Boosting the Performance of Lithium Metal Anodes with Three-Dimensional Lithium Hosts: Recent Progress and Future Perspectives
Abstract
:1. Introduction
2. Origin of Li Dendrites
3. Construction of 3D Li Metal Hosts
4. Lithiophilic Modification of Existing Substrates
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Heenan, T.M.M.; Mombrini, I.; Llewellyn, A.; Checchia, S.; Tan, C.; Johnson, M.J.; Jnawali, A.; Garbarino, G.; Jervis, R.; Brett, D.J.L.; et al. Mapping internal temperatures during high-rate battery applications. Nature 2023, 617, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhou, X.; Chen, Z.; Hou, Y.; You, Y.; Lu, J. Electrolyte formulas of aqueous zinc ion battery: A physical difference with chemical consequences. Mater. Today 2023, 66, 339–347. [Google Scholar] [CrossRef]
- Tan, X.; Chen, Z.; Liu, T.; Zhang, Y.; Zhang, M.; Li, S.; Chu, W.; Liu, K.; Yang, P.; Pan, F. Imitating Architectural Mortise-Tenon Structure for Stable Ni-Rich Layered Cathodes. Adv. Mater. 2023, 2301096. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Li, G.; Yang, X.; Park, S.; Han, D.; Mi, L.; Wang, Y.; Li, Z.; Lee, S.Y. 30 Li+-Accommodating Covalent Organic Frameworks as Ultralong Cyclable High-Capacity Li-Ion Battery Electrodes. Adv. Funct. Mater. 2022, 32, 2108798. [Google Scholar] [CrossRef]
- Yue, X.Y.; Yao, Y.X.; Zhang, J.; Yang, S.Y.; Li, Z.; Yan, C.; Zhang, Q. Unblocked electron channels enable efficient contact prelithiation for Lithium-Ion batteries. Adv. Mater. 2022, 34, 2110337. [Google Scholar] [CrossRef]
- Zhao, L.; Ding, B.; Qin, X.Y.; Wang, Z.; Lv, W.; He, Y.B.; Yang, Q.H.; Kang, F. Revisiting the Roles of Natural Graphite in Ongoing Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2106704. [Google Scholar] [CrossRef]
- Sun, C.; Ji, X.; Weng, S.; Li, R.; Huang, X.; Zhu, C.; Xiao, X.; Deng, T.; Fan, L.; Chen, L. 50C Fast-Charge Li-Ion Batteries using a Graphite Anode. Adv. Mater. 2022, 34, 2206020. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y.; Shao, R.; Wu, J.; Jiang, R.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022, 46, 482–502. [Google Scholar] [CrossRef]
- Wang, K.; Hua, W.; Huang, X.; Stenzel, D.; Wang, J.; Ding, Z.; Cui, Y.; Wang, Q.; Ehrenberg, H.; Breitung, B. Synergy of cations in high entropy oxide lithium ion battery anode. Nat. Commun. 2023, 14, 1487. [Google Scholar] [CrossRef]
- Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Li, S.; Wang, K.; Zhang, G.; Li, S.; Xu, Y.; Zhang, X.; Zhang, X.; Zheng, S.; Sun, X.; Ma, Y. Fast Charging Anode Materials for Lithium-Ion Batteries: Current Status and Perspectives. Adv. Funct. Mater. 2022, 32, 2200796. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040–3071. [Google Scholar] [CrossRef]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef]
- He, J.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019, 20, 55–70. [Google Scholar] [CrossRef]
- Wu, X.; Ji, G.; Wang, J.; Zhou, G.; Liang, Z. Towards Sustainable All Solid-State Li-metal Batteries: Perspectives on Battery Technology and Recycling Processes. Adv. Mater. 2023, e2301540. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ding, X.; Liu, T.; Nai, J.; Wang, Y.; Liu, Y.; Liu, C.; Tao, X. A review of concepts and contributions in lithium metal anode development. Mater. Today 2022, 53, 173–196. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, Y.; Zhou, J.; Liu, J.; Shen, X.; Ji, H.; Yan, C.; Qian, T. Processing robust lithium metal anode for high-security batteries: A minireview. Energy Storage Mater. 2022, 47, 122–133. [Google Scholar] [CrossRef]
- Li, W.; Luo, P.; Chen, M.; Lin, X.; Du, L.; Song, H.; Lu, Y.; Cui, Z. Hedging Li dendrite formation by virtue of controllable tip effect. J. Mater. Chem. A 2022, 10, 15161–15168. [Google Scholar] [CrossRef]
- Zhan, Y.X.; Shi, P.; Ma, X.X.; Jin, C.B.; Zhang, Q.K.; Yang, S.J.; Li, B.Q.; Zhang, X.Q.; Huang, J.Q. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Adv. Energy Mater. 2022, 12, 2103291. [Google Scholar] [CrossRef]
- Ni, S.; Zhang, M.; Li, C.; Gao, R.; Sheng, J.; Wu, X.; Zhou, G. A 3D Framework with Li3N–Li2S Solid Electrolyte Interphase and Fast Ion Transfer Channels for a Stabilized Lithium-Metal Anode. Adv. Mater. 2023, 35, 2209028. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Z.; Yang, G.; Wu, Z.; Li, Y.; Gu, J.; Gautam, J.; Gong, X.; Chishti, A.N.; Duan, S. Multifunctional ZnCo2O4 Quantum Dots Encapsulated In Carbon Carrier for Anchoring/Catalyzing Polysulfides and Self-Repairing Lithium Metal Anode in Lithium-Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2109462. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Cui, Y.; Liu, S.; Chen, Z.; Huang, W.; Li, C.; Liu, R.; Fu, R.; Wu, D. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 2022, 17, 613–621. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, J.; Huang, X.; Zhai, Z.; Tang, J.; You, J.; Shi, C.; Li, W.; Dai, P.; Zheng, W. Rigid and Flexible SEI Layer Formed over a Cross-Linked Polymer for Enhanced Ultrathin Li Metal Anode Performance. Adv. Energy Mater. 2022, 12, 2103972. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Z.; Wang, Z.; Wang, X.; Chen, W.; Wang, J.; Zhong, W.; Ma, R. Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode. Adv. Sci. 2023, 10, 2206995. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhang, Q.; Xu, W.; Zhao, R.; Zhu, H.; Lv, W.; Li, X.; Yang, N. A gradient topology host for a dendrite-free lithium metal anode. Nano Energy 2022, 94, 106937. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, Y.; Guan, C.; Bai, M.; Qin, F.; Yi, M.; Li, J.; Hong, B.; Lai, Y. Ion/electron redistributed 3D flexible host for achieving highly reversible Li metal batteries. Small 2022, 18, 2107641. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, J.; Hu, X.; Li, Y.; Du, H.; Wang, K.; Du, Z.; Gong, X.; Ai, W.; Huang, W. Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy 2022, 94, 106883. [Google Scholar] [CrossRef]
- Xiao, J. How lithium dendrites form in liquid batteries. Science 2019, 366, 426. [Google Scholar] [CrossRef]
- Liu, D.H.; Bai, Z.; Li, M.; Yu, A.; Luo, D.; Liu, W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives. Chem. Soc. Rev. 2020, 49, 5407–5445. [Google Scholar] [CrossRef]
- Su, L.; Manthiram, A. Lithium-Metal Batteries via Suppressing Li Dendrite Growth and Improving Coulombic Efficiency. Small Struct. 2022, 3, 2200114. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Chen, J.; Cai, C.; Tu, W.; Zhao, J.; Tang, Y.; Zhang, L.; Zhou, G.; Huang, J. In Situ TEM Studies of the Oxidation of Li Dendrites at High Temperatures. Adv. Funct. Mater. 2022, 32, 2203233. [Google Scholar] [CrossRef]
- Wang, T.; Duan, J.; Zhang, B.; Luo, W.; Ji, X.; Xu, H.; Huang, Y.; Huang, L.; Song, Z.; Wen, J. A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ. Sci. 2022, 15, 1325–1333. [Google Scholar] [CrossRef]
- Li, B.; Chao, Y.; Li, M.; Xiao, Y.; Li, R.; Yang, K.; Cui, X.; Xu, G.; Li, L.; Yang, C. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy Rev. 2023, 6, 7. [Google Scholar] [CrossRef]
- Xu, H.; Han, C.; Li, W.; Li, H.; Qiu, X. Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries. J. Power Sources 2022, 529, 231219. [Google Scholar] [CrossRef]
- Wu, B.; Lochala, J.; Taverne, T.; Xiao, J. The interplay between solid electrolyte interface (SEI) and dendritic lithium growth. Nano Energy 2017, 40, 34–41. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Y.-N.; Han, D.; Zhou, J.; Zhou, D.; Tang, W.; Goodenough, J.B. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864–1879. [Google Scholar] [CrossRef]
- Nishikawa, K.; Mori, T.; Nishida, T.; Fukunaka, Y.; Rosso, M. Li dendrite growth and Li+ ionic mass transfer phenomenon. J. Electroanal. Chem. 2011, 661, 84–89. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Roddatis, V.; Chandran, C.V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 2016, 8, 10617–10626. [Google Scholar] [CrossRef]
- Peng, J.; Wu, D.; Song, F.; Wang, S.; Niu, Q.; Xu, J.; Lu, P.; Li, H.; Chen, L.; Wu, F. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode. Adv. Funct. Mater. 2022, 32, 2105776. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, K.; Jie, Y.; Adelhelm, P.; Chen, Y.; Xu, L.; Yu, P.; Kim, J.; Kochovski, Z.; Yu, Z. Promoting Mechanistic Understanding of Lithium Deposition and Solid-Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives. Adv. Energy Mater. 2022, 12, 2200398. [Google Scholar] [CrossRef]
- Jie, Y.; Ren, X.; Cao, R.; Cai, W.; Jiao, S. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv. Funct. Mater. 2020, 30, 1910777. [Google Scholar] [CrossRef]
- Diaz, M.; Kushima, A. Direct Observation and Quantitative Analysis of Lithium Dendrite Growth by In Situ Transmission Electron Microscopy. J. Electrochem. Soc. 2021, 168, 020535. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, J.; Chen, Y.; Ke, X.; Li, J.; Yang, Y.; Shi, Z. Lithium Host: Advanced architecture components for lithium metal anode. Energy Storage Mater. 2021, 38, 276–298. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Li, Y.; Cui, Y. Lithium metal anode materials design: Interphase and host. Electrochem. Energy Rev. 2019, 2, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Pei, A.; Wan, J.; Lin, D.; Vilá, R.; Wang, H.; Mackanic, D.; Steinrück, H.-G.; Huang, W.; Li, Y. Tortuosity effects in lithium-metal host anodes. Joule 2020, 4, 938–952. [Google Scholar] [CrossRef]
- Pathak, R.; Chen, K.; Wu, F.; Mane, A.U.; Bugga, R.V.; Elam, J.W.; Qiao, Q.; Zhou, Y. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Mater. 2021, 41, 448–465. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Yun, J.; Choi, S.H.; Han, S.A.; Moon, J.; Kim, J.H.; Lee, J.W.; Park, M.S. Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode. Adv. Funct. Mater. 2020, 30, 1910538. [Google Scholar] [CrossRef]
- Yan, X.; Lin, L.; Chen, Q.; Xie, Q.; Qu, B.; Wang, L.; Peng, D.L. Multifunctional roles of carbon-based hosts for Li-metal anodes: A review. Carbon Energy 2021, 3, 303–329. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Hitz, E.; Luo, W.; Yao, Y.; Li, Y.; Dai, J.; Chen, C.; Wang, Y.; Yang, C.; et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, X.; Rao, M.; Lin, D.; Yan, K.; Du, R.; Xu, J.; Zhang, Y.; Ye, D.; Yang, S.; et al. High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework. Energy Storage Mater. 2020, 26, 73–82. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, S.; Lu, Y. 3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries. Adv. Funct. Mater. 2017, 27, 1606422. [Google Scholar] [CrossRef]
- Sun, C.; Yang, Y.; Bian, X.; Guan, R.; Wang, C.; Lu, D.; Gao, L.; Zhang, D. Uniform Deposition of Li-Metal Anodes Guided by 3D Current Collectors with In Situ Modification of the Lithiophilic Matrix. ACS Appl. Mater. Interfaces 2021, 13, 48691–48699. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Qiao, X.; Wang, Y.; Lei, L.; Lyu, Z.; Zhao, J.; Zhang, Y.; Liu, R.; Liang, Q.; et al. Integrated Porous Cu Host Induced High-Stable Bidirectional Li Plating/Stripping Behavior for Practical Li Metal Batteries. Small 2022, 18, e2105999. [Google Scholar] [CrossRef]
- Lee, J.; Won, E.S.; Kim, D.M.; Kim, H.; Kwon, B.; Park, K.; Jo, S.; Lee, S.; Lee, J.W.; Lee, K.T. Three-Dimensional Porous Frameworks for Li Metal Batteries: Superconformal versus Conformal Li Growth. ACS Appl. Mater. Interfaces 2021, 13, 33056–33065. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xia, S.; Zhang, X.; Pang, Y.; Xu, F.; Yang, J.; Sun, L.; Zheng, S. Highly Lithiophilic Copper-Reinforced Scaffold Enables Stable Li Metal Anode. ACS Appl. Mater. Interfaces 2021, 13, 20240–20250. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Lu, R.; Amin, K.; Zhang, B.; Zhou, Q.; Li, C.; Mao, L.; Zhang, Z.; Lu, X.; Wei, Z. In Situ Generated Mixed Ion/Electron-Conducting Scaffold with Uniform Li Deposition for Flexible Li Metal Anodes. ACS Appl. Energy Mater. 2021, 4, 6106–6115. [Google Scholar] [CrossRef]
- Cao, J.; Xie, Y.; Li, W.; Wang, X.; Yang, Y.; Zhang, Q.; Guo, J.; Yang, C.; Cheng, S.; Zhang, C.; et al. Rationally optimized carbon fiber cloth as lithiophilic host for highly stable Li metal anodes. Mater. Today Energy 2021, 20, 100663. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Ma, Y.; Chi, Z.; Yin, H.; Liu, J.; Huang, J.; Guo, Z.; Wang, L. MnO2 nanosheet modified N, P co-doping carbon nanofibers on carbon cloth as lithiophilic host to construct high-performance anodes for Li metal batteries. J. Energy Chem. 2022, 69, 270–281. [Google Scholar] [CrossRef]
- Chen, Y.; Ke, X.; Cheng, Y.; Fan, M.; Wu, W.; Huang, X.; Liang, Y.; Zhong, Y.; Ao, Z.; Lai, Y.; et al. Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering. Energy Storage Mater. 2020, 26, 56–64. [Google Scholar] [CrossRef]
- Wang, T.S.; Liu, X.; Wang, Y.; Fan, L.Z. High Areal Capacity Dendrite-Free Li Anode Enabled by Metal–Organic Framework-Derived Nanorod Array Modified Carbon Cloth for Solid State Li Metal Batteries. Adv. Funct. Mater. 2020, 31, 2001973. [Google Scholar] [CrossRef]
- Zhou, T.; Shen, J.; Wang, Z.; Liu, J.; Hu, R.; Ouyang, L.; Feng, Y.; Liu, H.; Yu, Y.; Zhu, M. Regulating Lithium Nucleation and Deposition via MOF-Derived Co@C-Modified Carbon Cloth for Stable Li Metal Anode. Adv. Funct. Mater. 2020, 30, 1909159. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, X.; Luo, L.; Pang, Y.; Yang, J.; Huang, Y.; Zheng, S. Highly Stable and Ultrahigh-Rate Li Metal Anode Enabled by Fluorinated Carbon Fibers. Small 2021, 17, e2006002. [Google Scholar] [CrossRef]
- Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010. [Google Scholar] [CrossRef]
- Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139. [Google Scholar] [CrossRef]
- Adair, K.R.; Iqbal, M.; Wang, C.; Zhao, Y.; Banis, M.N.; Li, R.; Zhang, L.; Yang, R.; Lu, S.; Sun, X. Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes. Nano Energy 2018, 54, 375–382. [Google Scholar] [CrossRef]
- Qian, J.; Wang, S.; Li, Y.; Zhang, M.; Wang, F.; Zhao, Y.; Sun, Q.; Li, L.; Wu, F.; Chen, R. Lithium Induced Nano-Sized Copper with Exposed Lithiophilic Surfaces to Achieve Dense Lithium Deposition for Lithium Metal Anode. Adv. Funct. Mater. 2020, 31, 2006950. [Google Scholar] [CrossRef]
- Chen, L.; Chen, G.; Wen, Z.; Wu, D.; Qin, Z.; Zhang, N.; Liu, X.; Ma, R. Electroplating CuO nanoneedle arrays on Ni foam as superior 3D scaffold for dendrite-free and stable Li metal anode. Appl. Surf. Sci. 2022, 599, 153955. [Google Scholar] [CrossRef]
- Li, Z.; He, Q.; Zhou, C.; Li, Y.; Liu, Z.; Hong, X.; Xu, X.; Zhao, Y.; Mai, L. Rationally design lithiophilic surfaces toward high−energy Lithium metal battery. Energy Storage Mater. 2021, 37, 40–46. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, C.; Jiao, X.; Zhou, Z.; Song, J. Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework. Energy Storage Mater. 2020, 25, 172–179. [Google Scholar] [CrossRef]
Host | Current Density (mA·cm−2) | Capacity (mAh·cm−2) | Cycling Life | Ref. |
---|---|---|---|---|
copper meshes | 2 | 1 | 120 h | [52] |
3D CSCC | 1 | 1 | 3000 h | [53] |
bidirectional porous Cu film | 1 | 1 | 4000 h | [54] |
gradient-sized pores | 0.5 | 2 | 760 cycles | [55] |
Cu-CNF matrix | 5 | 1 | 500 h | [56] |
Mn@NPC-CC | 1 3 | 1 1 | 2200 h 500 h | [59] |
3D NRA-CC | 12 | 12 | 200 h | [61] |
FCF | 20 | 1 | 100 cycles | [63] |
Cu nanowires decorated Cu foam | 10 | 1 | 200 h | [66] |
CuO modified Ni foam | 1 | 1 | 1100 h | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Liu, H.; Li, M.; Zhou, S.; Mo, F.; Yu, S.; Wei, J. Boosting the Performance of Lithium Metal Anodes with Three-Dimensional Lithium Hosts: Recent Progress and Future Perspectives. Batteries 2023, 9, 391. https://doi.org/10.3390/batteries9080391
Chen L, Liu H, Li M, Zhou S, Mo F, Yu S, Wei J. Boosting the Performance of Lithium Metal Anodes with Three-Dimensional Lithium Hosts: Recent Progress and Future Perspectives. Batteries. 2023; 9(8):391. https://doi.org/10.3390/batteries9080391
Chicago/Turabian StyleChen, Lina, Haipeng Liu, Mengrui Li, Shiqiang Zhou, Funian Mo, Suzhu Yu, and Jun Wei. 2023. "Boosting the Performance of Lithium Metal Anodes with Three-Dimensional Lithium Hosts: Recent Progress and Future Perspectives" Batteries 9, no. 8: 391. https://doi.org/10.3390/batteries9080391
APA StyleChen, L., Liu, H., Li, M., Zhou, S., Mo, F., Yu, S., & Wei, J. (2023). Boosting the Performance of Lithium Metal Anodes with Three-Dimensional Lithium Hosts: Recent Progress and Future Perspectives. Batteries, 9(8), 391. https://doi.org/10.3390/batteries9080391