Material Flow Analysis of Lithium-Ion Battery Recycling in Europe: Environmental and Economic Implications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Flow Analysis
2.2. Environmental Analysis
2.3. Economic Analysis
3. Results
3.1. Material Flow Analysis
3.2. Environmental Analysis
3.3. Economic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kordkheili, R.A.; Mohammadi, M. Smart Scheduling and Economic Analysis of Electric Vehicles for Peak Load Shaving Considering Renewable Energy Resources. In Proceedings of the 2015 Smart Grid Conference (SGC), Tehran, Iran, 22–23 December 2015; pp. 115–121. [Google Scholar] [CrossRef]
- European Commission Study on the EU’s List of Critical Raw Materials: Executive Summary; Publications Office: Bruxelles, Brussels, 2020.
- European Council Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on Batteries and Accumulators and Waste Batteries and Accumulators and Repealing Directive 91/157/EEC. Off. J. Eur. Union 2006, L 266, 1–14.
- European Commission Identifying Barriers to Innovation. Available online: https://research-and-innovation.ec.europa.eu/law-and-regulations/ensuring-eu-legislation-supports-innovation/identifying-barriers_en (accessed on 8 March 2023).
- Kurdve, M.; Zackrisson, M.; Johansson, M.I.; Ebin, B.; Harlin, U. Considerations When Modelling Ev Battery Circularity Systems. Batteries 2019, 5, 40. [Google Scholar] [CrossRef]
- Olsson, L.; Fallahi, S.; Schnurr, M.; Diener, D.; van Loon, P. Circular Business Models for Extended Ev Battery Life. Batteries 2018, 4, 57. [Google Scholar] [CrossRef]
- Albertsen, L.; Richter, J.L.; Peck, P.; Dalhammar, C.; Plepys, A. Circular Business Models for Electric Vehicle Lithium-Ion Batteries: An Analysis of Current Practices of Vehicle Manufacturers and Policies in the EU. Resour. Conserv. Recycl. 2021, 172, 105658. [Google Scholar] [CrossRef]
- Mossali, E.; Picone, N.; Gentilini, L.; Rodrìguez, O.; Pérez, J.M.; Colledani, M. Lithium-Ion Batteries towards Circular Economy: A Literature Review of Opportunities and Issues of Recycling Treatments. J. Environ. Manag. 2020, 264, 110500. [Google Scholar] [CrossRef] [PubMed]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling Lithium-Ion Batteries from Electric Vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Zhang, J. Pyrometallurgy-Based Applications in Spent Lithium-Ion Battery Recycling. In Nano Technology for Battery Recycling, Remanufacturing, and Reusing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 171–182. [Google Scholar]
- Leal, V.M.; Ribeiro, J.S.; Coelho, E.L.D.; Freitas, M.B.J.G. Review: Recycling of Spent Lithium-Ion Batteries as a Sustainable Solution to Obtain Raw Materials for Different Applications. J. Energy Chem. 2022, 79, 118–134. [Google Scholar] [CrossRef]
- Jin, S.; Mu, D.; Lu, Z.; Li, R.; Liu, Z.; Wang, Y.; Tian, S.; Dai, C. A Comprehensive Review on the Recycling of Spent Lithium-Ion Batteries: Urgent Status and Technology Advances. J. Clean. Prod. 2022, 340, 130535. [Google Scholar] [CrossRef]
- Sun, L.; Qiu, K. Organic Oxalate as Leachant and Precipitant for the Recovery of Valuable Metals from Spent Lithium-Ion Batteries. Waste Manag. 2012, 32, 1575–1582. [Google Scholar] [CrossRef]
- Davidson, A.J.; Binks, S.P.; Gediga, J. Lead Industry Life Cycle Studies: Environmental Impact and Life Cycle Assessment of Lead Battery and Architectural Sheet Production. Int. J. Life Cycle Assess. 2016, 21, 1624–1636. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Wu, X.; Hu, Y.; Yu, W.; Wang, J.; Dong, J.; Li, M.; Liang, S.; Hu, J.; et al. A Critical Review on Secondary Lead Recycling Technology and Its Prospect. Renew. Sustain. Energy Rev. 2016, 61, 108–122. [Google Scholar] [CrossRef]
- Vandepaer, L.; Cloutier, J.; Bauer, C.; Amor, B. Integrating Batteries in the Future Swiss Electricity Supply System: A Consequential Environmental Assessment. J. Ind. Ecol. 2019, 23, 709–725. [Google Scholar] [CrossRef]
- Nigl, T.; Schwarz, T.E.; Walch, C.; Baldauf, M.; Rutrecht, B.; Pomberger, R. Characterisation and Material Flow Analysis of End-of-Life Portable Batteries and Lithium-Based Batteries in Different Waste Streams in Austria. Waste Manag. Res. 2020, 38, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Apalkova, V.; Tsyganov, S.; Chernytska, T.; Meshko, N.; Tsyganova, N. Evaluating the Economic and Ecological Effects of Investment Projects: A New Model and Its Application to Smartphone Manufacturing in Europe. Investig. Manag. Financ. Innov. 2021, 18, 252–265. [Google Scholar] [CrossRef]
- Arain, A.L.; Neitzel, R.L.; Nambunmee, K.; Hischier, R.; Jindaphong, S.; Austin-Breneman, J.; Jolliet, O. Material Flow, Economic and Environmental Life Cycle Performances of Informal Electronic Waste Recycling in a Thai Community. Resour. Conserv. Recycl. 2022, 180, 106129. [Google Scholar] [CrossRef]
- Rajaeifar, M.A.; Ghadimi, P.; Raugei, M.; Wu, Y.; Heidrich, O. Challenges and Recent Developments in Supply and Value Chains of Electric Vehicle Batteries: A Sustainability Perspective. Resour. Conserv. Recycl. 2022, 180, 106144. [Google Scholar] [CrossRef]
- Ziemann, S.; Müller, D.B.; Schebek, L.; Weil, M. Modeling the Potential Impact of Lithium Recycling from EV Batteries on Lithium Demand: A Dynamic MFA Approach. Resour. Conserv. Recycl. 2018, 133, 76–85. [Google Scholar] [CrossRef]
- Dunn, J.; Slattery, M.; Kendall, A.; Ambrose, H.; Shen, S. Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Environ. Sci. Technol. 2021, 55, 5189–5198. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, J. Potential of Urban Cobalt Mines in China: An Estimation of Dynamic Material Flow from 2007 to 2016. Resour. Conserv. Recycl. 2020, 161, 104955. [Google Scholar] [CrossRef]
- Yu, Y.; Mao, J.; Chen, X. Comparative Analysis of Internal and External Characteristics of Lead-Acid Battery and Lithium-Ion Battery Systems Based on Composite Flow Analysis. Sci. Total Environ. 2020, 746, 140763. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Li, X.; Liu, Y.; Ogunmoroti, A.E.; Li, M.; Bi, M.; Cui, Z. Dynamic Material Flow Analysis of Critical Metals for Lithium-Ion Battery System in China from 2000–2018. Resour. Conserv. Recycl. 2021, 164, 105122. [Google Scholar] [CrossRef]
- Rui, X.; Geng, Y.; Sun, X.; Hao, H.; Xiao, S. Dynamic Material Flow Analysis of Natural Graphite in China for 2001-2018. Resour. Conserv. Recycl. 2021, 173, 105732. [Google Scholar] [CrossRef]
- Yang, H.; Song, X.; Zhang, X.; Lu, B.; Yang, D.; Li, B. Uncovering the In-Use Metal Stocks and Implied Recycling Potential in Electric Vehicle Batteries Considering Cascaded Use: A Case Study of China. Environ. Sci. Pollut. Res. 2021, 28, 45867–45878. [Google Scholar] [CrossRef] [PubMed]
- Shafique, M.; Rafiq, M.; Azam, A.; Luo, X. Material Flow Analysis for End-of-Life Lithium-Ion Batteries from Battery Electric Vehicles in the USA and China. Resour. Conserv. Recycl. 2022, 178, 106061. [Google Scholar] [CrossRef]
- Kim, H.; Jang, Y.-C.; Hwang, Y.; Ko, Y.; Yun, H. End-of-Life Batteries Management and Material Flow Analysis in South Korea. Front. Environ. Sci. Eng. 2018, 12, 3. [Google Scholar] [CrossRef]
- Miatto, A.; Reck, B.K.; West, J.; Graedel, T.E. The Rise and Fall of American Lithium. Resour. Conserv. Recycl. 2020, 162, 105034. [Google Scholar] [CrossRef]
- Castro, F.D.; Cutaia, L.; Vaccari, M. End-of-Life Automotive Lithium-Ion Batteries (LIBs) in Brazil: Prediction of Flows and Revenues by 2030. Resour. Conserv. Recycl. 2021, 169, 105522. [Google Scholar] [CrossRef]
- Tang, C.; Sprecher, B.; Tukker, A.; Mogollón, J.M. The Impact of Climate Policy Implementation on Lithium, Cobalt and Nickel Demand: The Case of the Dutch Automotive Sector up to 2040. Resour. Policy 2021, 74, 102351. [Google Scholar] [CrossRef]
- Kamran, M.; Raugei, M.; Hutchinson, A. A Dynamic Material Flow Analysis of Lithium-Ion Battery Metals for Electric Vehicles and Grid Storage in the UK: Assessing the Impact of Shared Mobility and End-of-Life Strategies. Resour. Conserv. Recycl. 2021, 167, 105412. [Google Scholar] [CrossRef]
- Baars, J.; Domenech, T.; Bleischwitz, R.; Melin, H.E.; Heidrich, O. Circular Economy Strategies for Electric Vehicle Batteries Reduce Reliance on Raw Materials. Nat. Sustain. 2021, 4, 71–79. [Google Scholar] [CrossRef]
- Bobba, S.; Carrara, S.; Huisman, J.; Mathieux, F.; Pavel, C. Critical Raw Materials for Strategic Technologies and Sectors in the EU—A Foresight Study; European Commission: Brussels Belgium, 2020; ISBN 9789276153375. [Google Scholar]
- Sambamurthy, S.; Raghuvanshi, S.; Sangwan, K.S. Environmental Impact of Recycling Spent Lithium-Ion Batteries. Procedia CIRP 2021, 98, 631–636. [Google Scholar] [CrossRef]
- EEA New Registrations of Electric Vehicles in Europe. Available online: https://www.eea.europa.eu/ims/new-registrations-of-electric-vehicles (accessed on 22 February 2022).
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiş, B. Comparison of Different Battery Types for Electric Vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012058. [Google Scholar] [CrossRef]
- Statista Market Share of Different Types of Electric Vehicles Cathode Chemistries in 2020 with a Forecast for 2025 through 2050 2021. Available online: https://www.statista.com/statistics/1248519/distribution-of-different-electric-vehicle-batteries-on-the-global-market/ (accessed on 21 March 2023).
- Gaines, L.; Richa, K.; Spangenberger, J. Key Issues for Li-Ion Battery Recycling. MRS Energy Sustain. 2018, 5, E14. [Google Scholar] [CrossRef]
- Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G.P.; Zaghib, K. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. Materials 2020, 13, 801. [Google Scholar] [CrossRef] [PubMed]
- Danino-Perraud, R. The Recycling of Lithium-Ion Batteries: A Strategic Pillar for the European Battery Alliance; Laboratoire d’Economie: d’Orleans, France, 2020; ISBN 9791037301352. [Google Scholar]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A Review on the Growing Concern and Potential Management Strategies of Waste Lithium-Ion Batteries. Resour. Conserv. Recycl. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Romare, M.; Dahllöf, L. The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries a Study with Focus on Current Technology and Batteries for Ligh-Duty Vehicles; Swedish Environmental Research Institute: Stockholm, Sweden, 2017; ISBN 978-91-88319-60-9. [Google Scholar]
- Ecoinvent v3.8—Ecoinvent. Available online: https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-3-8/ (accessed on 8 March 2023).
- IEA Share of Energy Consumption from Renewable Sources in Europe. Available online: https://www.eea.europa.eu/ims/share-of-energy-consumption-from (accessed on 6 December 2022).
- Eurostat. Electricity Prices for Non-Household Consumers—bi-Annual Data (from 2007 Onwards). 2023. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_205/default/table?lang=en (accessed on 21 March 2023).
- Statista Landfill Tax in Europe 2017. Available online: https://www.statista.com/statistics/986324/landfill-tax-in-europe/ (accessed on 25 February 2022).
- Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P. Environmental Impacts, Pollution Sources and Pathways of Spent Lithium-Ion Batteries. Energy Environ. Sci. 2021, 14, 6099–6121. [Google Scholar] [CrossRef]
- Kayla Kilgo, M.; Anctil, A.; Kennedy, M.S.; Powell, B.A. Metal Leaching from Lithium-Ion and Nickel-Metal Hydride Batteries and Photovoltaic Modules in Simulated Landfill Leachates and Municipal Solid Waste Materials. Chem. Eng. J. 2022, 431, 133825. [Google Scholar] [CrossRef]
- Morrow, H. Environmental and Human Health Impact Assessments of Battery Systems. In Industrial Chememestry Librrary; Elsevier: Amsterdam, The Netherlands, 2001; Volume 10, pp. 1–34. [Google Scholar] [CrossRef]
- Lisbona, D.; Snee, T. A Review of Hazards Associated with Primary Lithium and Lithium-Ion Batteries. Process. Saf. Environ. Prot. 2011, 89, 434–442. [Google Scholar] [CrossRef]
Battery | LFP | NCA | NMC 111 | NMC 622 | NMC 811 | |
---|---|---|---|---|---|---|
Market Share | 2% | 19% | 24% | 45% | 10% | |
Composition (%-wt) | PET | 0.4% | 0.3% | 0.3% | 0.3% | 0.4% |
PE | 0.2% | 0.3% | 0.3% | 0.3% | 0.3% | |
Electrolyte DMC | 9.3% | 6.3% | 6.2% | 6.3% | 7.2% | |
Electrolyte EC | 9.4% | 6.3% | 6.2% | 6.3% | 7.2% | |
Electrolyte LiPF6 | 3.3% | 2.3% | 2.2% | 2.2% | 2.6% | |
Al (CC) | 7.5% | 8.4% | 8.2% | 8.4% | 8.0% | |
Cu (CC) | 14.5% | 16.9% | 16.4% | 16.8% | 15.7% | |
Binder PVDF | 2.7% | 2.9% | 2.9% | 2.9% | 3.6% | |
Carbon black | 2.2% | 2.1% | 2.3% | 2.1% | 1.7% | |
Graphite | 16.6% | 22.0% | 19.0% | 20.7% | 20.6% | |
Li | 1.4% | 2.2% | 2.7% | 2.5% | 2.4% | |
Co | - | 2.8% | 6.9% | 3.8% | 1.9% | |
Ni | - | 14.9% | 6.9% | 11.5% | 14.9% | |
Mn | - | - | 6.4% | 3.6% | 1.7% | |
Al | - | 0.4% | - | - | - | |
Fe | 11.4% | - | - | - | - | |
P | 6.3% | - | - | - | - | |
O | 13.1% | 10.1% | 11.2% | 10.4% | 10.2% |
Country | Company | Pyrometallurgy (t/y) | Hydrometallurgy (t/y) | Reference |
---|---|---|---|---|
Belgium | Umicore | 7000 | 7000 | [42,43,44] |
Finland | Akkuser | 4000 | - | [43] |
France | SNAM | 300 | - | [42,43,44] |
Recupyl | - | - | [8,43,44] | |
Euro-dieuze | - | 200 | [43] | |
Eramet | 20,000 | - | [43] | |
Germany | Accurec GmBH | 4000 | 4000 | [8,42] |
Duesendeld | 3000 | - | [43] | |
Redux | - | 10,000 | [42] | |
Lithorec | - | n.s. | [8] | |
Spain | Pilagest | - | - | [45] |
Sweden | uRecycle | - | - | [43] |
Switzerland | Batrec Industrie AG | - | 200 | [8,44] |
United Kingdom | AEA Technology | - | n.s. | [8,42,44] |
Target Element | Pyrometallurgy | Hydrometallurgy |
---|---|---|
lithium | - | 95% ± 7.0% |
cobalt | 86% ± 15.0% | 95% ± 5.8% |
nickel | 98% ± 1.0% | 97% ± 3.2% |
manganese | 88% ± 4.0% | 91% ± 19.7% |
aluminum | 99% | 71% ± 31.1% |
iron | - | 80% ± 20.9% |
copper | 96% | 95% ± 11.2% |
Al | Cu | Li | Co | Mn | Ni | Fe | P | |
---|---|---|---|---|---|---|---|---|
RTOT | 19% | 20% | 9% | 19% | 21% | 19% | 7% | 19% |
RTREAT | 87% | 96% | 42% | 90% | 98% | 90% | 35% | 87% |
ηMATERIALS | 38% | 58% | 8% | 25% | 49% | 21% | 1% | 38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, M.; Fiore, S. Material Flow Analysis of Lithium-Ion Battery Recycling in Europe: Environmental and Economic Implications. Batteries 2023, 9, 231. https://doi.org/10.3390/batteries9040231
Bruno M, Fiore S. Material Flow Analysis of Lithium-Ion Battery Recycling in Europe: Environmental and Economic Implications. Batteries. 2023; 9(4):231. https://doi.org/10.3390/batteries9040231
Chicago/Turabian StyleBruno, Martina, and Silvia Fiore. 2023. "Material Flow Analysis of Lithium-Ion Battery Recycling in Europe: Environmental and Economic Implications" Batteries 9, no. 4: 231. https://doi.org/10.3390/batteries9040231