fast Pyrolysis, Hydrothermal Liquefaction, and Intermediate Pyrolysis of Municipal Solid Waste for Liquid Transportation Fuels Production. Energy Convers. Manag. 2022, 267, 115877. [Google Scholar] [CrossRef]
- Lavee, D. Is Municipal Solid Waste Recycling Economically Efficient? Environ. Manag. 2007, 40, 926–943. [Google Scholar] [CrossRef]
- LeMoult, C.; The Cost of Recycling Hits Budgets in Massachusetts Cities and Towns. GBH 2020. Available online: https://www.wgbh.org/news/local/2020-03-09/the-cost-of-recycling-hits-budgets-in-massachusetts-cities-and-towns (accessed on 30 May 2025).
- EPA. Full Cost Accounting for Municipal Solid Waste Management: A Handbook; U.S. Environmental Protection Agency [Office of] Solid Waste and Emergency Response: Washington, DC, USA, 1997. [Google Scholar]
- Aleluia, J.; Ferrão, P. Assessing the Costs of Municipal Solid Waste Treatment Technologies in Developing Asian Countries. Waste Manag. 2017, 69, 592–608. [Google Scholar] [CrossRef]
- Verma, R.L.; Borongan, G. Emissions of Greenhouse Gases from Municipal Solid Waste Management System in Ho Chi Minh City of Viet Nam. Urban Sci. 2022, 6, 78. [Google Scholar] [CrossRef]
- Kristanto, G.A.; Koven, W. Estimating Greenhouse Gas Emissions from Municipal Solid Waste Management in Depok, Indonesia. City Environ. Interact. 2019, 4, 100027. [Google Scholar] [CrossRef]
- Hu, Z.; Shen, J.; Tan, P.; Lou, D. Life Cycle Carbon Footprint of Biodiesel Production from Waste Cooking Oil Based on Survey Data in Shanghai, China. Energy 2025, 320, 135318. [Google Scholar] [CrossRef]
- Hjelmar, O.; Johnson, A.; Comans, R. Incineration: Solid Residues. In Solid Waste Technology & Management; Wiley: Hoboken, NJ, USA, 2010; pp. 430–462. ISBN 9780470666883. [Google Scholar]
- Nagpure, A.S.; Ramaswami, A.; Russell, A. Characterizing the Spatial and Temporal Patterns of Open Burning of Municipal Solid Waste (MSW) in Indian Cities. Environ. Sci. Technol. 2015, 49, 12911–12912. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, A.K.; Ganguly, R. Impact of Open Dumping of Municipal Solid Waste on Soil Properties in Mountainous Region. J. Rock Mech. Geotech. Eng. 2018, 10, 725–739. [Google Scholar] [CrossRef]
- Ali, S.M.; Pervaiz, A.; Afzal, B.; Hamid, N.; Yasmin, A. Open Dumping of Municipal Solid Waste and Its Hazardous Impacts on Soil and Vegetation Diversity at Waste Dumping Sites of Islamabad City. J. King Saud Univ. Sci. 2014, 26, 59–65. [Google Scholar] [CrossRef]
- Lamasanu, A.; Mihai, F.C. The Illegal Dumping of Waste in Forest Areas—Evidence from Rural Territory. In Proceedings of the International Conference Integrated Management of Environmental Resources, Suceava, Romania, 4–6 November 2011; Horodnic, S.A., Duduman, M.L., Palaghianu, C., Eds.; Stefan cel Mare University Press: Suceava, Romania, 2012; Volume 46, pp. 46–50. [Google Scholar]
- Phoonaploy, U.; Tengjaroenkul, B.; Neeratanaphan, L. Effect of Heavy Metals from an Electronic Waste Open Dumping Area on the Cytotoxicity of Climbing Perch (Anabas Testudineus). Int. J. Environ. Stud. 2020, 77, 983–997. [Google Scholar] [CrossRef]
- Malekian, M.; Hadi, M.; Tarkesh, M. Landscape Features Affecting Bird Diversity and Abundance at an Urban Landfill Site: A Case Study in Central Iran. Bird Study 2021, 68, 21–29. [Google Scholar] [CrossRef]
- Tocoloa, A.; Martinho, A.P.; Vaz-Fernandes, P. Epidemiological Risk Perceptions of People Living Close to Open Dumps in Nampula, Mozambique: A Case Study Control. In The Informal Sector and the Environment; Routledge: London, UK, 2022; pp. 150–168. [Google Scholar] [CrossRef]
- Kaushal, A.; Sharma, M.P. Methane Emission from Panki Open Dump Site of Kanpur, India. Procedia Environ. Sci. 2016, 35, 337–347. [Google Scholar] [CrossRef]
- Paul, D.R.; Vinson, C.E.; Locke, C.E. The Potential for Reuse of Plastics Recovered from Solid Wastes. Polym. Eng. Sci. 1972, 12, 157–166. [Google Scholar] [CrossRef]
- Peng, X.; Jiang, Y.; Chen, Z.; Osman, A.I.; Farghali, M.; Rooney, D.W.; Yap, P.S. Recycling Municipal, Agricultural and Industrial Waste into Energy, Fertilizers, Food and Construction Materials, and Economic Feasibility: A Review; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; Volume 21, ISBN 1031102201551. [Google Scholar]
- Goli, V.S.N.S.; Singh, D.N.; Baser, T. A Critical Review on Thermal Treatment Technologies of Combustible Fractions from Mechanical Biological Treatment Plants. J. Environ. Chem. Eng. 2021, 9, 105643. [Google Scholar] [CrossRef]
- Cimpan, C.; Maul, A.; Jansen, M.; Pretz, T.; Wenzel, H. Central Sorting and Recovery of MSW Recyclable Materials: A Review of Technological State-of-the-Art, Cases, Practice and Implications for Materials Recycling. J. Environ. Manag. 2015, 156, 181–199. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Zhang, J.; Liu, Y.; Chen, L.; Yang, M.; Osman, A.I.; Farghali, M.; Liu, E.; Hassan, D.; et al. Municipal Solid Waste Management Challenges in Developing Regions: A Comprehensive Review and Future Perspectives for Asia and Africa. Sci. Total Environ. 2024, 930, 172794. [Google Scholar] [CrossRef] [PubMed]
- Gundupalli, S.P.; Hait, S.; Thakur, A. A Review on Automated Sorting of Source-Separated Municipal Solid Waste for Recycling. Waste Manag. 2017, 60, 56–74. [Google Scholar] [CrossRef]
- Deselnicu, D.C.; Militaru, G.; Deselnicu, V.; Zăinescu, G.; Albu, L. Towards a Circular Economy—A Zero Waste Programme for Europe. In Proceedings of the 7th International Conference on Advanced Materials and Systems, 18–20 October 2018; pp. 563–568. [Google Scholar] [CrossRef]
- Iqbal, A.; Liu, X.; Chen, G.H. Municipal Solid Waste: Review of Best Practices in Application of Life Cycle Assessment and Sustainable Management Techniques. Sci. Total Environ. 2020, 729, 138622. [Google Scholar] [CrossRef]
- Kurniawan, K.; Soefihara, M.D.A.; Nababan, D.C.; Kim, S. Current Status of the Recycling of E-Waste in Indonesia. Geosystem Eng. 2022, 25, 83–94. [Google Scholar] [CrossRef]
- Van Beukering, P.J.H.; Bouman, M.N. Empirical Evidence on Recycling and Trade of Paper and Lead in Developed and Developing Countries. World Dev. 2001, 29, 1717–1737. [Google Scholar] [CrossRef]
- OECD. International Trade and the Transition to a More Resource Efficient and Circular Economy; Organisation for Economic Co-operation and Development: Paris, France, 2018; Available online: https://www.oecd.org/en/publications/international-trade-and-the-transition-to-a-more-resource-efficient-and-circular-economy_847feb24-en.html (accessed on 25 November 2024).
- Kale, C.; Gökçek, M. A Techno-Economic Assessment of Landfill Gas Emissions and Energy Recovery Potential of Different Landfill Areas in Turkey. J. Clean. Prod. 2020, 275, 122946. [Google Scholar] [CrossRef]
- Duan, Z.; Scheutz, C.; Kjeldsen, P. Trace Gas Emissions from Municipal Solid Waste Landfills: A Review. Waste Manag. 2021, 119, 39–62. [Google Scholar] [CrossRef]
- Teng, C.; Zhou, K.; Peng, C.; Chen, W. Characterization and Treatment of Landfill Leachate: A Review. Water Res. 2021, 203, 117525. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A.; Alamoudı, R.H.; Ahmad, W.; Sheıkh, M.H. Optimization of Municipal Solid Waste (MSW) Disposal in Saudi Arabia. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 1929–1937. [Google Scholar] [CrossRef]
- Scott, J.; Beydoun, D.; Amal, R.; Low, G.; Cattle, J. Landfill Management, Leachate Generation, and Leach Testing of Solid Wastes in Australia and Overseas. Crit. Rev. Environ. Sci. Technol. 2005, 35, 239–332. [Google Scholar] [CrossRef]
- Slack, R.J.; Gronow, J.R.; Voulvoulis, N. Household Hazardous Waste in Municipal Landfills: Contaminants in Leachate. Sci. Total Environ. 2005, 337, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.F.; Feng, S.J. Comprehensive Overview of Numerical Modeling of Coupled Landfill Processes. Waste Manag. 2020, 118, 161–179. [Google Scholar] [CrossRef]
- Wang, X.; Jia, M.; Chen, X.; Xu, Y.; Lin, X.; Kao, C.M.; Chen, S. Greenhouse Gas Emissions from Landfill Leachate Treatment Plants: A Comparison of Young and Aged Landfill. Waste Manag. 2014, 34, 1156–1164. [Google Scholar] [CrossRef]
- Alter, H. The History of Refuse-Derived Fuels. Resour. Conserv. 1987, 15, 251–275. [Google Scholar] [CrossRef]
- Mateus, M.M.; Cecílio, D.; Fernandes, M.C.; Neiva Correia, M.J. Refuse Derived Fuels as an Immediate Strategy for the Energy Transition, Circular Economy, and Sustainability. Bus. Strateg. Environ. 2023, 32, 3915–3926. [Google Scholar] [CrossRef]
- Martignon, P. Trends on Use of Solid Recovered Fuels; Johansson, I., Edo, M., Eds.; IEA Bioenergy: Paris, France, 2020; ISBN 9781910154724. [Google Scholar]
- Karpan, B.; Abdul Raman, A.A.; Taieb Aroua, M.K. Waste-to-Energy: Coal-like Refuse Derived Fuel from Hazardous Waste and Biomass Mixture. Process Saf. Environ. Prot. 2021, 149, 655–664. [Google Scholar] [CrossRef]
- Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N. Comparison of Coal/Solid Recovered Fuel (SRF) with Coal/Refuse Derived Fuel (RDF) in a Fluidised Bed Reactor. Waste Manag. 2011, 31, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Kara, M. Environmental and Economic Advantages Associated with the Use of RDF in Cement Kilns. Resour. Conserv. Recycl. 2012, 68, 21–28. [Google Scholar] [CrossRef]
- Sakhakarmy, M.; Kafle, S.; Adhikari, S. Upcycling of Pine and Sodium Silicate Composites through Pyrolysis: Effects of Pyrolysis Temperature and Sodium Silicate Content. Energy Convers. Manag. X 2024, 23, 100615. [Google Scholar] [CrossRef]
- Akhtar, A.; Krepl, V.; Ivanova, T. A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass. Energy Fuels 2018, 32, 7294–7318. [Google Scholar] [CrossRef]
- Pujro, R.; García, J.R.; Bertero, M.; Falco, M.; Sedran, U. Review on Reaction Pathways in the Catalytic Upgrading of Biomass Pyrolysis Liquids. Energy Fuels 2021, 35, 16943–16964. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Vuppaladadiyam, S.S.V.; Sahoo, A.; Murugavelh, S.; Anthony, E.; Bhashkar, T.; Zheng, Y.; Zhao, M.; Duan, H.; Zhao, Y.; et al. Bio-Oil and Biochar from the Pyrolytic Conversion of Biomass: A Current and Future Perspective on the Trade-off between Economic, Environmental, and Technical Indicators. Sci. Total Environ. 2023, 857, 159155. [Google Scholar] [CrossRef]
- Sahoo, A.; Saini, K.; Jindal, M.; Bhaskar, T.; Pant, K.K. Co-Hydrothermal Liquefaction of Algal and Lignocellulosic Biomass: Status and Perspectives. Bioresour. Technol. 2021, 342, 125948. [Google Scholar] [CrossRef]
- Vaish, B.; Sharma, B.; Srivastava, V.; Singh, P.; Ibrahim, M.H.; Singh, R.P. Energy Recovery Potential and Environmental Impact of Gasification for Municipal Solid Waste. Biofuels 2019, 10, 87–100. [Google Scholar] [CrossRef]
- Makarichi, L.; Jutidamrongphan, W.; Techato, K.-A. The Evolution of Waste-to-Energy Incineration: A Review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Wang, P.; Hu, Y.; Cheng, H. Municipal Solid Waste (MSW) Incineration Fly Ash as an Important Source of Heavy Metal Pollution in China. Environ. Pollut. 2019, 252, 461–475. [Google Scholar] [CrossRef]
- Schiavon, M.; Ravina, M.; Zanetti, M.; Panepinto, D. State-of-the-Art and Recent Advances in the Abatement of Gaseous Pollutants from Waste-to-Energy. Energies 2024, 17, 552. [Google Scholar] [CrossRef]
- Romero, M.; Rincón, J.M.; Rawlings, R.D.; Boccaccini, A.R. Use of Vitrified Urban Incinerator Waste as Raw Material for Production of Sintered Glass-Ceramics. Mater. Res. Bull. 2001, 36, 383–395. [Google Scholar] [CrossRef]
- Lancellotti, I.; Kamseu, E.; Michelazzi, M.; Barbieri, L.; Corradi, A.; Leonelli, C. Chemical Stability of Geopolymers Containing Municipal Solid Waste Incinerator Fly Ash. Waste Manag. 2010, 30, 673–679. [Google Scholar] [CrossRef]
- Ren, P.; Mehdizadeh, H.; Ling, T.C. Performance Investigation of the Artificial Aggregate by Integrally Recycling Incineration Bottom Ash and Fly Ash. Cem. Concr. Compos. 2024, 152, 105678. [Google Scholar] [CrossRef]
- Karamanov, A.; Karamanova, E.; Schabbach, L.M.; Andreola, F.; Taurino, R.; Barbieri, L. Sintering and Phase Formation of Ceramics Based on Pre-Treated Municipal Incinerator Bottom Ash. Open Ceram. 2021, 5, 100044. [Google Scholar] [CrossRef]
- Juntarasakul, O.; Roongcharoen, P.; Tabelin, C.B.; Phengsaart, T. Municipal Solid Waste Incineration (MSWI) Fly Ash as a Potential Adsorbent for Phosphate Removal. Sustainability 2024, 16, 8869. [Google Scholar] [CrossRef]
- Mahesh, D.; Ahmad, S.; Kumar, R.; Chakravarthy, S.R.; Vinu, R. Hydrothermal Liquefaction of Municipal Solid Wastes for High Quality Bio-Crude Production Using Glycerol as Co-Solvent. Bioresour. Technol. 2021, 339, 125537. [Google Scholar] [CrossRef]
- Okoligwe, O.; Radu, T.; Leaper, M.C.; Wagner, J.L. Characterization of Municipal Solid Waste Residues for Hydrothermal Liquefaction into Liquid Transportation Fuels. Waste Manag. 2022, 140, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Guo, J.; Meng, J.; Sun, T. Biofuel Production by Hydro-Thermal Liquefaction of Municipal Solid Waste: Process Characterization and Optimization. Chemosphere 2023, 328, 138606. [Google Scholar] [CrossRef]
- Velazquez Abad, A.; Dodds, P.E. Production of Hydrogen. In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Oxford, UK, 2017; pp. 293–304. ISBN 978-0-12-804792-7. [Google Scholar]
- Uddin, M.M.; Wright, M.M. Anaerobic Digestion Fundamentals, Challenges, and Technological Advances. Phys. Sci. Rev. 2022, 8, 2819–2837. [Google Scholar] [CrossRef]
- Panigrahi, S.; Dubey, B.K. A Critical Review on Operating Parameters and Strategies to Improve the Biogas Yield from Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Energy 2019, 143, 779–797. [Google Scholar] [CrossRef]
- Cudjoe, D.; Han, M.S.; Nandiwardhana, A.P. Electricity Generation Using Biogas from Organic Fraction of Municipal Solid Waste Generated in Provinces of China: Techno-Economic and Environmental Impact Analysis. Fuel Process. Technol. 2020, 203, 106381. [Google Scholar] [CrossRef]
- Edo, C.; Fernández-Piñas, F.; Rosal, R. Microplastics Identification and Quantification in the Composted Organic Fraction of Municipal Solid Waste. Sci. Total Environ. 2022, 813, 151902. [Google Scholar] [CrossRef] [PubMed]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A Comprehensive Review on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Miller, F.C. Composting of Municipal Solid Waste and Its Components. In Microbiology of Solid Waste; CRC Press: Boca Raton, FL, USA, 2020; pp. 115–154. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Nhung, T.C.; Ramesh, B.; Srinivasan, S.; Rangasamy, G. A Review on Biological Methodologies in Municipal Solid Waste Management and Landfilling: Resource and Energy Recovery. Chemosphere 2022, 309, 136630. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Elbl, J.; Voběrková, S.; Koda, E.; Adamcová, D.; Mariusz Gusiatin, Z.; Al Rahman, A.; Radziemska, M.; Mazur, Z. Composting versus Mechanical–Biological Treatment: Does It Really Make a Difference in the Final Product Parameters and Maturity. Waste Manag. 2020, 106, 173–183. [Google Scholar] [CrossRef]
- Mosquera-Toscano, H.G.; González-Barceló, O.; Valdez-Vazquez, I.; Durán-Moreno, A. Ethanol and Methane Production from the Organic Fraction of Municipal Solid Waste in a Two-Stage Process. Bioenergy Res. 2023, 17, 634–645. [Google Scholar] [CrossRef]
- Yan, J.; Liang, L.; He, Q.; Gutierrez, C.; Chu, C.H.; Pray, T.R.; Sun, N. Conversion of Paper and Food-Rich Municipal Solid Waste Streams to Ethanol through Bioprocessing. ACS Sustain. Chem. Eng. 2020, 8, 16889–16896. [Google Scholar] [CrossRef]
- Rahman, M.M.; Bhuiyan, M.S.H.; Rouf, M.A.; Sarker, R.R.; Rashid, M.H. Quality Assessment of Municipal Solid Waste Compost. Acta Chem. Malays. 2020, 4, 33–39. [Google Scholar] [CrossRef]
- Hegde, S.; Lodge, J.S.; Trabold, T.A. Characteristics of Food Processing Wastes and Their Use in Sustainable Alcohol Production. Renew. Sustain. Energy Rev. 2018, 81, 510–523. [Google Scholar] [CrossRef]
- Sánchez, A. A Perspective of Solid-State Fermentation As Emergent Technology for Organic Waste Management in the Framework of Circular Bioeconomy. ACS Sustain. Resour. Manag. 2024, 1, 1630–1638. [Google Scholar] [CrossRef]
- Nevzorova, T.; Kutcherov, V. Barriers to the Wider Implementation of Biogas as a Source of Energy: A State-of-the-Art Review. Energy Strateg. Rev. 2019, 26, 100414. [Google Scholar] [CrossRef]
- Okori, F.; Lederer, J.; Komakech, A.J.; Schwarzböck, T.; Fellner, J. Plastics and Other Extraneous Matter in Municipal Solid Waste Compost: A Systematic Review of Sources, Occurrence, Implications, and Fate in Amended Soils. Environ. Adv. 2024, 15, 100494. [Google Scholar] [CrossRef]
- Mandari, V.; Devarai, S.K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: A Critical Review. Bioenergy Res. 2022, 15, 935–961. [Google Scholar] [CrossRef]
- Khan, A.H.; López-Maldonado, E.A.; Alam, S.S.; Khan, N.A.; López, J.R.L.; Herrera, P.F.M.; Abutaleb, A.; Ahmed, S.; Singh, L. Municipal Solid Waste Generation and the Current State of Waste-to-Energy Potential: State of Art Review. Energy Convers. Manag. 2022, 267, 115905. [Google Scholar] [CrossRef]
- Lokman, I.M.; Rashid, U.; Taufiq-Yap, Y.H.; Yunus, R. Methyl Ester Production from Palm Fatty Acid Distillate Using Sulfonated Glucose-Derived Acid Catalyst. Renew. Energy 2015, 81, 347–354. [Google Scholar] [CrossRef]
- Hussein, M.F.; Abo El Naga, A.O.; El Saied, M.; AbuBaker, M.M.; Shaban, S.A.; El Kady, F.Y. Potato Peel Waste-Derived Carbon-Based Solid Acid for the Esterification of Oleic Acid to Biodiesel. Environ. Technol. Innov. 2021, 21, 101355. [Google Scholar] [CrossRef]
- Brown, A.; Ebadian, M.; Saddler, J.; Nylund, N.; Aakko-Saksa, P.; Waldheim, L. The Role of Renewable Transport Fuels in Decarbonizing Road Transport- Production Technology and Costs. 2020. Available online: https://www.ieabioenergy.com/wp-content/uploads/2020/11/Production-Technologies-and-Costs.pdf (accessed on 20 November 2024).
- Miranda, A.C.; da Silva Filho, S.C.; Tambourgi, E.B.; CurveloSantana, J.C.; Vanalle, R.M.; Guerhardt, F. Analysis of the Costs and Logistics of Biodiesel Production from Used Cooking Oil in the Metropolitan Region of Campinas (Brazil). Renew. Sustain. Energy Rev. 2018, 88, 373–379. [Google Scholar] [CrossRef]
- Cerón Ferrusca, M.; Romero, R.; Martínez, S.L.; Ramírez-Serrano, A.; Natividad, R. Biodiesel Production from Waste Cooking Oil: A Perspective on Catalytic Processes. Processes 2023, 11, 1952. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Zhang, L.; Chang, Y.; Hao, Y. Converting Waste Cooking Oil to Biodiesel in China: Environmental Impacts and Economic Feasibility. Renew. Sustain. Energy Rev. 2021, 140, 110661. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Liquid Biofuels from the Organic Fraction of Municipal Solid Waste: A Review. Renew. Sustain. Energy Rev. 2019, 110, 298–314. [Google Scholar] [CrossRef]
- Rehan, M.; Gardy, J.; Demirbas, A.; Rashid, U.; Budzianowski, W.M.; Pant, D.; Nizami, A.S. Waste to Biodiesel: A Preliminary Assessment for Saudi Arabia. Bioresour. Technol. 2018, 250, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Gaeta-Bernardi, A.; Parente, V. Organic Municipal Solid Waste (MSW) as Feedstock for Biodiesel Production: A Financial Feasibility Analysis. Renew. Energy 2016, 86, 1422–1432. [Google Scholar] [CrossRef]
- Mukherjee, C.; Denney, J.; Mbonimpa, E.G.; Slagley, J.; Bhowmik, R. A Review on Municipal Solid Waste-to-Energy Trends in the USA. Renew. Sustain. Energy Rev. 2020, 119, 109512. [Google Scholar] [CrossRef]
- Ławińska, O.; Korombel, A.; Zajemska, M. Pyrolysis-Based Municipal Solid Waste Management in Poland—SWOT Analysis. Energies 2022, 15, 510. [Google Scholar] [CrossRef]
- Sajid, M.; Raheem, A.; Ullah, N.; Asim, M.; Ur Rehman, M.S.; Ali, N. Gasification of Municipal Solid Waste: Progress, Challenges, and Prospects. Renew. Sustain. Energy Rev. 2022, 168, 112815. [Google Scholar] [CrossRef]
- Chanthakett, A.; Arif, M.T.; Khan, M.M.K.; Oo, A.M.T. Performance Assessment of Gasification Reactors for Sustainable Management of Municipal Solid Waste. J. Environ. Manag. 2021, 291, 112661. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, D.; Feng, P.; Hao, B.; Guo, Y.; Wang, S. Municipal Sewage Sludge Incineration and Its Air Pollution Control. J. Clean. Prod. 2021, 295, 126456. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Z.; Yang, Y.; Wang, M.; Jing, X.; Li, G.; Yan, J.; Zhao, L.; Nie, L.; Wang, Y.; et al. Characteristics, Secondary Transformation and Odor Activity Evaluation of VOCs Emitted from Municipal Solid Waste Incineration Power Plant. J. Environ. Manag. 2023, 326, 116703. [Google Scholar] [CrossRef]
- Liang, Y. A Critical Review of Challenges Faced by Converting Food Waste to Bioenergy Through Anaerobic Digestion and Hydrothermal Liquefaction. Waste Biomass Valorization 2022, 13, 781–796. [Google Scholar] [CrossRef]
- Harisankar, S.; Vinu, R. Comprehensive Evaluation of Municipal Solid Wastes and Mixed Feedstocks for Commercial Hydrothermal Liquefaction in Bio-Refineries. Fuel 2023, 339, 127236. [Google Scholar] [CrossRef]
- Farhidi, F.; Madani, K.; Crichton, R. How the US Economy and Environment Can Both Benefit From Composting Management. Environ. Health Insights 2022, 16. [Google Scholar] [CrossRef]
- Gutiérrez Ortiz, F.J. Techno-Economic Assessment of Supercritical Processes for Biofuel Production. J. Supercrit. Fluids 2020, 160, 104788. [Google Scholar] [CrossRef]
- Begum, R.A.; Siwar, C.; Pereira, J.J.; Jaafar, A.H. A Benefit-Cost Analysis on the Economic Feasibility of Construction Waste Minimisation: The Case of Malaysia. Resour. Conserv. Recycl. 2006, 48, 86–98. [Google Scholar] [CrossRef]
- Ip, K.; Testa, M.; Raymond, A.; Graves, S.C.; Gutowski, T. Performance Evaluation of Material Separation in a Material Recovery Facility Using a Network Flow Model. Resour. Conserv. Recycl. 2018, 131, 192–205. [Google Scholar] [CrossRef]
- Das, S.; Lee, S.H.; Kumar, P.; Kim, K.H.; Lee, S.S.; Bhattacharya, S.S. Solid Waste Management: Scope and the Challenge of Sustainability. J. Clean. Prod. 2019, 228, 658–678. [Google Scholar] [CrossRef]
- Vergara, S.E.; Tchobanoglous, G. Municipal Solid Waste and the Environment: A Global Perspective. Annu. Rev. Environ. Resour. 2012, 37, 277–309. [Google Scholar] [CrossRef]
- Pitchel, J. Waste Management Practices; CRC Press: Boca Raton, FL, USA, 2002; Volume 53, ISBN 9780849335259. [Google Scholar]
- Fu, Z.; Zhang, S.; Li, X.; Shao, J.; Wang, K.; Chen, H. MSW Oxy-Enriched Incineration Technology Applied in China: Combustion Temperature, Flue Gas Loss and Economic Considerations. Waste Manag. 2015, 38, 149–156. [Google Scholar] [CrossRef]
- Singhal, A.; Gupta, A.K.; Dubey, B.; Ghangrekar, M.M. Seasonal Characterization of Municipal Solid Waste for Selecting Feasible Waste Treatment Technology for Guwahati City, India. J. Air Waste Manag. Assoc. 2022, 72, 147–160. [Google Scholar] [CrossRef]
Management Pathways | Conversion Process | Technical Maturity 1 | Cost (USD/Tonne) 2 | Emission (kg CO2e/Tonne) 3 |
---|---|---|---|---|
Open dumping | - | 83.3 * | 781 | |
Open Burning | - | 8.8 * | 19,673 | |
Recycling and recovery | Matured | 105.8–140.0 ** | ||
Landfill | Matured | 76.3–115.7 * | 781 | |
Landfill with gas recovery | Matured | 9855 | ||
Mechanical (pellet, SRF, RDF) | Matured | 20,273.7–55,887.2 *** | ||
Thermochemical | Pyrolysis | Emerging | 41,902–304,238 *** | |
Gasification | Maturing | 51,210–742,535 *** | ||
Incineration | Matured | 77,200–697,998 *** | 6012 | |
Hydrothermal liquefaction | Emerging | 262,450 * | ||
Biochemical | Anaerobic digestion | Matured | 10,977.9–109,190.5 *** | 4106 |
Fermentation | Emerging | |||
Composting | Matured | 3552.8–54,555.6 *** | 24,807 | |
Chemical | Transesterification (biodiesel) | Matured | 165–487 **** | 396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafle, S.; Karki, B.K.; Sakhakarmy, M.; Adhikari, S. A Review of Global Municipal Solid Waste Management and Valorization Pathways. Recycling 2025, 10, 113. https://doi.org/10.3390/recycling10030113
Kafle S, Karki BK, Sakhakarmy M, Adhikari S. A Review of Global Municipal Solid Waste Management and Valorization Pathways. Recycling. 2025; 10(3):113. https://doi.org/10.3390/recycling10030113
Chicago/Turabian StyleKafle, Sagar, Bhesh Kumar Karki, Manish Sakhakarmy, and Sushil Adhikari. 2025. "A Review of Global Municipal Solid Waste Management and Valorization Pathways" Recycling 10, no. 3: 113. https://doi.org/10.3390/recycling10030113
APA StyleKafle, S., Karki, B. K., Sakhakarmy, M., & Adhikari, S. (2025). A Review of Global Municipal Solid Waste Management and Valorization Pathways. Recycling, 10(3), 113. https://doi.org/10.3390/recycling10030113