Mediating Lithium Plating/Stripping by Constructing 3D Au@Cu Pentagonal Pyramid Array
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Au@Cu Pentagonal Pyramid Array/Cu Foil
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, N.; Qi, F.; Lu, X.; Liang, Y.; Sun, Z. Novel Ni–Ge–P anodes for lithium-ion batteries with enhanced reversibility and reduced redox potential. Inorg. Chem. Front. 2022, 10, 699–711. [Google Scholar] [CrossRef]
- Liu, J.; Bao, Z.; Cui, Y.; Dufek, E.J.; Goodenough, J.B.; Khalifah, P.; Li, Q.; Liaw, B.Y.; Liu, P.; Manthiram, A.; et al. Pathways for practical high–energy long–cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Lu, X.; Qi, F.; Liang, Y.; Trukhanov, A.; Wu, Y.; Sun, Z.; Lu, X. Fully Active Bimetallic Phosphide Zn0.5Ge0.5P: A Novel High-Performance Anode for Na-Ion Batteries Coupled with Diglyme-Based Electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 31803–31813. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-M.; Li, H.-N.; Zhao, G.-F.; Xu, L.-F.; Liu, D.-L.; Sun, Y.-J.; Guo, H. Ni3FeN anchored on porous carbon as electrocatalyst for advanced Li–S batteries. Rare Met. 2022, 42, 515–524. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Q.; Sun, S.; Yang, K.; Cai, Q.; Olsson, E.; Chen, X.; Wang, Z.; Abdelkader, A.M.; Li, Y.; et al. Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth. eScience 2022, 2, 655–665. [Google Scholar] [CrossRef]
- Cao, W.; Li, Q.; Yu, X.; Li, H. Controlling Li deposition below the interface. eScience 2022, 2, 47–78. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Das, P.; Wu, Z.-S. Recent Advances in Interface Engineering and Architecture Design of Air-Stable and Water-Resistant Lithium Metal Anodes. Energy Fuels 2021, 35, 12902–12920. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Liu, X.; Yang, Y.; Chi, C.; Wang, S.; Xue, J.; Hao, T.; Zhao, J.; Li, Y. Constructing nanoporous Ni foam current collectors for stable lithium metal anodes. J. Energy Chem. 2021, 58, 124–132. [Google Scholar] [CrossRef]
- Luo, Y.; He, G. Clusters of CuO nanorods arrays for stable lithium metal anode. J. Mater. Sci. 2020, 55, 9048–9056. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, H.; Yu, J.; Liu, Z.; Zhang, S.; Shao, H.; Cao, Y.; Huang, X.; Li, S. A Novel Dendrite-Free Lithium Metal Anode via Oxygen and Boron Codoped Honeycomb Carbon Skeleton. Small 2022, 18, e2104876. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Yang, D.-Y.; Huang, G.; Zhang, X.-B. Lithium–Air Batteries: Air-Electrochemistry and Anode Stabilization. Accounts Chem. Res. 2021, 54, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.-P.; Zhang, X.-Q.; Li, B.-Q.; Zhang, Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Mater. Today 2021, 45, 62–76. [Google Scholar] [CrossRef]
- Li, J.; Song, J.; Luo, L.; Zhang, H.; Feng, J.; Zhao, X.; Guo, X.; Dong, H.; Chen, S.; Liu, H.; et al. Synergy of MXene with Se Infiltrated Porous N-Doped Carbon Nanofibers as Janus Electrodes for High-Performance Sodium/Lithium–Selenium Batteries. Adv. Energy Mater. 2022, 12, 202200894. [Google Scholar] [CrossRef]
- Wu, Q.; Qin, M.; Yan, H.; Zhong, W.; Zhang, W.; Liu, M.; Cheng, S.; Xie, J. Facile Replacement Reaction Enables Nano-Ag-Decorated Three-Dimensional Cu Foam as High-Rate Lithium Metal Anode. ACS Appl. Mater. Interfaces 2022, 14, 42030–42037. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.; Tu, F.; Ma, Y.; Zhang, H.; Song, D.; Shi, X.; Zhang, L. In situ constructing lithiophilic and Ion/Electron Dual-Regulated current collector for highly stable lithium metal batteries. Chem. Eng. J. 2022, 428, 132510. [Google Scholar] [CrossRef]
- Liang, Y.; Ke, X.; Liu, J.; Shi, Z. Preparation and supercapacitive performance of MnO2@ nanoporous gold/Ni foam electrode materials. Energy Storage Sci. Technol. 2017, 6 (Suppl. S1), 1. Available online: https://esst.cip.com.cn/EN/10.12028/j.issn.2095-4239.2017.0138 (accessed on 1 October 2017).
- Ke, X.; Zhang, Z.; Cheng, Y.; Liang, Y.; Tan, Z.; Liu, J.; Liu, L.; Shi, Z.; Guo, Z. Ni(OH)2 nanoflakes supported on 3D hierarchically nanoporous gold/Ni foam as superior electrodes for supercapacitors. Sci. China Mater. 2017, 61, 353–362. [Google Scholar] [CrossRef]
- Dai, H.; Gu, X.; Dong, J.; Wang, C.; Lai, C.; Sun, S. Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nat. Commun. 2020, 11, 643. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Li, H.; Chen, J.; Lei, D.; Wang, C. A dual–function liquid electrolyte additive for high–energy non–aqueous lithium metal batteries. Nat. Commun. 2022, 13, 1297. [Google Scholar] [CrossRef]
- Chen, C.; Liang, Q.; Wang, G.; Liu, D.; Xiong, X. Grain-Boundary-Rich Artificial SEI Layer for High-Rate Lithium Metal Anodes. Adv. Funct. Mater. 2021, 32, 2107249. [Google Scholar] [CrossRef]
- Fan, L.; Guo, Z.; Zhang, Y.; Wu, X.; Zhao, C.; Sun, X.; Yang, G.; Feng, Y.; Zhang, N. Stable artificial solid electrolyte interphase films for lithium metal anode via metal–organic frameworks cemented by polyvinyl alcohol. J. Mater. Chem. A 2020, 8, 251–258. [Google Scholar] [CrossRef]
- Hao, Z.; Wu, Y.; Zhao, Q.; Tang, J.; Zhang, Q.; Ke, X.; Liu, J.; Jin, Y.; Wang, H. Functional Separators Regulating Ion Transport Enabled by Metal-Organic Frameworks for Dendrite-Free Lithium Metal Anodes. Adv. Funct. Mater. 2021, 31, 2102938. [Google Scholar] [CrossRef]
- Li, X.; Yuan, L.; Liu, D.; Liao, M.; Chen, J.; Yuan, K.; Xiang, J.; Li, Z.; Huang, Y. Elevated Lithium Ion Regulation by a “Natural Silk” Modified Separator for High-Performance Lithium Metal Anode. Adv. Funct. Mater. 2021, 31, 2100537. [Google Scholar] [CrossRef]
- An, Y.; Fei, H.; Zeng, G.; Xu, X.; Ci, L.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries. Nano Energy 2018, 47, 503–511. [Google Scholar] [CrossRef]
- Yun, Q.; He, Y.-B.; Lv, W.; Zhao, Y.; Li, B.; Kang, F.; Yang, Q.-H. Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes. Adv. Mater. 2016, 28, 6932–6939. [Google Scholar] [CrossRef]
- Ke, X.; Cheng, Y.; Liu, J.; Liu, L.; Wang, N.; Liu, J.; Zhi, C.; Shi, Z.; Guo, Z. Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Appl. Mater. Interfaces 2018, 10, 13552–13561. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, S.; Su, L.; Ma, Z.; Shao, G. Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode. Chem. Eng. J. 2020, 392, 123691. [Google Scholar] [CrossRef]
- Qiu, H.; Tang, T.; Asif, M.; Huang, X.; Hou, Y. 3D Porous Cu Current Collectors Derived by Hydrogen Bubble Dynamic Template for Enhanced Li Metal Anode Performance. Adv. Funct. Mater. 2019, 29, 1808468. [Google Scholar] [CrossRef]
- Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058. [Google Scholar] [CrossRef]
- Zhao, H.; Lei, D.; He, Y.-B.; Yuan, Y.; Yun, Q.; Ni, B.; Lv, W.; Li, B.; Yang, Q.-H.; Kang, F.; et al. Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendrite-Free Lithium Metal Anode Current Collector. Adv. Energy Mater. 2018, 8, 1800266. [Google Scholar] [CrossRef]
- Gao, T.; Xu, D.; Yu, Z.; Huang, Z.-H.; Cheng, J.; Yang, Y. A 3D lithium metal anode reinforced by scalable in-situ copper oxide nanostick copper mesh. J. Alloys Compd. 2021, 865, 158908. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, S.; Lu, Y. 3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries. Adv. Funct. Mater. 2017, 27, 1606422. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, C.; Tian, Y.; Zhang, Y.; Jiang, Y.; Hu, J.; Hou, H.; Zou, G.; Ji, X. Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation. Energy Storage Mater. 2020, 27, 124–132. [Google Scholar] [CrossRef]
- Cho, K.-Y.; Hong, S.-H.; Kwon, J.; Song, H.; Kim, S.; Jo, S.; Eom, K. Effects of a nanometrically formed lithiophilic silver@copper current collector on the electrochemical nucleation and growth behaviors of lithium metal anodes. Appl. Surf. Sci. 2021, 554, 149578. [Google Scholar] [CrossRef]
- Guan, R.; Liu, S.; Wang, C.; Yang, Y.; Lu, D.; Bian, X. Lithiophilic Sn sites on 3D Cu current collector induced uniform lithium plating/stripping. Chem. Eng. J. 2021, 425, 130177. [Google Scholar] [CrossRef]
- Hu, W.; Rao, Y.; Chen, P.; Ju, S.; Ling, H.; Wu, Y.; Momma, T.; Li, M. Nano-Cone Structured Lithiophilic Ni Film on Cu Current Collector Facilitates Li + Ion Diffusion Toward Uniform Lithium Deposition. Adv. Mater. Interfaces 2022, 9, 2200129. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Lei, D.; Lv, W.; Zhao, Q.; Ni, B.; Liu, Y.; Li, B.; Kang, F.; He, Y.-B. Spherical Li Deposited inside 3D Cu Skeleton as Anode with Ultrastable Performance. ACS Appl. Mater. Interfaces 2018, 10, 20244–20249. [Google Scholar] [CrossRef]
- Wang, J.-R.; Wang, M.-M.; He, X.-D.; Wang, S.; Dong, J.-M.; Chen, F.; Yasmin, A.; Chen, C.-H. A Lithiophilic 3D Conductive Skeleton for High Performance Li Metal Battery. ACS Appl. Energy Mater. 2020, 3, 7265–7271. [Google Scholar] [CrossRef]
- Yang, S.; Xiao, R.; Zhang, T.; Li, Y.; Zhong, B.; Wu, Z.; Guo, X. Cu nanowires modified with carbon-rich conjugated framework PTEB for stabilizing lithium metal anodes. Chem. Commun. 2021, 57, 13606–13609. [Google Scholar] [CrossRef]
- Cao, J.; Deng, L.; Wang, X.; Li, W.; Xie, Y.; Zhang, J.; Cheng, S. Stable Lithium Metal Anode Achieved by In Situ Grown CuO Nanowire Arrays on Cu Foam. Energy Fuels 2020, 34, 7684–7691. [Google Scholar] [CrossRef]
- Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H.-B.; Zhou, F.; Yu, S.-H. Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Lett. 2016, 16, 4431–4437. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Peng, X.; Song, L.; Qiu, Y.; Li, C.; Zhuo, L.; He, J.; Ren, J.; Liu, X.; Luo, J. AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO2 to Ethanol. Small 2019, 15, e1902229. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhang, Z.; Wang, Y.; Zhang, X.L.; Tie, Z.; Jin, Z. Template-Sacrificed Hot Fusion Construction and Nanoseed Modification of 3D Porous Copper Nanoscaffold Host for Stable-Cycling Lithium Metal Anodes. Adv. Funct. Mater. 2021, 31, 2102735. [Google Scholar] [CrossRef]
- Qian, Y.; Wei, C.; Tian, Y.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode. Chem. Eng. J. 2021, 421, 129685. [Google Scholar] [CrossRef]
- Diao, W.; Xie, D.; Li, Y.; Jiang, R.; Tao, F.; Sun, H.; Wu, X.; Zhang, X.; Zhang, J. Sustainable and Robust Graphene Cellulose Paper Decorated with Lithiophilic Au Nanoparticles to Enable Dendrite-free and High-Power Lithium Metal Anode. Chem. A Eur. J. 2021, 27, 8168–8177. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Liang, Y.; Ou, L.; Liu, H.; Chen, Y.; Wu, W.; Cheng, Y.; Guo, Z.; Lai, Y.; Liu, P.; et al. Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Mater. 2019, 23, 547–555. [Google Scholar] [CrossRef]
- Chen, Y.; Ke, X.; Cheng, Y.; Fan, M.; Wu, W.; Huang, X.; Liang, Y.; Zhong, Y.; Ao, Z.; Lai, Y.; et al. Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering. Energy Storage Mater. 2020, 26, 56–64. [Google Scholar] [CrossRef]
- Cai, Y.; Qin, B.; Li, C.; Si, X.; Cao, J.; Zheng, X.; Qi, J. Stable lithium metal anode achieved by shortening diffusion path on solid electrolyte interface derived from Cu2O lithiophilic layer. Chem. Eng. J. 2022, 433, 133689. [Google Scholar] [CrossRef]
- Lan, X.; Ye, W.; Zheng, H.; Cheng, Y.; Zhang, Q.; Peng, D.-L.; Wang, M.-S. Encapsulating lithium and sodium inside amorphous carbon nanotubes through gold-seeded growth. Nano Energy 2019, 66, 104178. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, Y.; Ke, X.; Zhang, Z.; Wu, W.; Lin, G.; Zhou, Z.; Shi, Z. Coupling of triporosity and strong Au–Li interaction to enable dendrite-free lithium plating/stripping for long-life lithium metal anodes. J. Mater. Chem. A 2020, 8, 18094–18105. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, G.; Li, X.; Li, Y.; Wang, Z.; Chen, L. Electrolyte and current collector designs for stable lithium metal anodes. Int. J. Miner. Metall. Mater. 2022, 29, 953–964. [Google Scholar] [CrossRef]
- Hu, W.; Yao, Y.; Huang, X.; Ju, S.; Chen, Z.; Li, M.; Wu, Y. CuO Nanofilm–Covered Cu Microcone Coating for a Long Cycle Li Metal Anode by In Situ Formed Li2O. ACS Appl. Energy Mater. 2022, 5, 3773–3782. [Google Scholar] [CrossRef]
- Zhao, B.; Li, B.; Wang, Z.; Xu, C.; Liu, X.; Yi, J.; Jiang, Y.; Li, W.; Li, Y.; Zhang, J. Uniform Li Deposition Sites Provided by Atomic Layer Deposition for the Dendrite–free Lithium Metal Anode. ACS Appl. Mater. Interfaces 2020, 12, 19530–19538. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Huang, X.; Zhuang, D.; Sheng, L.; Xie, X.; Cao, M.; Pan, J.; Fan, H.; He, J. Constructing porous nanosphere structure current collector by nitriding for lithium metal batteries. J. Energy Storage 2022, 47, 103665. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Ding, W.; Yao, B.; Zheng, F.; Smirnova, A.; Gu, Z. Mediating Lithium Plating/Stripping by Constructing 3D Au@Cu Pentagonal Pyramid Array. Batteries 2023, 9, 279. https://doi.org/10.3390/batteries9050279
Liang Y, Ding W, Yao B, Zheng F, Smirnova A, Gu Z. Mediating Lithium Plating/Stripping by Constructing 3D Au@Cu Pentagonal Pyramid Array. Batteries. 2023; 9(5):279. https://doi.org/10.3390/batteries9050279
Chicago/Turabian StyleLiang, Yaohua, Wei Ding, Bin Yao, Fan Zheng, Alevtina Smirnova, and Zhengrong Gu. 2023. "Mediating Lithium Plating/Stripping by Constructing 3D Au@Cu Pentagonal Pyramid Array" Batteries 9, no. 5: 279. https://doi.org/10.3390/batteries9050279
APA StyleLiang, Y., Ding, W., Yao, B., Zheng, F., Smirnova, A., & Gu, Z. (2023). Mediating Lithium Plating/Stripping by Constructing 3D Au@Cu Pentagonal Pyramid Array. Batteries, 9(5), 279. https://doi.org/10.3390/batteries9050279