Rutting and Aging Properties of Recycled Polymer-Modified Pavement Materials
Abstract
:1. Introduction
2. Background
2.1. Chemical Composition of Bitumen
2.2. Physical Properties of Bitumen Binders
2.3. Regulatory Standards and Specifications
2.4. Challenges and Innovations
2.5. Bitumen Aging
- -
- Mechanisms of Aging:
- -
- Factors Influencing Aging:
- -
- Laboratory Aging:
2.6. Rutting
2.6.1. Mechanisms of Rutting and Factors Influencing It
2.6.2. Measurement and Evaluation of Rutting
3. Bitumen Modification
4. Discussion
4.1. Crumb Rubber-Modified Bitumen
4.1.1. Introduction
4.1.2. Properties of CRMB
4.1.3. Factors Affecting CRMB Performance
4.1.4. Aging, Rutting, and Fatigue Resistance
4.2. Styrene–Butadiene–Styrene (SBS)
Aging and Rutting Resistance
4.3. Recycled Polypropylene (PP)
- -
- Aging and Rutting Resistance
4.4. Recycled Polyethylene Terephthalate (PET)
4.4.1. Aging and Rutting Resistance
4.4.2. Environmental and Economic Befits and Challenges
4.5. Recycled Low-Density Polyethylene (LDPE)
4.5.1. Aging and Rutting Resistance
4.5.2. Environmental and Economic Befits and Challenges
4.6. Recycled High-Density Polyethylene (HDPE)
4.6.1. Aging and Rutting Resistance
4.6.2. Environmental and Economic Befits and Challenges
4.7. Recycled Polystyrene (PS)
4.7.1. Aging and Rutting Resistance
4.7.2. Environmental and Economic Befits and Challenges
4.8. Waste Cooking Oil (WCO)
4.8.1. Aging and Rutting Resistance
4.8.2. Environmental and Economic Befits and Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, A.H.; Mashaan, N.S.; Karim, M.R. Investigations of physical and rheological properties of aged rubberised bitumen. Adv. Mater. Sci. Eng. 2013, 1, 239036. [Google Scholar] [CrossRef]
- Anusha, T.M.; Jagadeesh, H.S. Performance evaluation of crumb rubber modified bitumen on binder course of stone mastic asphalt mix. Int. J. Eng. Res. Technol. 2021, 10. [Google Scholar] [CrossRef]
- Buchagul, J. Performance Evaluation of the Crumb Rubber-Modified Bitumen Containing Warm-Mix Additives. 2019. Available online: https://repository.tudelft.nl/islandora/object/uuid%3A79b491fb-7ce7-4950-9f36-df2bd120f02b/datastream/OBJ/download (accessed on 25 March 2025).
- Alghrafy, Y.M.; Abd Alla, E.-S.M.; El-Badawy, S.M. Rheological properties and aging performance of sulfur extended asphalt modified with recycled polyethylene waste. Constr. Build. Mater. 2021, 273, 121771. [Google Scholar] [CrossRef]
- Ansar, M.; Sikandar, M.A.; Althoey, F.; Tariq, M.A.U.R.; Alyami, S.H.; Elkhatib, S.E. Rheological, aging, and microstructural properties of polycarbonate and polytetrafluoroethylene modified bitumen. Polymers 2022, 14, 3283. [Google Scholar] [CrossRef] [PubMed]
- Holý, M.; Remišová, E. Analysis of influence of bitumen composition on the properties represented by empirical and viscosity test. Transp. Res. Procedia 2019, 40, 34–41. [Google Scholar] [CrossRef]
- Zahedi, M. General Properties of Bitumen—Infinity Galaxy. Infinity Galaxy. Available online: https://infinitygalaxy.org/bitumen-properties/ (accessed on 30 March 2024).
- De Carteret, R.; Comport, L.; Metcalf, J.; Rebbechi, J. Guide to Pavement Technology: Part 8: Pavement Construction. 2019. Available online: https://austroads.com.au/publications/pavement/agpt11 (accessed on 25 March 2025).
- Polo-Mendoza, R.; Martinez-Arguelles, G.; Walubita, L.F.; Moreno-Navarro, F.; Giustozzi, F.; Fuentes, L.; Navarro-Donado, T. Ultraviolet ageing of bituminous materials: A comprehensive literature review from 2011 to 2022. Constr. Build. Mater. 2022, 350, 128889. [Google Scholar] [CrossRef]
- Wang, X.; Guo, H.; Yang, B.; Chang, X.; Wan, C.; Wang, Z. Aging Characteristics of Bitumen from Different Bituminous Pavement Structures in Service. Materials 2019, 12, 530. [Google Scholar] [CrossRef]
- Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593–609. [Google Scholar] [CrossRef]
- Yahaya, A.S.; Yusoff, N.I.M.; Hamzah, M.O.; Abdullah, N.H. Effects of laboratory Short-Term ageing on Bitumen Properties. European Proceedings of Multidisciplinary Sciences. Eur. Proc. Multidiscip. Sci. 2019, 2, 1–882. [Google Scholar] [CrossRef]
- Jiang, W.; Bao, R.; Lu, H.; Yuan, D.; Lu, R.; Sha, A.; Shan, J. Analysis of rheological properties and aging mechanism of bitumen after short-term and long-term aging. Constr. Build. Mater. 2021, 273, 121777. [Google Scholar] [CrossRef]
- Hofko, B.; Cannone Falchetto, A.; Grenfell, J.; Huber, L.; Lu, X.; Porot, L.; Poulikakos, L.D.; You, Z. Effect of short-term ageing temperature on bitumen properties. Road Mater. Pavement Des. 2017, 18, 108–117. [Google Scholar] [CrossRef]
- Lu, X.; Talon, Y.; Redelius, P. Aging of Bituminous Binders—Laboratory Tests and Field Data. In Proceedings of the 4th Eurasphalt Eurobitume Congress, Denmark, Copenhagen, 21–23 May 2008. [Google Scholar] [CrossRef]
- Hofer, K.; Werkovits, S.; Schönauer, P.; Mirwald, J.; Grothe, H.; Hofko, B. Chemical and mechanical analysis of field and laboratory aged bitumen. Road Mater. Pavement Des. 2023, 24, 160–175. [Google Scholar] [CrossRef]
- Pan, Y.; Guo, H.; Guan, W.; Zhao, Y. A laboratory evaluation of factors affecting rutting resistance of asphalt mixtures using wheel tracking test. Case Stud. Constr. Mater. 2023, 18, e02148. [Google Scholar] [CrossRef]
- Sinanmis, R.; Woods, L. Traffic channelisation and pavement deterioration: An investigation of the role of lateral wander on asphalt pavement rutting. Int. J. Pavement Eng. 2022, 24, 2118272. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Sri, M.R.; Reddy, K.S. Evaluation of asphalt binder rutting parameters. Constr. Build. Mater. 2018, 173, 298–307. [Google Scholar] [CrossRef]
- Celoglu, M.E.; Yalçın, E.; Kök, B.V.; Alataş, T.; Norambuena-Contreras, J.; García, Á.; Yılmaz, M. Effects of different bitumen modifiers on the rutting and cracking resistance of hot mix asphalts. Int. J. Pavement Eng. 2018, 21, 703–712. [Google Scholar] [CrossRef]
- Olabemiwo, O.M.; Esan, A.O.; Bakare, H.O.; Agunbiade, F.O. Polymer modified-natural bitumen thermal aging resistance studies. Int. J. Pavement Eng. 2017, 20, 1207–1215. [Google Scholar] [CrossRef]
- Gokalp, İ.; Uz, V.E. Sustainable production of Aging-Resistant bitumen: Waste engine oil modification. J. Transp. Eng. 2021, 147, 04021055. [Google Scholar] [CrossRef]
- Nordiana, M.; Wan Nur Aifa, W.A.; Hainin, M.R.; Muhammad Naqiuddin, M.W.; Norhidayah, A.H.; Haryati, Y.; Juraidah, A.; Rmadhansyah, P.J. Rutting resistance of untreated and treated waste cooking oil in bitumen after aging condition. In Proceedings of the IOP Conference Series: Earth and Environmental Science, National Colloquium on Wind &Earthquake Engineering, Kuantan, Malaysia, 17–18 August 2018; p. 244. [Google Scholar] [CrossRef]
- Lin, H.; Chen, Q.; Luo, X.; Zhang, Y.; Miao, K.; Tan, L.; Wang, K. Characterization of rheological properties and aging performance of bitumen modified by bio-oil from bamboo charcoal production. J. Clean. Prod. 2022, 338, 130678. [Google Scholar] [CrossRef]
- Mashaan, N.S.; Karim, M.R. Investigating the rheological properties of crumb rubber modified bitumen and its correlation with temperature susceptibility. Mater. Res. 2012, 16, 116–127. [Google Scholar] [CrossRef]
- Mashaan, N.S.; Ali, A.H.; Karim, M.R.; Abdelaziz, M. An overview of crumb rubber modified asphalt. Int. J. Phys. Sci. 2012, 7, 166–170. [Google Scholar] [CrossRef]
- Korycki, L. Recycled Rubber Road Project Reveals Environmental and Economic Benefits. Waste Management Review. Available online: https://wastemanagementreview.com.au/recycled-rubber-road-project-reveals-environmental-economic-benefits/ (accessed on 2 May 2024).
- Jamal, M.; Giustozzi, F. Low-content crumb rubber modified bitumen for improving Australian local road conditions. J. Clean. Prod. 2020, 271, 122484. [Google Scholar] [CrossRef]
- Ibrahim, M.R.; Katman, H.Y.; Karim, M.R.; Koting, S.; Mashaan, N.S. A review on the effect of crumb rubber addition to the rheology of crumb rubber modified bitumen. Adv. Mater. Sci. Eng. 2013, 2013, 415246. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Apostolidis, P.; Van De Ven, M.; Erkens, S.; Skarpas, A. Effect of laboratory aging on chemistry and rheology of crumb rubber modified bitumen. Mater. Struct. 2020, 53, 1–26. [Google Scholar] [CrossRef]
- Irfan, M.; Ali, Y.; Ahmed, S.; Hafeez, I. Performance evaluation of crumb Rubber-Modified asphalt mixtures based on laboratory and field investigations. Arab. J. Sci. Eng. 2017, 43, 1795–1806. [Google Scholar] [CrossRef]
- Gohar, M.; Ahmad, N.; Haroon, W. Effect of Addition of Crumb Rubber on Bitumen Performance Grade (PG) and Rutting Resistance. ResearchGate. Available online: https://www.researchgate.net/publication/360163386 (accessed on 25 March 2025).
- Riekstins, A.; Haritonovs, V.; Straupe, V. Economic and environmental analysis of crumb rubber modified asphalt. Constr. Build. Mater. 2022, 335, 127468. [Google Scholar] [CrossRef]
- Denneman, E.; Lee, J.; Raymond, C.; Choi, Y.; Yean Khoo, K.; Dias, M. P31 and P32 Optimising the Use of Crumb Rubber Modified Bitumen in Seals and Asphalt. Queensland Department of Transport and Main Roads Disclaimer. 2015. Available online: https://nacoe.com.au/wp-content/uploads/2017/10/P31-P32-Optimising-the-use-of-crumb-rubber_Yr1-2014-15-Final.pdf (accessed on 25 March 2025).
- Piao, Z.; Bueno, M.; Mikhailenko, P.; Kakar, M.R.; Biondini, D.; Poulikakos, L.; Hellweg, S. Life Cycle Assessment of Asphalt Pavements Using Crumb Rubber: A Comparative Analysis; Rilem Bookseries; Springer International Publishing: New York, NY, USA, 2021; pp. 1281–1287. [Google Scholar] [CrossRef]
- Farina, A.; Zanetti, M.; Santagata, E.; Blengini, G.A.; Lanotte, M.A. Life Cycle Assessment of Road Pavements Containing Crumb Rubber from End-of-Life Tires. Department of Environment, Land and Infrastructure Engineering, Politecnico Di Torino. 2014. Available online: https://iris.polito.it/handle/11583/2582944 (accessed on 25 March 2025).
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef]
- Hassanpour-Kasanagh, S.; Ahmedzade, P.; Fainleib, A.M.; Behnood, A. Rheological properties of asphalt binders modified with recycled materials: A comparison with Styrene-Butadiene-Styrene (SBS). Constr. Build. Mater. 2020, 230, 117047. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, J.; Wang, X.; Wang, D.; Xie, N.; Shi, X. A review of polymer-modified asphalt binder: Modification mechanisms and mechanical properties. Clean. Mater. 2024, 12, 100255. [Google Scholar] [CrossRef]
- Wei, H.; Bai, X.; Qian, G.; Wang, F.; Li, Z.; Jin, J.; Zhang, Y. Aging Mechanism and Properties of SBS Modified Bitumen under Complex Environmental Conditions. Materials 2019, 12, 1189. [Google Scholar] [CrossRef]
- Ma, Q.; Jin, Y.; He, H.; Yu, W.; Xu, J.; Xu, Q.; Xue, J.; Wang, R.; Cui, C.; Ma, J.; et al. Simulation and investigation of the mild-moderate aging properties of SBS modified bitumen: Physical, microscopic and rheological properties. Constr. Build. Mater. 2024, 449, 138428. [Google Scholar] [CrossRef]
- Laukkanen, O.; Soenen, H.; Winter, H.H.; Seppälä, J. Low-temperature rheological and morphological characterization of SBS modified bitumen. Constr. Build. Mater. 2018, 179, 348–359. [Google Scholar] [CrossRef]
- Kaya, D.; Topal, A.; Gupta, J.; McNally, T. Aging effects on the composition and thermal properties of styrene-butadiene-styrene (SBS) modified bitumen. Constr. Build. Mater. 2019, 235, 117450. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Boom, Y.J.; Giustozzi, F. Sustainable Polymers from Recycled Waste Plastics and Their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. [Google Scholar] [CrossRef] [PubMed]
- Salehi, S.; Arashpour, M.; Kodikara, J.; Guppy, R. Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials. J. Clean. Prod. 2021, 313, 127936. [Google Scholar] [CrossRef]
- Usman, I.U.; Kunlin, M. Influence of Polyethylene Terephthalate (PET) utilization on the engineering properties of asphalt mixtures: A review. Constr. Build. Mater. 2024, 411, 134439. [Google Scholar] [CrossRef]
- Mushtaq, F.; Huang, Z.; Shah, S.A.R.; Zhang, Y.; Gao, Y.; Azab, M.; Hussain, S.; Anwar, M.K. Performance Optimization Approach of Polymer Modified Asphalt Mixtures with PET and PE Wastes: A Safety Study for Utilizing Eco-Friendly Circular Economy-Based SDGs Concepts. Polymers 2022, 14, 2493. [Google Scholar] [CrossRef]
- Maharaj, R.; Maharaj, C.; Mahase, M. The performance and durability of polyethylene terephthalate and crumb rubber–modified road pavement surfaces. Progress Rubber Plast. Recycl. Technol. 2018, 35, 3–22. [Google Scholar] [CrossRef]
- Mashaan, N.S. Engineering Characterisation of Wearing Course Materials Modified with Waste Plastic. Recycling 2022, 7, 61. [Google Scholar] [CrossRef]
- Mashaan, N.S. Engineering Properties of Waste Plastic and Nanomaterials Modified Asphalt Mixtures. J. Harbin Eng. Univ. 2023, 44, 1319–1324. [Google Scholar]
- Mashaan, N.S. Waste Plastic in Concrete: Review and State of the Art. Nanotechnol. Percept. 2024, 20, 594–612. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, A. Mechanical and economical feasibility of LDPE Waste-modified asphalt mixtures: Pathway to sustainable road construction. Sci. Rep. 2024, 14, 25311. [Google Scholar] [CrossRef]
- Li, H.; Han, Y.E.; Guangxun Sun, Y.; Wang, L.; Liu, X.; Ren, J.; Lin, Z. Recycling of waste polyethylene in asphalt and its performance enhancement methods: A critical literature review. J. Clean. Prod. 2024, 451, 142072. [Google Scholar] [CrossRef]
- Ullah, S.; Qabur, A.; Ullah, A.; Aati, K.; Abdelgiom, M.A. Enhancing High-Temperature Performance of Flexible Pavement with Plastic-Modified Asphalt. Polymers 2024, 16, 2399. [Google Scholar] [CrossRef] [PubMed]
- Bensaada, A.; Soudani, K.; Haddadi, S. Effects of short-term aging on the physical and rheological properties of plastic waste-modified bitumen. Innov. Infrastruct. Solut. 2021, 6, 1–12. [Google Scholar] [CrossRef]
- Ahmedzade, P.; Fainleib, A.; Günay, T.; Starostenko, O.; Kovalinska, T. Effect of Gamma-Irradiated recycled Low-Density polyethylene on the High- and Low-Temperature properties of bitumen. Int. J. Polym. Sci. 2013, 1, 1–9. [Google Scholar] [CrossRef]
- Genet, M.B.; Sendekie, Z.B.; Jembere, A.L. Investigation and optimization of waste LDPE plastic as a modifier of asphalt mix for highway asphalt: Case of Ethiopian roads. Case Stud. Chem. Environ. Eng. 2021, 4, 100150. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Jamal, M.; Gravina, R.; Giustozzi, F. Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. J. Clean. Prod. 2020, 266, 121988. [Google Scholar] [CrossRef]
- da Silva AJ, R.; de Figueiredo Lopes Lucena, A.E.; de Medeiros Melo Neto, O.; Mendonça AM, G.D.; Costa, D.B.; de Lima RK, B. Effects of using waste high-density polyethylene on the rheological, mechanical, and thermal performance of asphalt materials. Environ. Dev. Sustain. 2024, 26, 16683–16710. [Google Scholar] [CrossRef]
- Nejad, F.M.; Gholami, M.; Naderi, K.; Rahi, M. Evaluation of rutting properties of high density polyethylene modified binders. Mater. Struct. 2014, 48, 3295–3305. [Google Scholar] [CrossRef]
- Piromanski, B.; Chegenizadeh, A.; Mashaan, N.; Nikraz, H. Study on HDPE effect on rutting resistance of Binder. Buildings 2020, 10, 156. [Google Scholar] [CrossRef]
- Ibrahim, A.A. Laboratory investigation of aged HDPE-modified asphalt mixes. Int. J. Pavement Res. Technol. 2019, 12, 364–369. [Google Scholar] [CrossRef]
- Köfteci, S. Effect of HDPE based wastes on the performance of modified asphalt mixtures. Procedia Eng. 2016, 161, 1268–1274. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, M.; Zhong, J.; Baumgardner, G.L.; Huang, B. Waste Plastic Powder Coating on Acidic Aggregates: A New Hydrophobic Coating Technology to Build Moisture-Resistant Asphalt Mixtures. Transp. Res. Rec. 2023. [Google Scholar] [CrossRef]
- Yildiz, K.; Kinaci, H.; Atakan, M. Modification of Asphalt Binder with Waste Expanded Polystyrene (EPS) Foam. Celal Bayar Üniversitesi Fen Bilim. Derg. 2021, 17, 245–252. [Google Scholar] [CrossRef]
- Mahida, S.; Shah, Y.U.; Sharma, S. Analysis of the influence of using waste polystyrene in virgin bitumen. Int. J. Pavement Res. Technol. 2021, 15, 626–639. [Google Scholar] [CrossRef]
- Nassar, I.M.; Kabel, K.I.; Ibrahim, I.M. Evaluation of the Effect of Waste Polystyrene on Performance of Asphalt Binder. ARPN J. Sci. Technol. 2012, 2, 927–935. Available online: https://www.researchgate.net/publication/265423167 (accessed on 25 March 2025).
- Vila-Cortavitarte, M.; Lastra-González, P.; Calzada-Pérez, M.Á.; Indacoechea-Vega, I. Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. J. Clean. Prod. 2017, 170, 1279–1287. [Google Scholar] [CrossRef]
- Abinaya, S.; Clement, M.; Shunmugam, S. An experimental study on the properties of extruded Polystyrene waste polymer modified bitumen for flexible pavements. Int. Res. J. Eng. Technol. 2016, 3, 304–308. Available online: https://www.academia.edu/download/54548347/IRJET-V3I6462.pdf (accessed on 25 March 2025).
- Jain, S.; Chandrappa, A.K. A laboratory investigation on benefits of WCO utilisation in asphalt with high recycled asphalt content: Emphasis on rejuvenation and aging. Int. J. Pavement Eng. 2023, 24, 2172577. [Google Scholar] [CrossRef]
- Xu, N.; Wang, H.; Wang, H.; Kazemi, M.; Fini, E.H. Research progress on resource utilization of waste cooking oil in asphalt materials: A state-of-the-art review. J. Clean. Prod. 2023, 385, 135427. [Google Scholar] [CrossRef]
- Jain, S.; Chandrappa, A.K. Critical review on waste cooking oil rejuvenation in asphalt mixture with high recycled asphalt. Environ. Sci. Pollut. Res. 2023, 30, 77981–78003. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M. Investigation physical and rheological properties of bio-asphalt containing waste cooking oil. IOP Conf. Ser. Earth Environ. Sci. 2022, 971, 012010. [Google Scholar] [CrossRef]
- Jain, S.; Dabbiru, S.; Chandrappa, A.K. Effects of waste cooking oil on the antiageing ability of bitumen. Adv. Civ. Eng. 2023, 2023, 5155407. [Google Scholar] [CrossRef]
- Alkuime, H.; Kassem, E.; Alshraiedeh, K.A.; Bustanji, M.; Aleih, A.; Abukhamseh, F. Performance Assessment of waste Cooking Oil-Modified Asphalt Mixtures. Appl. Sci. 2024, 14, 1228. [Google Scholar] [CrossRef]
- Azahar, W.N.A.W.; Jaya, R.P.; Hainin, M.R.; Bujang, M.; Ngadi, N. Chemical modification of waste cooking oil to improve the physical and rheological properties of asphalt binder. Constr. Build. Mater. 2016, 126, 218–226. [Google Scholar] [CrossRef]
Binder Grade | CRM% (by Weight of Bitumen) | Tests Conducted | Main Findings | Reference |
---|---|---|---|---|
70/100 | 5%, 10%, 15% and 22% | Rolling thin-film oven (RTFO), pressure aging vessel (PAV) test, Fourier transform infrared spectroscopy, dynamic shear rheometer, and multiple stress creep and recovery test |
| (Wang et al., 2020) [30] |
60/70, 80/100 | 4, 8, 12, and 16% | Penetration, softening point, ductility, and rotational tests, Marshall’s stability test, resilient modulus (MR) test, indirect tensile strength (IDT) test, permanent deformation (rutting) test, and international roughness index (IRI). |
| (Irfan et al., 2017) [31] |
60/70 | 9.5% and 15% | Penetration test, dynamic shear rheometer (DSR), and softening point test |
| (Gohar et al., 2022) [32] |
80/100 | 4%, 8%, 12%, 16% and 20% | Dynamic shear rheometer (DSR), softening point (ring and ball) test, and analysis of variance (ANOVA) |
| (Mashaan & Karim, 2012) [25] |
C320 | 7.50% | Dynamic hybrid rheometer-3 (DHR3), frequency sweep test, multiple stress creep recovery (MSCR) tests |
| (Jamal & Giustozzi, 2020) [28] |
Binder Grade | % (by Weight of Bitumen) | Tests Conducted | Main Findings | Reference |
---|---|---|---|---|
50/70 | 3–7% | Softening point, penetration, rotational viscosity, Superpave performance grading, multiple stress creep recovery (MSCR), andlinear amplitude sweep. |
| (Hassanpour-Kasanagh et al., 2019) [38] |
70 | 5% | Thin-film oven test (TFOT), UV aging test in different temperatures (UV only, UV+Water, UV+Acid, and Uv+ salt), dynamic shear rheometer (DSR), Fourier transform infrared spectroscopy (FTIR) Test, and four-component analysis test |
| (Wei et al., 2019) [40] |
70 | 1.5%, 2.%, 3.5%, 4.5%, and 5.5% | Penetration, softening point, ductility and elastic recovery. Microscopic property tests include FTIR, FM, SEM, and AFM. Rheological analysis tests include strain scanning, frequency scanning, and temperature scanning |
| (Ma et al., 2024) [41] |
Penetration [1/10 mm] (EN 1426) 177 and 145 | 3–10 wt% | Dynamic shear rheometer (DSR) test, bending beam rheometer (BBR) test, temperature-modulated differential scanning calorimetry (TMDSC), fluorescence microscopy (FM), penetration test, and ring-and-ball softening point test |
| (Laukkanen et al., 2018) [42] |
50/70 | 5 wt% | Rolling thin-film oven (RTFO), pressure aging vessel (PAV), Fourier transform infrared (FTIR) spectroscopy, modulated differential scanning calorimetry (MDSC), and thermo-gravimetric Analysis (TGA) |
| (Kaya et al., 2019) [43] |
Binder Grade | LDPE% | Tests Conducted | Main Findings | Reference |
---|---|---|---|---|
VG30 | 3% | Stiffness test, indirect tensile strength (ITS) test, tensile strength ratio (TSR) test, resistance to permanent deformation (RTIndex) test, fatigue resistance test (CTIndex), and 3D pavement analysis (3D-Move Software) |
| (Singh & Gupta, 2024) [52] |
60/70 | 3%, 5%, 7% | Ductility test, penetration test, softening point test, Marshall’s mix design test, and wheel tracking test |
| (Ullah et al., 2024) [54] |
35/50 | 1%, 3%, 5% | Thermogravimetry and differential scanning calorimetry (TGA–DSC) test, FTIR test, softening point test, penetration test, DSR test, and RFTO |
| (Bensaada et al., 2021) [55] |
160/220 | 1, 3, 5, 7, and 9 | Fourier transform infrared spectroscopy (FTIR) test, fluorescence microscopy, penetration and softening point tests, rolling thin-film oven test (RTFOT), rotational viscosity (RV) test, dynamic shear rheometer (DSR) test, and bending beam rheometer (BBR) test. |
| (Ahmedzade et al., 2013) [56] |
80/100 | 4, 6, 8 and 10% | Penetration test, softening point test, ductility test, Marshall’s stability test, bulk density, and void analysis |
| (Genet et al., 2021) [57] |
Binder Grade | HDPE% | Tests Conducted | Main Findings | Reference |
---|---|---|---|---|
50/70 | 1%, 2%, and 3% | Rolling thin-film oven, rotational viscosity, performance grade (PG), multiple stress creep and recovery, and statistical Student’s t-test |
| (Da Silva et al., 2023) [59] |
85/100 | 3%, 7% | storage stability test, zero shear viscosity (ZSV), non-recoverable compliance (Jnr), multiple stress creep recovery (MSCR) test |
| (Nejad et al., 2014) [60] |
C170 | 2%, 4%, 6%, 8% | Multiple stress creep recovery (MSCR) test, rolling thin-film oven (RTFO) test, rutting and elastic recovery tests |
| (Piromanski et al., 2020) [61] |
40/50 | 5% | Marshall’s stability (MS), Marshall’s quotient (MQ), indirect tensile strength (ITS), resilient modulus (MR), temperature susceptibility, and resilient modulus (MR) |
| (Ibrahim, 2019) [62] |
50/70 | 1–4% | Marshal’s stability test and indirect tensile test |
| (Köfteci, 2016) [63] |
Binder Grade | PS% | Tests Conducted | Main Findings | Reference |
---|---|---|---|---|
50/70 | 2%, 4%, 6%, 8% | Penetration tests, ductility test, softening point test, flash point tests, and specific gravity tests |
| (Yildiz et al., 2021) [65] |
VG 10 | 0.5%, 1.0%, 1.5%, 2.0% | Penetration test, softening point test, viscosity test, dynamic shear rheometer (DSR) test, multiple stress creep recovery (MSCR) test, Marshall’s stability test, Fourier transform infrared spectroscopy (FT-IR) test, and field emission scanning electron microscopy (FE-SEM) with EDAX |
| (Mahida et al., 2021) [66] |
60/70 | 2%, 3%, 4%, 5%, 6% | Penetration tests, softening point tests, viscosity tests, Marshal’s stability tests, optical microscopy (OM), and thermal gravimetric analysis (TGA) |
| (Nassar et al., 2012) [67] |
50/70 | 1%, 2% | Rutting tests, compatibility tests, dynamic modulus tests, fatigue tests, and Cantabro Test |
| (Vila-Cortavitarte et al., 2017) [68] |
60/70 | 5%, 10%, 15% | Penetration test, ductility test, float test, softening point test, and specific gravity |
| (Abinaya et al., 2016) [69] |
Binder Grade | WCO% | Tests Conducted | Main Findings | Reference |
---|---|---|---|---|
60/70 | 3%, 4%, 5% | Rolling thin-film oven test (RTFOT), dynamic shear rheometer (DSR) test, and one-way analysis of variance (ANOVA) |
| (Nordiana et al., 2019) [23] |
60/70 | 1.5%, 3%, 4.5% | Rolling thin-film oven test (RTFOT), flash and fire point test, penetration and softening point tests, viscosity test, and dynamic shear rheometer (DSR) |
| (Ali, 2022) [73] |
PG 64-10 and VG30 | 3%, 5% | Dynamic shear rheometer (DSR), frequency sweep test, and multiple stress creep recovery (MSCR) test |
| (Jain et al., 2023c) [74] |
85/100 | 2, 3, 4, 5, and 7% | Indirect tensile asphalt cracking test (IDEAL-CT), high-temperature indirect tensile (High-IDT), and rutting assessment test |
| (Alkuime et al., 2024) [75] |
60/70 | 0%, 3%, 4%, and 5% | Acid value test, bitumen performance test, rolling thin-film oven (RTFO), Fourier transform infrared (FTIR) |
| (Azahar, Jaya et al., 2016) [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashaan, N.S.; Dassanayake, C. Rutting and Aging Properties of Recycled Polymer-Modified Pavement Materials. Recycling 2025, 10, 60. https://doi.org/10.3390/recycling10020060
Mashaan NS, Dassanayake C. Rutting and Aging Properties of Recycled Polymer-Modified Pavement Materials. Recycling. 2025; 10(2):60. https://doi.org/10.3390/recycling10020060
Chicago/Turabian StyleMashaan, Nuha S., and Chathurika Dassanayake. 2025. "Rutting and Aging Properties of Recycled Polymer-Modified Pavement Materials" Recycling 10, no. 2: 60. https://doi.org/10.3390/recycling10020060
APA StyleMashaan, N. S., & Dassanayake, C. (2025). Rutting and Aging Properties of Recycled Polymer-Modified Pavement Materials. Recycling, 10(2), 60. https://doi.org/10.3390/recycling10020060