Readily Accessible M-Ferrocenyl-Phenyl Sulfonate as Novel Cathodic Electrolyte for Aqueous Organic Redox Flow Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Synthesis of Sodium M-Benzenesulfonate Ferrocene (BASFc)
2.3. Physical Characterization
2.4. Electrochemical Characterization
2.5. Flow Battery Tests
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Goodenough, J.B.; Park, K.S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Savinell, R.F. Flow Batteries. Electrochem. Soc. Interface 2010, 19, 54–56. [Google Scholar]
- Skyllas-Kazacos, M.; Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M. Progress in Flow Battery Research and Development. J. Electrochem. Soc. 2011, 158, R55. [Google Scholar] [CrossRef]
- Weber, A.Z.; Mench, M.M.; Meyers, J.P.; Ross, P.N.; Gostick, J.T.; Liu, Q.H. Redox flow batteries: A review. J. Appl. Electrochem. 2011, 41, 1137–1164. [Google Scholar] [CrossRef]
- Soloveichik, G.L. Flow Batteries: Current Status and Trends. Chem. Rev. 2015, 115, 11533–11558. [Google Scholar] [CrossRef]
- Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M.D.; Schubert, U.S. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. Angew. Chem. Int. Ed. 2017, 56, 686–711. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Mai, Z.; Zhang, H.; Vankelecom, I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 2011, 4, 1147–1160. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, J.; Wei, L.; Wu, M.; Shyy, W.; Zhao, T. A High Power Density and Long Cycle Life Vanadium Redox Flow Battery. Energy Storage Mater. 2020, 24, 529–540. [Google Scholar] [CrossRef]
- Hu, B.; Debruler, C.; Rhodes, Z.; Liu, T. A Long Cycling Aqueous Organic Redox Flow Battery (AORFB) towards Sustainable and Safe Energy Storage. J. Am. Chem. Soc. 2017, 139, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, Y.; Liu, Y.; Sun, P.; Yang, Z.; Xu, T. Designer Ferrocene Catholyte for Aqueous Organic Flow Batteries. ChemSusChem 2021, 14, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, Y.; Zhang, H.; Xie, C.; Shi, L.; Zhou, Y.; Li, X. A highly stable neutral viologen/bromine aqueous flow battery with high energy and power density. Chem. Commun. 2019, 55, 4801–4804. [Google Scholar] [CrossRef]
- Jin, S.; Fell, E.M.; Vina-Lopez, L.; Jing, Y.; Michalak, P.W.; Gordon, R.G.; Aziz, M.J. Near Neutral pH Redox Flow Battery with Low Permeability and Long-Lifetime Phosphonated Viologen Active Species. Adv. Energy Mater. 2020, 10, 2000100. [Google Scholar] [CrossRef]
- DeBruler, C.; Hu, B.; Moss, J.; Liu, X.; Luo, J.; Sun, J. Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries. Chem 2017, 3, 961–978. [Google Scholar] [CrossRef]
- Huskinson, B.; Marshak, M.P.; Suh, C.; Er, S.; Gerhardt, M.R.; Galvin, C.J.; Cheng, X.; Aspuru-Guzik, A.; Gordon, R.G.; Aziz, M.J. A metal-free organic–inorganic aqueous flow battery. Nature 2014, 505, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Gomez-Bombarelli, R.; Beh, E.S.; Tong, L.; Chen, Q.; Valle, A.; Aspuru-Guzik, A.; Azjz, M.J.; Gordon, R.G. A redox-flow battery with an alloxazine-based organic electrolyte. Nat. Energy 2016, 1, 16102. [Google Scholar] [CrossRef]
- Orita, A.; Verde, M.G.; Sakai, M.; Meng, Y. A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016, 7, 13230. [Google Scholar] [CrossRef]
- Hollas, A.; Wei, X.; Murugesan, V.; Nie, Z.; Li, B.; Reed, D.; Liu, J.; Sprenkle, V.; Wang, W. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 2018, 3, 508–514. [Google Scholar] [CrossRef]
- Li, H.; Fan, H.; Hu, B.; Hu, L.; Chang, G.; Song, J. Spatial Structure Regulation: A Rod-Shaped Viologen Enables Long Lifetime in Aqueous Redox Flow Batteries. Angew. Chem. Int. Ed. 2021, 60, 26971–26977. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, B.; Schrage, B.R.; Ziegler, C.J.; Boika, A. Investigations into Aqueous Redox Flow Batteries Based on Ferrocene Bisulfonate. ACS Appl. Energy Mater. 2020, 3, 10270–10277. [Google Scholar] [CrossRef]
- Zhang., C.; Niu, Z.; Peng, S.; Ding, Y.; Zhang, L.; Guo, X.; Zhao, Y. Phenothiazinebased organic catholyte for high-capacity and long-life aqueous redox flow batteries. Adv. Mater. 2019, 31, 1901052. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Beh, E.S.; Fell, E.M.; Jing, Y.; Kerr, E.F.; Porcellinis, D.D.; Goulet, M.; Ryu, J.; Wong, A.A.; Gordon, R.G.; et al. A high voltage aqueous zinc–organic hybrid flow battery. Adv. Energy Mater 2019, 9, 1900694. [Google Scholar] [CrossRef]
- Nambafu, G.S.; Siddharth, K.; Zhang, C.; Zhao, T.; Chen, Q.; Amine, K.; Shao, M. An organic bifunctional redox active material for symmetric aqueous redox. Nano Energy 2021, 89, 106422. [Google Scholar] [CrossRef]
- Miller, S.A.; Tebboth, J.A.; Tremaine, J.F. Dicyclopentadienyliron. J. Chen. Soc. 1952, 632–635. [Google Scholar] [CrossRef]
- Kealu, T.J.; Pauson, P.L. A new type of organo-iron compound. Nature 1951, 168, 1039. [Google Scholar] [CrossRef]
- Beh, E.S.; Porcellinis, D.D.; Gracia, R.L.; Xia, K.T.; Gordon, R.G.; Aziz, M.J. A Neutral pH Aqueous Organic/Organometallic Redox Flow Battery with Extremely High Capacity Retention. ACS Energy Lett. 2017, 2, 639–644. [Google Scholar] [CrossRef]
- Yang, H.; Chen, X.; Jiang, W.; Lu, Y. Convenient synthesis of new water-soluble monosubstituted functional ferrocene derivatives. Inorg. Chem. Commun. 2005, 8, 853–857. [Google Scholar] [CrossRef]
- Yu, J.; Salla, M.; Zhang, H.; Ji, Y.; Zhang, F.; Zhou, M.; Wang, Q. A robust anionic sulfonated ferrocene derivative for pH-neutral aqueous flow battery. Energy Storage Mater. 2020, 29, 216–222. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, H.; Tian, Z.; Zhang, J.; Zhan, F.; Yan, M.; Jia, C. Simple-Synthesized Sulfonated Ferrocene Ammonium for Aqueous Redox Flow Batteries. ACS Appl. Energy Mater. 2021, 4, 8052–8058. [Google Scholar] [CrossRef]
- Liu, A.; Leese, D.N.; Swarts, J.C.; Sykes, A.G. Reduction of Escherichia coli ribonucleotide reductase subunit R2 with eight water-soluble ferrocene derivatives. Inorg. Chim. Acta 2002, 337, 83–90. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, E.; Flores-Leonar, M.M.; Amador-Bedolla, C.; Ugalde-Saldivar, V.M. Concentration Effects on the First Reduction Process of Methyl Viologens and Diquat Redox Flow Battery Electrolytes. ACS Appl. Energy Mater. 2021, 4, 6624–6634. [Google Scholar] [CrossRef]
- Luo, J.; Hu, M.; Yuan, B.; Liu, T.L. Mechanistic insights of cycling stability of ferrocene catholytes in aqueous redox flow batteries. Energy Environ. Sci. 2022, 15, 1315–1324. [Google Scholar] [CrossRef]
- Zhang, B.; Schrage, B.R.; Frkonja-Kuczin, A.; Gaire, S.; Popov, I.A.; Ziegler, C.J.; Boika, A. Zwitterionic Ferrocenes: An Approach for Redox Flow Battery (RFB) Catholytes. Inorg. Chem. 2022, 61, 8117–8120. [Google Scholar] [CrossRef]
- Chanawanno, K.; Holstrom, C.; Crandall, L.A.; Dodge, H.; Nemykin, V.N.; Herrickd, R.S.; Ziegler, C.J. The Synthesis and Structures of 1,1′-Bis(sufonyl)ferrocene Derivatives. Dalton Trans. 2016, 45, 14320–14326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, X.; Luan, C.; Tang, B.; Zhang, Z.; Pu, N.; Zhang, K.; Liu, J.; Yan, C. Zwitterionic interface engineering enables ultrathin composite membrane for high-rate vanadium flow battery. Energy Storage Mater. 2022, 49, 471–480. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Ding, W.; Sanderson, C.T.; Borden, M.L.; Morgan, M.J.; Kutal, C. Electronic Structure, Spectroscopy, and Photochemistry of Group 8 Metallocenes. Coord. Chem. Rev. 2007, 251, 515–524. [Google Scholar] [CrossRef]
- Uosaki, K.; Sato, Y.; Kita, H. Electrochemical Characteristics of a Gold Electrode Modified with a Self -Assembled Monolayer of Ferrocenylalkanethiols. Langmuir 1991, 7, 1510–1514. [Google Scholar] [CrossRef]
- Schrage, B.R.; Zhang, B.; Petrochko, S.C.; Zhao, Z.; Frkonja-Kuczin, A.; Boika, A.; Ziegler, C.J. Highly Soluble Imidazolium Ferrocene Bis(sulfonate) Salts for Redox Flow Battery Applications. Inorg. Chem. 2021, 60, 10764–10771. [Google Scholar] [CrossRef]
- Luo, J.; Bo, H.; Wu, W.; Hu, M.; Liu, T. An Energy Dense, Powerful, Robust Bipolar Zinc-Ferrocene Redox Flow Battery. Angew. Chem. Int. Ed. 2022, 61, e202204030. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Liu, Y.; Jin, S.; Fell, E.M.; Wang, B.; Gordon, R.G.; Aziz, M.J.; Yang, Z.; Xu, T. Functioning water-insoluble ferrocenes for aqueous organic flow battery via host-guest inclusion. ChemSusChem 2021, 14, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, Z.; Ren, J.; Li, Y.; Liu, B.; Fan, X.; Zhao, T. An Electrolyte with Elevated Average Valence for Suppressing the Capacity Decay of Vanadium Redox Flow Batteries. ACS Cent. Sci. 2023, 9, 56–63. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, D.; Zheng, J.; Li, X.; Wang, D.; Yang, Y.; Liu, Z.; Song, Z.; Jing, M. Readily Accessible M-Ferrocenyl-Phenyl Sulfonate as Novel Cathodic Electrolyte for Aqueous Organic Redox Flow Batteries. Batteries 2023, 9, 285. https://doi.org/10.3390/batteries9050285
Fang D, Zheng J, Li X, Wang D, Yang Y, Liu Z, Song Z, Jing M. Readily Accessible M-Ferrocenyl-Phenyl Sulfonate as Novel Cathodic Electrolyte for Aqueous Organic Redox Flow Batteries. Batteries. 2023; 9(5):285. https://doi.org/10.3390/batteries9050285
Chicago/Turabian StyleFang, Dawei, Junzhi Zheng, Xi Li, Diandian Wang, Yuxuan Yang, Zhuling Liu, Zongren Song, and Minghua Jing. 2023. "Readily Accessible M-Ferrocenyl-Phenyl Sulfonate as Novel Cathodic Electrolyte for Aqueous Organic Redox Flow Batteries" Batteries 9, no. 5: 285. https://doi.org/10.3390/batteries9050285
APA StyleFang, D., Zheng, J., Li, X., Wang, D., Yang, Y., Liu, Z., Song, Z., & Jing, M. (2023). Readily Accessible M-Ferrocenyl-Phenyl Sulfonate as Novel Cathodic Electrolyte for Aqueous Organic Redox Flow Batteries. Batteries, 9(5), 285. https://doi.org/10.3390/batteries9050285